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Abstract

Memorization, as an algorithm design technique, allows algorithms to be sped up at the price
of increased space usage. Typically, in search tree algorithms, on lower branching levels, iso-
morphic sub-problems may appear exponentially many times, and the idea of Memorization is
to avoid repetitive solutions, as they correspond to identical sub-problems. This idea has existed
for a long time; however, to the best of the authors’ knowledge, it has not been systematically
considered when designing branching algorithms and has been rarely considered for sequencing
problems.

In this paper, we explore the power of Memorization in solving hard sequencing problems.
We first describe a general framework of Memorization and provide some guidelines for its
implementation. Then we apply the framework to four sequencing problems: the two-machine
flowshop problem minimizing the sum of completion time and three single machine problems
whose objective functions to minimize are the total tardiness, the sum of completion time with
release date and the sum of weighted completion time with deadline. The global results suggest
that Memorization should be systematically considered as a solving block inside search tree
based algorithms such as Branch and Bound.

Keywords: scheduling, exact algorithms, memorization, sequencing, branch and memorize,
total tardiness, sum of completion times, flowshop, single machine

1. Introduction

Memorization is an algorithm design technique that allows algorithms to be sped up at the
price of increased space usage. Typically, in search tree algorithms, on lower branching lev-
els, isomorphic sub-problems may appear exponentially many times, and the idea of Memoriza-
tion is to avoid repetitive solutions, as they correspond to identical sub-problems. The method
was first applied on the Maximum Independent Set problem by Robson (1986) in 1986. By
exploiting graph theoretic properties and by applying Memorization to avoid solving identical
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sub-problems, Robson proposed an algorithm with a worst-case time complexity in O(1.2109n).
This proposed algorithm remained the exact exponential algorithm with the smallest worst-case
time complexity until 2013, when the O(1.1996n) algorithm of Xiao and Nagamochi (2017) was
introduced. Memorization is sometimes used to speed up search tree algorithms (Chandran and
Grandoni, 2005; Fomin et al., 2005; Fomin and Kratsch, 2010) in the context of Exact Expo-
nential Algorithms (EEAs), where the objective is to develop exact algorithms that can provide
a best possible worst-case running time guarantee. Very recently, Xiao and Tan (2017) applied
Memorization to derive an algorithm running in O∗(1.3752n) time and exponential space, solving
the Maximum Induced Matching problem.

Although a typical Memorization algorithm memorizes solutions of sub-problems that ap-
pear repeatedly, we prefer to interpret the concept in a more general way. What we call the
Memorization Paradigm can be formulated as “Memorize and learn from what you have done so
far, to improve your future decisions”. In the literature, various algorithms can be classified as
procedures that embed memorization techniques, although their implementations could be quite
different depending on the problem structure and the information to be stored. For instance, Tabu
Search (Glover, 1989, 1990) is a metaheuristic that memorizes recently visited solutions to avoid
returning to these solutions again during the search. SAT solvers deduce and then memorize con-
flict clauses during the tree search to perform non-chronological backtracking (Conflict Driven
Clause Learning) (Biere et al., 2009; Zhang et al., 2001). Similar ideas also appear in Artificial
Intelligence as Intelligent Backtracking or Intelligent Back-jumping. Variations of memoriza-
tion exist under diverse names such as “Branch, bound and remember (BB&R)” (Sewell and
Jacobson, 2012), no-good recording (Jouglet et al., 2004), etc.

From a theoretical point of view, the drawback of Memorization relies on increases in mem-
ory consumption which can be exponential. This drawback limits the quantity of memorized in-
formation, such as in Tabu Search or SAT solvers. In this paper, we instantiate the Memorization
Paradigm in a way similar to what has been done in the field of EEA: we set up a Memoriza-
tion framework for search-tree-based exact algorithms, but with a control on the memory usage.
Based on our intuition, we hypothesize that Memorization with limited memory can dramat-
ically accelerate such algorithms in practice. By embedding a simple Memorization technique
into their Branch& Bound algorithm, Szwarc et al. Szwarc et al. (2001) solve the single-machine
total tardiness problem on instances with up to 500 jobs. Other work on standard Memorization
techniques that are applied to sequencing problems has been presented in T’kindt et al. (2004),
where the benefit of such techniques is well demonstrated.

Search tree algorithms are based on the idea of enumerating all possibilities via a search tree
that is created by a branching mechanism. For each decision variable, the algorithm branches
on all possible values, each time creating a new sub-problem (a node in the search tree) of a
reduced size. The algorithm continues re- cursively and returns the globally optimal solution.
As the basic structure is simple, the critical question is how to prune the search tree such that the
exploration of unpromising nodes is avoided. Dominance conditions are commonly used to cut
nodes: if it is proved that a more promising node exists or can be easily found, then the current
node is abandoned. This is also the case for Branch & Bound, in which the bounding procedure
provides an optimistic estimate of the solution quality of each node. If the estimate is not better
than the current best solution, in other words, the current node is dominated by the incumbent
solution, then the node is cut without being further developed. Similar to the bounding procedure
in Branch & Bound, Memorization can be viewed as another procedure that can help in pruning
the search tree. In branching algorithms, especially on lower branching levels, isomorphic sub-
problems may appear exponentially many times and Memorization can be used to avoid solving
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identical problems multiple times.
To the best of the authors’ knowledge, Memorization has not yet been systematically con-

sidered when designing search-tree-based algorithms, such as the bounding procedure in Branch
& Bound; certainly, it is rarely considered in sequencing problems. The aim of this paper is
to promote the systematic incorporation of Memorization into search-tree-based algorithms to
better prune search trees. In the following sections, we first describe the general framework of
Memorization (section 2), followed by some guidelines for implementation (section 3). Then, we
apply the framework to four scheduling problems: 1|ri|

∑
Ci (section 4.1), 1|d̃i|

∑
wiCi (section

4.2), F2||
∑

Ci (section 4.3) and 1||
∑

Ti (section 5). Finally, we conclude our work in section 6.

2. Applying Memorization to search trees

For a given minimization problem, the application of Memorization depends on several com-
ponents of the search-tree-based algorithm, such as the branching scheme, search strategies and
characteristics of the problem. In this section, we consider possible scenarios that may arise in
sequencing problems. Then, we present the possible schemes of Memorization and explain how
to choose the correct scheme for a given scenario.

Consider a generic sequencing problem in which n jobs J = {1, ..., n} are to be scheduled.
Each job j is defined by a set of features such as a processing time p j, and a due date d j, which
depends on the problem under consideration. We adopt an intuitive way of representing the
content of a node or sub-problem: for example 123{4, ..., n} represents a sub-problem in which
jobs {1, 2, 3} have already been fixed by branching, to the first three positions of the sequence,
while the jobs to be scheduled afterward are {4, ..., n}.

By active nodes we denote the nodes that have been created but not yet developed, and
by explored nodes the nodes that have already been branched on (children nodes have been
created). We also adopt the notion of decomposable problems, as defined in T’kindt et al. (2004).
Typically, for single machine scheduling problems, this often implies that the completion time of
the prefixed job sequence of a node is constant, regardless of the internal order of the jobs inside
(it is defined as the sum of the processing times of the jobs in that sequence).

Definition 1. Let {1, ..., i}{i + 1, ..., n} be a problem to be solved. It is decomposable if and
only if the optimal solution of the sub-problem {1, ..., i} (resp. {i + 1, ..., n}) can be computed
independently from the optimal sequence of {i + 1, ..., n} (resp. {1, ..., i}).

2.1. Branching schemes
In common search tree based algorithms for scheduling (sequencing) problems, the branch-

ing operation consists of assigning a job to a specific position in the sequence. A Branching
Scheme defines, at a node, how to choose this job and the positions to occupy. We consider
three classic branching schemes: forward branching, backward branching and decomposition
branching.

As indicated by their names, forward branching (resp. backward branching) assign the job
being branched to the first (resp. last) free position. As a contrast, decomposition branching is
less commonly seen on sequencing problems. When applied at a given node, the job that is being
branched is called a decomposition job. When a decomposition job is assigned to a position, two
sub-problems are generated, implied by the free positions before and after the decomposition job.
Certainly one may determine the jobs that should be scheduled before and after this position by
enumerating all 2-partitions of jobs.However, here we restrict our study to the situation in which
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the two sub-problems can be uniquely determined in polynomial time by making use of some
specific problem properties. This situation occurs, for instance, in the 1||

∑
Ti problem which

will be discussed later on.

2.2. Search strategies

During the execution of a search tree based algorithms, when two or more nodes are active,
a strategy is needed to determine the next node to branch on. The classic search strategies are
depth-first, best-first and breadth-first.

Depth-first chooses the node to branch among active nodes at the lowest search tree level.
The advantage of this strategy is that it only requires polynomial space. Breadth-first selects
an active node with the highest search tree level. This leads to exponential space usage since
the search tree is explored level by level. Best-first chooses the node to explore according to its
lower bound. Therefore, the space usage in the worst case is usually also super-polynomial as in
breadth-first search.

Conventionally, when constructing a search tree based algorithm, the depth-first is most com-
monly adopted. However, according to T’kindt et al. (2004), this choice is highly questionable.

2.3. Memorization schemes

The memorization scheme that is presented by Robson (1986) stores the optimal solution of
each sub-problem of a predetermined limited size and reuses that solution whenever such sub-
problem appears again during the tree search. However, various memorization approaches can
be used. The differences among them lie in the choice of which information to store and the way
in which the stored information is used. Below, we discuss three different memorization schemes
that are helpful for efficiently solving some sequencing problems.

According to the branching schemes that were introduced in section 2.1, any node of the
search tree can be defined by σ1S 1σ2S 2...σkS k, where the σ j

′s being partial sequences of jobs
and the S j

′s being sub-problems that remain to be scheduled. For the sake of simplicity, we
explain the Memorization schemes in the case of forward branching, i.e., k = 1, where a node
corresponds to a problem σS .

2.3.1. Solution memorization
Consider the situation illustrated in Figure 1, where active nodes are colored in black. Node

B is the current node, while σ, σ′ and σ′′ are different permutations of the same jobs. In other
words, nodes A, B and C may contain the same sub-problem, implied by S . In that case, if A has
already been solved (for instance, by depth-first search) and the optimal sequence of S has been
memorized, then it can be used directly to solve nodes B and C and it is no longer necessary to
branch on these nodes.

Note that, to successfully perform Memorization, we must guarantee that the solution of S
memorized at node A is optimal. Depending on the branching algorithm implementation, this
may not be obvious: for instance in Branch & Bound algorithms, the leaf node that corresponds
to the optimal solution of node A may be missed if one of its ascendant nodes is cut due to a
dominance condition. In Figure 1, assume that node D should have led to the optimal solution
of problem S but was cut by a dominance condition. Applying solution memorization may then
lead to the memorization of another solution β to S that is not optimal with respect to S . Troubles
may appear if the optimal solution to the original problem (associated with the root node) is, for
instance, given by node E. Solution memorization may lead to not exploring node B and directly
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A : σ′S

C : σ′′S

B : σS

Explored nodes Future nodes

D E F

Figure 1: Solution Memorization

replacing S by the “best” solution that was found from node A. Consequently, the globally
optimal solution is missed. This situation occurs whenever the dominance condition that pruned
node D would not have pruned node E: in the remainder of the paper, conditions of this kind are
referred to as context-dependent dominance conditions since they depend on the context of each
node (typically, the initial partial sequence σ, σ′ and σ′′). In contrast, a context-independent
dominance condition would have pruned nodes D, E and F. A direct way to fix this is to disable
dominance conditions whenever solution memorization is applied.

However, if these context-dependent conditions play a very important role in the algorithm,
this may slow down the algorithm, even if solution memorization is successful. Another approach
for managing context-dependent dominance conditions is to extend the memorization from “so-
lutions” to “lower bounds” when the branching algorithm involves a bounding mechanism. In
this version of Memorization, we assume that all dominance conditions are retained in the algo-
rithm. When node A is created, a lower bound is computed, which represents the best solution
value that we may expect from the sub-tree of A. This lower bound is based on the cost function
value of the sequence σ′ which has already been fixed, and an evaluation on the unsolved part S .
When branching down the sub-tree of A, jobs in S are fixed gradually, hence, the evaluation on
the remaining unscheduled jobs becomes increasingly precise. When all leaf nodes of the sub-
tree of A have been explored, this value finally becomes tighter (higher) than the initial value that
was computed at node A. Since the objective function value of σ′ is known, we can then deduce
the lower bound value that corresponds to S when it is scheduled after σ′, and memorize it. Now
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when node B is opened, instead of computing its lower bound, we can obtain it by retrieving
the lower bound of S directly from memory and then adding the objective function value of σ.
Using this approach, the lower bound that we obtain is tighter, and node B is more likely to be
cut. Moreover, the lower bound computation at node B, which may be time-consuming, is saved.
Note that the lower bound values, for nodes cut by context-dependent dominance conditions,
still need to be computed and considered (which introduces an extra cost). Lower-bound mem-
orization can be a good alternative to solution memorization with context-dependent dominance
conditions turned off if these conditions are efficient in pruning the search tree.

Note that the memorization of lower bounds is compatible with the memorization of optimal
solutions: whenever no nodes in a sub-tree are cut by context-dependent dominance conditions
and the global upper bound is updated by some nodes from this sub-tree, the optimal solution of
this sub-tree is memorized. Otherwise, the lower bound is memorized. We refer to the described
memorization technique, including the memorization of optimal solutions and the memorization
of lower bounds, as solution memorization, since both of them are related to the memorization
of the “best solution” of the problem that is associated with a node.

2.3.2. Passive node memorization
At any node σS , another item of information that can be memorized is the partial sequence

σ. Unlike solution memorization, in which the memorized sequences can be used to solve the
problem at a node, passive node memorization is only used to cut nodes.

A : σ′S C : σ′′SB : σS

Explored nodes

Future nodes

Figure 2: Passive node memorization)

Consider the branching situation depicted by Figure 2. Again, active nodes are colored in
black and B is the current node. Assume that a node A exists along with the explored node,
with σ′ being a different permutation of the same jobs used in σ. If the partial sequence σ′ has
been memorized, then one of two situations occurs. If σ′ dominates σ then B can be cut since it
cannot lead to a better solution than A. If no such σ′ that dominates σ is available, then σ can
be memorized to possibly prune a future node such as C. Note that solution memorization and
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passive node memorization may intersect. Consider the previous example and nodes A, B and
C. If the optimal solution of sub-problem S has been obtained from the exploration of node A,
then at nodes B and C, both solution memorization and passive node memorization indicate not
to branch on these nodes if σ′ dominates σ and σ′′.

The dominance test between sequences can be implemented as a function check(σ,σ′) which
returns 1 if σ′ dominates σ, as introduced by T’kindt et al. (2004). The function check must be
evaluated on two different sequences of the same jobs that have the same starting time, and the
implementation of this function is problem-dependent. Since the memorized sequence results
from branching decisions, we call this passive node memorization.

In the following, we introduce Definition 2, which relates the lower bounding mechanism of
search tree based algorithms to the check function. When this test is verified, the current node
only needs to be compared to the explored nodes, instead of all nodes, when best-first is chosen
as the search strategy, as detailed in section 2.4.

Definition 2. (Concordance Test) Let LB(A) be the lower bound value computed at node A.
A search tree based algorithm satisfies the concordance property if and only if, for any node
A = σS and B = πS , LB(A) < LB(B)⇔ check(π, σ) = 1.

2.3.3. Predictive node memorization
Predictive node memorization relies on the same concept as passive node memorization, but

with additional operations. As illustrated in Figure 3, at a given node B = σS , we first check,
as in passive node memorization, if the current node can be cut by σ′ memorized at node A. If
not, instead of directly memorizing σ, we search for an improving sequence π. Notice that, the
improving sequence necessarily belongs to a part of the search tree that has not yet been explored
when dealing with the node σS . There may be many ways to compute π. For instance, we may
perform some local search on σ by searching for a neighboring sequence π that dominates σ.
Alternatively, we may focus on a short sub-sequence of σ and solve it to optimality (in a brute-
force way, for instance). The latter idea appears as Dominance Rules Relying on Scheduled Jobs
(Jouglet et al., 2004). We may also make use of an exact algorithm to optimize a part of σ to
get π, as long as this algorithm is fast. Notice that this idea is strongly related to the theoretical
mechanism called merging (Shang et al., 2017)and is designed to provide good worst-case time
complexities. If such a sequence π can be constructed, then the current node σS is cut and node
πS is memorized. Note that node πS has not yet been encountered in the search tree when dealing
with node σS (for example, consider π = σ′′). Thus, it is important when applying predictive
node memorization to remember that πS still needs to be branched on. Additionally, the extra
cost of generating π must be limited to avoid excessive CPU time consumption.

2.4. Decision guidelines

In this section, we provide some guidelines on how to choose the appropriate memoriza-
tion scheme according to the branching scheme and the search strategy. The main results are
summarized in the decision tree in Figure 4.

2.4.1. Forward branching and depth first search strategy
In forward branching, any node of the search tree can be defined as σS . When depth-first is

used as the search strategy, the following property holds.
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A : σ′S C : σ′′S

B : σS

Explored nodes

Future nodes

πS

Figure 3: Predictive node memorization

Property 1. With forward branching and depth first search, if the problem is decomposable and
solution memorization memorizes optimal solutions, then solution memorization dominates both
passive node memorization and predictive node memorization.

Proof. Any node deletion that can be achieved by passive node memorization and predictive
node memorization can also be achieved by solution memorization, but not conversely. Consider
nodes A = σS and B = πS , where σ and π are two permutations of the same jobs. As the
problem is decomposable, solving sub-problem S at node A is equivalent to solving it at node
B. Without loss of generality, we assume that A appears before B during the solution. In passive
node memorization if check(π, σ) = 1, i.e., sequence σ dominates π, then B can be pruned.
However, in solution memorization, node B can also be pruned since the optimal solution of job
S has already been memorized from node A.

Now consider the case where check(σ, π) = 1, i.e., sequence π dominates σ. This implies that
with passive node memorization, node B will not be pruned. However, as explained above, with
solution memorization, node B is pruned. With predictive node memorization, the conclusion is
the same since we have no guarantee that starting from node πS , another node αS that dominates
πS can be generated. Moreover, even if such a node αS is generated and πS is pruned, the same
issue occurs in node αS when it is generated.

If the problem is not decomposable, or context-dependent dominance conditions are used in
the algorithm, then solution memorization memorizes lower bounds and it is impossible to deter-
mine which memorization scheme is dominant. However, in practice, passive node memorization
may be preferred to solution memorization. Notably, if the problem is not decomposable, then
it may be necessary to solve the sub-problem that consists of jobs S at both node A and and B.
However, with passive node memorization, node B may be pruned whenever π is dominated by
σ.
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depth first

search strategy?

D

best first breadth first

A:the problem is decomposable
B:no context dependent dominance conditions
C:concordance property verified
D:solution memorzation
E:passive/predictive node memorization
F:passive node memorization
G:check() applied on active nodes only
H: check() applied on explored nodes only
HH: suggested scheme when none is dominant

forward/backward dec decforward/backward

branching strategy? branching strategy? branching strategy?

A and B?

yes no yes no

C?

E EH E

E FG F

forward/backward dec

D

Figure 4: Decision tree for choosing the memorization scheme

2.4.2. Forward branching and best-first search strategy
The following property holds.

Property 2. With forward branching and the best-first strategy, solution memorization is useless.
Passive node memorization or predictive node memorization can be applied only to explored
nodes if the Concordance Property (Definition 2) is satisfied.

Proof. To apply solution memorization at a given node, the sub-problem concerning S must be
solved first so that its optimal solution can be memorized. This strategy is not compatible with
the best-first search strategy. In fact, no sequence can be stored before that the best-first search
reaches a leaf node, while once a leaf node is reached, the optimal solution is obtained.

When passive node memorization and predictive node memorization are applied, the search,
at a given node, of a dominant sub-sequence needs to be performed only in the set of explored
nodes when the concordance property holds. As the best-first search strategy always considers
branching the node with the lowest lower bound value, the concordance property implies that no
active node can dominate it.

When the concordance property does not hold, then node memorization techniques must con-
sider both explored and active nodes for node pruning. Moreover, no dominance can be deduced
a priori between predictive node memorization and passive node memorization. It depends on
how the search for an improving sub-sequence is applied in predictive node memorization. Gen-
erally, both memorization schemes should be considered and compared to determine which is
best.

2.4.3. Forward branching and breadth-first search strategy
With forward branching and breadth-first search, the following property holds.
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Property 3. With forward branching and the breadth-first strategy, solution memorization is
useless. Passive node memorization should be chosen and applied to active nodes.

Proof. Under this configuration, solution memorization is useless since leaf nodes are reached
only at the end of the search tree. Passive node memorization can be applied to active nodes only.
An active node A is selected for branching when all the nodes at the same level have been created;
hence, all other active nodes that are dominated by A are discarded. If, in turn, A is dominated
by another node, then it is pruned. There is no need to consider explored nodes since explored
nodes on higher levels have fewer fixed jobs; therefore, they are not comparable with the current
node. Moreover, predictive node memorization cannot outperform passive node memorization
since passive node memorization already keeps the best node at each level.

2.4.4. Decomposition branching and depth first search strategy
With decomposition branching, at each level of the search tree a decomposition job can be

put in any free position by the branching operation.
Under this configuration, no dominance can be deduced among the memorization schemes.

In fact, we can imagine situations in which solution memorization or passive node memorization
or predictive node memorization is dominant. Consider nodes A = σS 1 j1S 2 and B = πS 1 j2S 3
with A being explored before B. In both nodes, the current sub-problem concerns scheduling
jobs S 1 after σ or π. Suppose σ and π contain different jobs but have the same completion time,
which means that the sub-problems defined by S 1 are identical in A and B. Then, the optimal
sequence for S 1 that is found when solving A can be reused on B by solution memorization. In
contrast, passive node memorization cannot handle this case since σ and π contain different jobs
and, hence, are incomparable. Predictive node memorization may or may not cut B, depending
on whether a dominant prefix can be generated or not.

We may also imagine the case where A = σS 1 j1S 2 and B = πS 3 j2S 4. Suppose σ and π are
different permutations of the same jobs. If check(π, σ) = 1, then node B can be cut by passive
node memorization or predictive node memorization. In contrast, this is not the case for solution
memorization because sub-problems S 1 and S 3 do not consist of the same jobs.

In practice, even though every memorization scheme can be dominant in some cases, the
memory limitation does not allow all of them to be applied and our experience suggests that
it is preferable to apply solution memorization. This is due to the special structure of nodes
σ1S 1...σkS k, which makes the prefixed jobs more spread out (they are separated by S i), and pre-
vents the application of successful passive node memorization and predictive node memorization.
Moreover, the case with nodes σ1Sσ2 and π1S π2, where σ1 and π1 have the same completion
time but contain different jobs, may occur often for large instances if the jobs processing times
do not present a large variance.

2.4.5. Decomposition branching and best-first search strategy
Property 4. With decomposition branching and the best-first strategy, solution memorization
cannot be applied. Passive node memorization and predictive node memorization must be ap-
plied only to explored nodes whenever the concordance property holds and the check function for
comparing two nodes σ1S 1...σkS k and σ′1S 1

′...σk′
′S k′

′ only works on σ1 and σ1
′. Otherwise,

passive node memorization and predictive node memorization must be applied to both explored
and active nodes.

Proof. The proof is similar to that of Property 2.
10



2.4.6. Decomposition branching and breadth-first search strategy
Property 5. With decomposition branching and the breadth-first strategy, solution memorization
cannot be applied. Whether node memorization should be applied to active nodes depends only
on the definition of the check function.

Proof. This configuration discourages solution memorization for the same reason as in Property
3. If the check function is defined in such a way that the explored nodes are not comparable
to active nodes, then passive node memorization and predictive node memorization should be
applied to active nodes only; otherwise, they should be applied to all nodes.

3. Implementation consideration

In this section we discuss efficient implementations of the memorization schemes and pro-
vide, when necessary, choices specific to the sequencing problems that are approached in the
remainder of the paper. The key point is to have fast access to memorized partial solutions.
Henceforth, we implement a database as a hash table that contains all the memorized solutions.
By well choosing the hash function, the hash table supports querying in O(1) time to find the
corresponding elements given a hash key.

For solution memorization, at a given node, the database is queried with 〈t0, S 〉, where t0 is
the starting time of the sub-problem and S is the set of related jobs. The returned result should
be 〈π, opt(π|t0)〉 which is the optimal sequence that is associated with S when starting at time t0,
and its corresponding objective function value. Therefore, 〈π, opt(π|t0)〉 defines the elements that
are memorized in the database. We define the hash key h as a combination of t0 and |S |: seeing
h as a set of bits, t0 occupies the higher bits in h while |S | occupies the lower bits. The aim is to
obtain a unique hash key for each given pair 〈t0, S 〉, even if it is not necessarily bijective:, i.e.,
two elements in the database with the same hash key may correspond to different pairs 〈t0, S 〉.
As a consequence, when a list of elements is returned for a pair 〈t0, S 〉, it is also necessary to
verify that the returned sequence is a sequence of jobs S . This requires O(|S |) operations for each
returned sequence. We may also incorporate the sum of the id’s of jobs in S into h to obtain a
more exact key, but this correspondingly increases the time needed to construct the key; however,
it does not prevent checking whether a returned sequence π is a permutation of jobs in S or not.

For passive and predictive node memorization, implementation decisions are more dependent
on the problem and the check function used to compare two partial sequencesσ and π of the same
jobs. For any such σ and π, a general definition of check() could be as follows:

check(π, σ) =

1, i f Cmax(σ) ≤ max(Cmax(π); Emin(π)) and opt(σ|t0) ≤ opt(π|t0)
0, otherwise

(1)

where Cmax refers to the makespan of a partial sequence, and Emin(π) refers to the earliest
starting time of the jobs scheduled after π. It is not difficult to see that if check(π, σ) = 1, then
node σS dominates node πS . Indeed, for the minimization of any regular objective function,
with respect to the fixed jobs, opt(σ|t0) ≤ opt(π|t0) ensures that σ yields a smaller cost than π.
Moreover, Cmax(σ) ≤ max(Cmax(π); Emin(π)) guarantees that the starting time of jobs S at node
σS is not higher than in node πS . Therefore, σS dominates πS .

Consequently, an element of the database is a tuple 〈σ,Cmax(σ), Emin(σ), opt(σ|t0), ExpAct〉,
where ExpAct is a flag that indicates whether this element corresponds to an explored or an
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active node. Notice that t0 is not included since it appears in the hash key that is used for
querying. Additionally, when the problem is decomposable, the check function reduces to:

check(π, σ) =

1, i f opt(σ|t0) ≤ opt(π|t0)
0, otherwise

where only 〈σ, opt(σ|t0), ExpAct〉 need to be stored. For node memorization techniques the
hash key, at a given node, is computed in a way similar to that used in solution memorization.
Consider, for example, forward branching: let σ1S 1 be the current node. As the dominance of
another node is checked on σ1, the database is queried with 〈0, S σ1〉 where S σ1 refers to the set
of jobs in σ1. Then, only S σ1 needs to be binary encoded into the hash value.

With respect to the database management, notice that when an element is added, in node
memorization techniques, the elements dominated by the added one are removed. Moreover, due
to memory limitations on the computer used for testing, in some instances, we need to clean the
database when it is full. More precisely, in our experiments, the RAM is of size 8Gb; hence, the
database size is also limited to 8Gb.

A cleaning strategy is needed to remove unpromising elements, i.e., those that are not ex-
pected to be used for pruning the search tree. As it is not clear which elements are unpromising,
several strategies have been tested. We have implemented the following strategies during our
experimentation.

FIFO: First In First Out
First In First Out is one of the most common database cleaning strategies: when the memory
is full, we remove the elements that were added first. An extra structure is needed to record
the order of the elements according to the times when they were added. When the database is
full and a long sequence is waiting to be inserted, it may be necessary to remove more than one
element to free up enough space.

BEFO: Biggest Entry First Out
In the Biggest-Entry-First-Out strategy, the biggest elements (the longest sequences) are removed
from the database to free up enough continuous memory for storing new elements. For solution
memorization, this means removing nodes at higher levels in the search tree. The impact of
this cleaning strategy on solution memorization, intuitionally, is illustrated in Figure 5, which
presents the number of sequences memorized per size for an instance of the 1||

∑
Ti scheduling

problem with 800 jobs. Sequences with many jobs (for example, more than 500 jobs) are not
often used to prune nodes, and even if some large nodes could have been useful for node pruning,
we may still expect that the solution of the sub-problems generated by one or several branchings
can be found in memory.

However, for passive and predictive node memorization, the strategy involves removing
nodes at lower levels of the search tree. These nodes correspond to sub-problems with many
jobs that have already been fixed (and memorized) and few jobs to schedule. It may be possible
that the extra cost of memorizing a long fixed partial sequence is higher than that of solving
the corresponding small sub-problem directly without memorization. Since this is not obvious
from a theoretical point of view, some preliminary experiments were performed to investigate
whether it is better to also remove nodes at higher levels of the search tree in node memorization.
Computational testing confirms that removing the longest elements is always preferred, at least
on problems 1|ri|

∑
Ci, 1|d̃i|

∑
wiCi and F2||

∑
Ci.

At each cleaning, we also tend to free up a large amount of space to decrease the time cost of
the cleaning operation.
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Nb Seq: number of sequences of a given size that are stored in memory.
Nb Queried Seq: number of sequences of a given size that are used to avoid solving identical problems more than once.

Figure 5: Number of solutions and useful solutions in memory for an instance of 1||
∑

Ti with 800 jobs

LUFO: Least Used First Out

Figure 5 also suggests another cleaning strategy, since many sequences are never used to
prune nodes in the search tree. These sequences can be removed from the database to save space.
To implement the LUFO cleaning strategy, we maintain a usage counter for each database ele-
ment. The counter is incremented by 1 each time the element is queried and used to prune a node
in the search tree, and it is decremented by 1 when a cleaning operation is performed. Elements
whose counter is zero are removed by the cleaning operation. Note that in node memorization,
when a database element is replaced by a new one, the latter should inherit the counter value of
the former. This is because the counter value reflects the usefulness of a solution and the counter
value of a newly added solution should not be smaller than the counter values of solutions that
are dominated by the new one.

Preliminary results, which are not reported here, indicate that the FIFO strategy is not efficient
for the considered scheduling problems. The BEFO strategy works better than FIFO, but its
efficiency is not high enough to affect the computational results. The LUFO strategy is proved to
be surprisingly efficient.

4. Application to the 1|ri|
∑

Ci, 1|d̃i|
∑

wiCi and F2||
∑

Ci problems

To evaluate the effectiveness of Memorization on scheduling problems, we first test it on
three problems that were considered by T’kindt et al. (2004). In that work, the authors used
memory to apply the so-called DP property over nodes to prune the search tree. According
to the memorization framework, as defined in this paper, what they performed is passive node
memorization with a database cleaning strategy that replaces the shortest stored sequence by the
new one when the database is full.
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Another aim of that paper was to choose the most suitable search strategy for solving these
problems efficiently. In this section, for each of these three problems, we apply the previously
defined Memorization framework with various considerations and discuss the obtained results.
For each problem, we compare several Branch & Bound algorithms, which are named according
to their features: Depth-, Best- and Breadth- refer to Branch & Bound algorithms with the cor-
responding search strategies and without memorization. Depth X, Best X and Breadth X refer
to Branch & Bound algorithms with the corresponding search strategies and Memorization of
type X, where X = S represents solution memorization, X = Pa passive node memorization and
X = Pr predictive node memorization. For predictive node memorization, we use the k-perm
heuristic to search for new sequences, as described in section 2.3.3.

The k-perm heuristic also refers to a “dominance condition relying on scheduled jobs” as
introduced by Jouglet et al. (2004). At a given node σS , assume that σ = σ0σk, where k is an
input parameter and σk is the sub-sequence of the last k jobs in σ. The k-perm heuristic consists
of enumerating all permutations of jobs in σk to obtain sequence σ`. Then, the first sequence
σ0σ` that is found that dominates σ0σk, if it exists, is used to prune node σS .

The dominating sequence can be memorized. The notion of dominance between sequences
is the one used to define the check function in node memorization. Preliminary tests suggest
that k = 5 should be chosen in our implementations to obtain the most efficient predictive node
memorization scheme. Notice that k-perm search is not performed when the breadth-first strategy
is used, since the memorization applied on active nodes already covers the effect of k-perm.

In result tables, Tavg and Tmax denote the average and maximum solution time in seconds.
Navg and Nmax are respectively the average and maximum number of nodes created during the
tree search. The test results on instances of certain sizes are marked as OOT (out of time) if any
instance is not solved after 5 hours. Analogously, with the application of Memorization, memory
problems may occur and the limit on RAM usage may be reached, which is reported as OOM (out
of memory). Note that according to our experiments, even when memory cleaning strategies are
applied, OOM may still occur due to the fragmentation of the memory after multiple cleanings.
Also note that LUFO is chosen as the cleaning strategy according to preliminary experimentation.

All tests have been performed on an HP Z400 work station with 3.07GHz CPU and 8GB
RAM.

4.1. Application to the 1|ri|
∑

Ci problem

The 1|ri|
∑

Ci problem requires n jobs to be scheduled on one machine in a way that mini-
mizes the sum of the completion times. Each job i has a processing time pi and a release date ri

before which the job cannot be processed. The problem is NP-hard in the strong sense and it has
been widely studied in the literature with both exact and heuristic algorithms.

When the processing time of jobs is generated with pmax = 100, the best computational re-
sults to date is reported by Tanaka and Fujikuma (2012). This algorithm called Sipsi uses a graph
representation during the solution and the size of the graph depends on pmax, hence, when pmax

is large, the algorithm is restricted by its memory usage. Also, since the algorithm is memory
consuming and is not a search tree algorithm, it is not obvious to integrate the Memorization
mechanism with it. Therefore, we choose the algorithm described by T’kindt et al. (2004) to
show the effectiveness of Memorization and then we also provide a comparison of the results
obtained by Memorization with the result given by Sipsi.

The work of T’kindt et al. (2004) uses the Branch & Bound algorithm of Chu (1992) as a ba-
sis, so forward branching is adopted as the branching strategy. The lower bounds and dominance
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conditions from Chu (1992) are maintained. A so called DP Property, which is added as a new
feature by T’kindt et al. (2004), is equivalent to passive node memorization in our terminology.
The check() function is based on a dominance condition that was given in Chu (1992), and was
defined by T’kindt et al. (2004) as follows:

check(π, σ) =

1, i f opt(σ|0) ≤ opt(π|0) and opt(σ|0) + |Ω| ∗ Emin(σ) ≤ opt(π|0) + |Ω| ∗ Emin(π)
0, otherwise

(2)
where Ω is the set of jobs that remain to be scheduled after sequences σ and π, and Emin(σ) =

max(C(σ),minr∈Ω ri), with C(σ) denoting the completion time of σ. The item stored into mem-
ory is a tuple 〈σ,C(σ), opt(σ|0), ExpAct〉 and Emin(σ) can be computed when needed. Note that
this definition of check is an adaption of Equation 1, and if the check in Equation 1 returns 1,
then this check also returns 1.

4.1.1. Application of the memorization framework and improved results
The problem is not decomposable due to the existence of release dates. Therefore, with the

choice of forward branching, node memorization should be chosen, according to the decision
tree in Figure 4.

The lower bound used in the algorithm is based on the SRPT (Shortest Remaining Processing
Time) rule. Together with the check() function that is defined in Equation 2, it is not clear whether
the concordance property is satisfied. Hence, when passive node memorization is applied with
the best-first strategy, all nodes need to be considered in the comparisons, while when it is applied
with the breadth-first strategy, only active nodes need to be considered. Therefore, the choices
made by T’kindt et al. (2004) with respect to memorization are maintained. The check() function
also remains the same, as defined in Equation 2.

Here, we refresh the computational results of T’kindt et al. (2004) on new randomly gen-
erated input and add results for predictive node memorization and solution memorization. The
input was generated following the approach described by Chu (1992), i.e., the processing times
were generated uniformly from [1, 100] and the release dates were generated between 0 and
50.5 · n · r, where r belonging to {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.50, 1.75, 2.0, 3.0}. Thirty instances
were generated for each value of r, thereby leading to 300 instances for each size n from 70 to
350.

Results related to node memorization are presented in Table 1. For all three search strategies,
passive node memorization enables much larger instances to be solved, in comparison to the
versions without Memorization. This is sufficient to prove the power of Memorization in solving
this problem.

Depth Pa and Depth Pr solve instances with up to 130 jobs. The impact of k-perm search
on this problem is very limited: predictive node memorization leads to almost the same result
as passive node memorization. It is also worth mentioning that the database cleaning strategy
LUFO enables faster solution of large instances. For example, we found that an instance with
140 jobs is solved in 1.6 hours by Depth Pa with LUFO, while 14 hours are required to solve
it when the cleaning strategy of T’kindt et al. (2004) is utilized instead. However, due to the
hardness of another instance with 140 jobs, the algorithm Depth Pa runs out of time.

The Sipsi algorithm is also tested on the same dataset and result is provided in Table 2. It is
very efficient and is able to solve instances with up to 300 jobs. However, when using a newly
generated dataset with pmax = 1000 instead of 100, Sipsi can only solve instances with up to 130
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n 70 80 90 100 110 120 130 140

Depth-

Navg 141247.8 1778751.2 OOT
Nmax 17491232 276190737
Tavg 1.8 22.4
Tmax 217 3238

Depth Pa

Navg 2583.4 5756.2 18639.9 26827.4 48502.9 174545.5 192409.4 OOT
Nmax 147229 314707 2253897 644151 1281097 16575522 7742714
Tavg 0.0 0.0 0.3 0.7 1.3 7.1 9.1
Tmax 2 7 64 27 41 754 295

Depth Pr

Navg 1771.1 4455.1 12625.7 19621.7 30380.4 117865.6 128277.5 OOT
Nmax 82765 267416 1455743 588429 1096520 11126694 5132228
Tavg 0.0 0.0 0.3 0.5 0.9 4.7 6.6
Tmax 1 7 46 28 39 488 252

Best- OOT

Best Pa

Navg 1230.5 3299.4 5235.1 9494.8 13658.5 38574.5 43986.9 OOT
Nmax 36826 256534 292929 216293 228848 2675337 1449900
Tavg 0.0 0.2 0.2 0.4 0.6 15.3 11.8
Tmax 0 46 38 27 25 3595 1630

Best Pr

Navg 1229.6 3298.2 5229.0 9490.7 13545.7 38560.1 43989.8 OOT
Nmax 36826 256529 292927 216037 228832 2674776 1449872

. Tavg 0.0 0.2 0.2 0.4 0.7 15.4 11.9
Tmax 1 47 39 28 25 3579 1636

Breadth- OOT

Breadth Pa

Navg 1947.7 6745.0 9893.8 21308.5 27383.1 OOT
Nmax 90494 709607 733980 575430 1209481
Tavg 0.0 4.6 3.4 5.3 5.7
Tmax 9 1319 897 483 935

Table 1: Results of the new algorithms on the 1|ri |
∑

Ci problem

jobs, as Depth Pr can (see Table 3). This shows that unlike Sipsi, Depth Pr is not sensitive on
the range of processing time of jobs.

n 130 140 150 200 250 300 350

Sipsi Tavg 25.98 35.42 56.72 227.20 642.77 1307.56 OOM
Tmax 231.69 351.13 1172.89 3993.28 5731.45 10683.34

Table 2: Results of the algorithm Sipsi on the 1|ri |
∑

Ci problem

n 70 80 90 100 110 120 130 140

Depth Pr Tavg 0.07 0.23 0.48 2.21 6.62 23.11 49.26 OOT
Tmax 2.87 10.34 18.94 113.69 843.75 3438.79 4408.37

Sipsi Tavg 27.93 48.76 75.26 119.95 159.15 251.41 328.50 OOM
Tmax 133.23 283.94 418.68 1616.69 1163.64 3271.22 2463.89

Table 3: Results of algorithms on new instances with greater processing time (Pmax = 1000)

4.2. Application to the 1|d̃i|
∑

wiCi problem

The 1|d̃i|
∑

wiCi problem requires n jobs to be scheduled on a single machine. Each job
i has a processing time pi, a weight wi and a deadline d̃i that must be met. The objective is to
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minimize the total weighted completion time
∑

wiCi. The problem is NP-hard in the strong sense
and has been solved by Branch & Bound algorithms (Posner, 1985; Potts and Van Wassenhove,
1983), with the performance of the algorithm of Posner (1985) being slightly superior. The
basic algorithm described by T’kindt et al. (2004) is a combination of the algorithms of Posner
(1985); Potts and Van Wassenhove (1983), which is obtained by incorporating the lower bound
and the dominance condition of Posner (1985) into the Branch & Bound algorithm of Potts and
Van Wassenhove (1983). The algorithm of Tanaka et al. (2009) called Sips is known as efficient
on solving this problem, but again this algorithm is not a search tree algorithm and is already
memory consuming, hence we base our work on the algorithm of T’kindt et al. (2004) and
provide the test result of Sips at the end.

We adopt backward branching as branching scheme as done in Posner (1985); Potts and
Van Wassenhove (1983). Similar to what is done on the 1|ri|

∑
Ci problem, the DP Property

is considered by T’kindt et al. (2004), which is equivalent to passive node memorization. The
check() function is defined as follows, where Ω is the set of jobs to be scheduled before σ and π.

check(π, σ) =

1, i f opt(σ|
∑

i∈Ω pi) ≤ opt(π|
∑

i∈Ω pi)
0, otherwise

(3)

The items stored in the database are 〈σ, opt(σ|
∑

i∈Ω pi), ExpAct〉.

4.2.1. Application of the memorization framework and improved results
This problem is decomposable according to Definition 1. According to the decision tree in

Figure 4, with the depth-first search strategy, solution memorization should be considered, even
though its superiority over node memorization depends on the presence of context-dependent
dominance conditions in the algorithm. In this section we compare four Branch & Bound al-
gorithms: the node memorization with the three search strategies and the solution memorization
based on depth-first search.

The concordance property is satisfied (see Proposition 1); hence, the passive node memo-
rization considers only explored nodes when the search strategy is best-first, and only active
nodes with breadth-first search. For solution memorization, the items stored into memory are
〈π, opt(π|0)〉. For node memorization, the check() function and the stored items are the same as
for T’kindt et al. (2004), as described in the previous section.

Regarding solution memorization, context-dependent dominance conditions are enabled in
the algorithm. Their removal has been experimentally proved to lead to an inefficient algorithm.
Therefore, lower bounds are memorized during solution memorization, as described in section
2.3.1.

Proposition 1. With the check() function that is defined in Equation 3, our algorithms satisfy the
Concordance Property (Definition 2).

Proof. Consider two nodes Sσ and S π. First notice that the same sub-problem is to be solved
in both nodes, which consists of scheduling jobs from S , starting from time 0. The lower bound
that is used in the algorithm (see Posner (1985); Potts and Van Wassenhove (1983)) returned on
the sub-problems on S is the same for both nodes. Therefore, if check(π, σ) = 1, which means
opt(σ|

∑
i∈Ω pi) ≤ opt(π|

∑
i∈Ω pi), then LB(Sσ) ≤ LB(S π).

If LB(Sσ) ≤ LB(S π), it can be deduced that the opt(σ|
∑

i∈Ω pi) ≤ opt(π|
∑

i∈Ω pi) must holds,
according to the same reasoning; hence, check(π, σ) = 1.
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Following the test plan described by Potts and Van Wassenhove (1983), for each job i, the
processing time pi is an integer that is generated randomly from the uniform distribution [1, 100]
and its weight wi is generated uniformly from [1, 10]. The total processing time P =

∑n
i=1 pi is

then computed and for each job i, an integer deadline di is generated from the uniform distribution
[P(L−R/2), P(L + R/2)], with L increasing from 0.6 to 1.0 in steps of 0.1 and R increasing from
0.2 to 1.6 in steps of 0.2. To avoid generating infeasible instances, an (L,R) pair is only used
when L + R/2 > 1; hence, only 30 (L,R) pairs are used, for each of which 10 feasible instances
are generated, thereby yielding a total of 300 instances for each value of n from 40 to 140.

The result is presented in Table 4. For depth-first search, without memorization the pro-
gram is “out of time” on instances with 50 jobs, while solution memorization and passive node
memorization enable it to solve instances with up to respectively 90 and 100 jobs, with faster
performance achieved using passive node memorization. With the activation of k-perm search,
Depth Pr can solve 20 more jobs than Depth Pa. This strongly proves the power of all three
memorization schemes.

For best-first search, the same phenomenon can be observed, that is, Best Pr is more efficient
than Best Pa, which is much better than Best-. Best Pr can also solve instances with up to 130
jobs, and is faster than Depth Pr.

On breadth-first, without Memorization Breadth- cannot even solve all instances with 40
jobs, while with passive node memorization instances of 130 jobs are all solved in an average
solution time of 65.5 seconds. Again, as for the 1|ri|

∑
Ci problem, LUFO accelerates the solution

process, but does not enable the solution of larger instances.
The result of Sips is presented at the end of the table, it can efficiently solve instances with up

to 140 jobs. In order to test the sensitivity of these algorithms on the range of input data values,
we generated a new dataset with processing time generated from [1, 1000] and job weights from
[1, 100]. This leads to the results in Table 5. Both algorithm Breadth Pa and Sips solve less
instances than before, with Breadth Pa solves up to 110 jobs and Sips solves up to 100 jobs.
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40 50 60 70 80 90 100 110 120 130 140 150

Depth-

Navg 104915.3 OOT
Nmax 14536979
Tavg 0.9
Tmax 74.0

Depth S

Navg 763.4 2509.5 7919.1 27503.2 135724.0 189719.1 OOT
Nmax 17699 60462 228940 1660593 9841123 14388210
Tavg 0.4 0.5 0.9 2.5 22.1 38.7
Tmax 1.0 2.0 14.1 275.0 2876.1 7603.2

Depth Pa

Navg 577.4 1973.6 5850.6 21644.8 107804.7 146216.4 430330.1 OOT
Nmax 11963 83075 137580 1004546 12052793 4321070 13234264
Tavg 0.4 0.4 0.5 0.9 7.4 5.9 21.2
Tmax 1.0 1.0 2.3 39.0 1488.2 312.0 1055.7

Depth Pr

Navg 342.4 902.9 2512.6 7233.0 20196.3 35458.0 99387.1 274871.1 551713.3 OOT
Nmax 3865 17447 50003 187425 665376 768802 1781123 14713483 11236833
Tavg 0.4 0.4 0.4 0.6 1.0 1.3 4.1 14.3 34.3
Tmax 0.4 1.0 1.3 5.0 30.0 21.0 64.3 901.0 1255.0

Best- OOT

Best Pa

Navg 350.9 885.9 2125.7 6866.0 20700.7 28155.0 71459.7 OOT
Nmax 3912 20889 43000 440623 1348082 1252600 1668977
Tavg 0.4 0.4 0.4 0.6 2.0 2.0 6.4
Tmax 0.405 1.0 1.1 30.0 241.0 130.0 391.2

Best Pr

Navg 313.7 730.6 1680.8 4494.6 11060.6 16305.9 39053.7 132949.2 220989.7 390481.2 OOT
Nmax 3865 11762 28253 120259 319068 299540 607871 10659343 7578570 7630213
Tavg 0.4 0.4 0.4 0.5 0.8 1.0 2.5 35.0 20.5 83.6
Tmax 0.4 1.0 1.0 4.0 23.0 19.9 58.2 5008.0 1137.0 6806.5

Breadth- OOM

Breadth Pa

Navg 364.2 922.9 2074.1 6375.8 16474.2 24731.0 59474.3 105989.8 225013.9 464121.4 OOT
Nmax 4701 16952 36960 437697 881817 868876 1561063 5975094 7577492 23966269
Tavg 0.0 0.0 0.0 0.2 0.4 0.9 2.2 9.1 16.8 65.5
Tmax 0.015 0.1 0.7 9.0 31.1 31.0 67.2 1353.0 1135.0 8232.3

Sips Tavg 0.070 0.160 0.320 0.550 1.057 1.829 2.450 5.672 5.675 9.107 12.013 OOM
Tmax 0.468 1.030 2.278 3.916 19.609 61.683 20.062 410.361 68.094 246.138 175.969

Table 4: Results of the new algorithms on the 1|d̃i |
∑

wiCi problem

n 90 100 110 120

Breadth Pa Tavg 8.869 115.62 121.93 OOM
Tmax 464.711 16562.41 5244.38

Sips Tavg 19.14 33.00 OOM
Tmax 225.11 292.58

Table 5: Results of algorithms on new instances with greater processing time and weights (pmax = 1000,wmax = 100)

4.3. Application to the F2||
∑

Ci problem

In the F2||
∑

Ci problem, n jobs must be scheduled on two machines, namely, M1 and M2.
First, each job i needs to be processed on M1 for p1,i time units and then processed on M2 for p2,i
time units. The objective is to minimize the sum of the completion times of jobs. We restrict to
the set of permutation schedules in which there always exists an optimal solution. A permutation
schedule is a schedule in which the jobs sequences on the two machines are the same. The
problem is NP-hard in the strong sense. The Branch & Bound algorithm that was proposed by
T’kindt et al. (2004) based on the Branch& Bound algorithm of Della Croce et al. (2002) was the
referential one until 2016, when Detienne et al. (2016) proposed a new and very efficient Branch
& Bound algorithm that is capable of solving instances with up to 100 jobs. But again, the
algorithm of Detienne et al. (2016) is based on a graph representation and is memory consuming
depending on the range of processing time values. We therefore again base the Memorization on
the algorithms described by T’kindt et al. (2004).

The branching scheme that is adopted in this algorithm is forward branching, and all the
three search strategies are considered. The check() function is based on a result reported by
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Della Croce et al. (2002) and is defined as follows:

check(π, σ) =

1, i f opt(σ|0) ≤ opt(π|0) and |Ω| ∗ (C2(σ) −C2(π)) ≤ opt(π) − opt(σ)
0, otherwise

(4)

where Ω is the set of jobs to be scheduled after σ and π, and C2(·) is the completion time of a
given sequence on the second machine. The memorized items are 〈σ,C2(σ), opt(σ|0), ExpAct〉.

4.3.1. Application of the memorization framework and improved results
This problem is not decomposable since given a partial solution of the form σS , where σ

is a fixed sequence, the optimal solution of sub-problem S depends on the order of the jobs
in σ. According to the decision tree in Figure 4, with the depth-first search strategy, solution
memorization should be considered, even though its superiority over node memorization de-
pends on the presence of context-dependent dominance conditions. In this section we compare
four Branch & Bound algorithms: node memorization applied to the three search strategies and
solution memorization based on depth-first search with.

With the check() function defined in Equation 4 and the lower bound (a Lagrangian Relax-
ation based lower bound) used in the algorithm, the concordance property is not satisfied. We
performed experiments to look for the case where for two nodes σS and πS , check(π, σ) = 1 but
LB(π) < LB(σ) and we found it. Therefore, the concordance property is not verified and both
active and explored nodes need to be considered with the best-first strategy. For the breadth-first
strategy, only active nodes need to be considered.

For solution memorization, since context-dependent dominance conditions are enabled in the
algorithm, and they are important for a fast solution of the problem, lower bounds are memorized
during solution memorization, as described in section 2.3.1. The items stored into memory are
〈π, t1, t2,C2(π), opt(π|(t1, t2))〉 where t1 is the actual starting time of π on the first machine and t2
is the actual starting time of π on the second machine. In addition, opt(π|(t1, t2)) is the sum of
the completion times of jobs in π, when π starts at time t1 on the first machine and time t2 on the
second machine. For node memorization, the check() function and the stored item are the same
as per T’kindt et al. (2004), as described in the previous section.

Thirty instances are generated for each size n from 10 to 130, with the processing times
generated randomly from a uniform distribution in [1, 100]. The results are given in Table 6.
Depth- is able to solve instances with 35 jobs. Best- is able to solve instances with 30 jobs, and
Breadth- can only solve up to 25 jobs. With passive node memorization enabled, Depth Pa solves
instances with 5 more jobs than Depth-. Best Pa and Breadth Pa solve instances with 10 more
jobs than the versions without Memorization. Notice that the F2||

∑
Ci problem is a really hard

problem, certainly more difficult than the two other problems previously tackled in this paper.
Additionally, the LUFO strategy is adopted for database cleaning, but it did not enable to

solve larger instances without having an “Out of Time” problem.
Predictive node memorization is not more efficient than passive node memorization: in fact,

no nodes are cut by undertaking a k-perm search. The result is hence even slightly slower due
to the time consumed by the call to the k-perm heuristic. Depth S solve instances with less
nodes generated compared to Depth-. However, its efficiency is even less than Depth-, due to the
processing of lower bound memorization.

The power of Memorization is still illustrated on this problem, even though it seems not so
strong with respect to the previous two problems. The algorithm of Detienne et al. (2016) is also

20



n 10 15 20 25 30 35 40 45

Depth-

Navg 23.7 255.6 4137.7 21460.4 317102.0 3615780.0 OOT
Nmax 84 2367 83863 311742 3097479 53187978
Tavg 0.0 0.0 0.1 0.8 26.0 423.0
Tmax 0 0 2 17 248 6128

Depth S

Navg 24.0 228.0 3561.0 19733.0 294355.0 3425633.0 OOT
Nmax 84 1735 68070 273146 2712580 49360565
Tavg 0.0 0.0 0.1 1.0 29.0 497.0
Tmax 0 0 2 15 248 6933

Depth Pa

Navg 22.8 187.2 1573.0 8205.0 61337.0 337194.0 1894037.2 OOT
Nmax 80 1083 17114 48459 291750 1568506 15472612
Tavg 0.0 0.0 0.0 0.1 4.1 35.0 328.3
Tmax 0 0 0 2 21 163 3627

Depth Pr

Navg 22.8 187.2 1573.0 8205.0 61361.3 337194.0 1894037.0 OOT
Nmax 80 1083 17114 48459 291016 1568506 15472612
Tavg 0.0 0.0 0.0 0.1 4.1 32.8 332.8
Tmax 0 0 0 2 23 173 3664

Best- Navg 23.7 249.3 3993.1 21717.7 291131.9 OOM
Nmax 84 2253 83863 311742 2451152
Tavg 0.0 0.0 0.1 0.7 19.1
Tmax 0 0 2 17 197

Best Pa

Navg 20.9 139.5 957.3 4780.7 28957.0 112229.8 495186.5 OOM
Nmax 72 624 6646 21022 152797 426641 3617824
Tavg 0.0 0.0 0.0 0.0 1.2 7.8 80.6
Tmax 0 0 0 1 4 43 1253

Best Pr

Navg 20.9 139.5 957.3 4780.7 28957.0 112229.8 495186.5 OOM
Nmax 72 624 6646 21022 152797 426641 3617824
Tavg 0.0 0.0 0.0 0.0 1.4 8.3 83.1
Tmax 0 0 0 1 5 45 1283

Breadth- Navg 23.9 266.1 5181.8 39303.6 OOT
Nmax 84 2360 83863 311742
Tavg 0.0 0.0 0.1 1.6
Tmax 0 0 2 17

Breadth Pa

Navg 21.0 148.8 1369.5 8889.1 115219.2 345109.6 OOT
Nmax 72 692 9927 63485 2242263 2357023
Tavg 0.0 0.0 0.0 0.2 26.1 54.2
Tmax 0 0 0 3 711 665

Table 6: Results of new algorithms on the F2||
∑

Ci problem

tested and the result in Table 7 shows that it is far more efficient than our algorithms. We then
also tested these algorithms on new instances with processing times generated from [1, 1000]
(see Table 8). This has a negative impact on the algorithm of Detienne et al. (2016) which now
only solves instances with up to 90 jobs instead of 130 jobs. However this result is still much
better than Best Pr which solves instances with up to only 40 jobs.

n 40 50 100 110 120 130

Detienne Tavg 9.05 19.06 353.35 601.0 984.93 OOM
Tmax 17.32 28.2 563.38 1194.15 2274.12

Table 7: Results of the algorithm Detienne on the F2||
∑

Ci problem
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n 40 50 60 70 80 90 100

Best Pr Tavg 192.5 OOT
Tmax 2459.0

Detienne Tavg 66.16 144.95 380.45 897.16 1518.82 2729.07 OOM
Tmax 258.88 454.45 1133.72 3015.13 3659.89 7293.87

Table 8: Results of algorithms on new instances with greater processing time (pmax = 1000)

5. Application to the 1||
∑

Ti problem

In this section, we report the results of the application of Memorization on solving the single
machine total tardiness problem, referred to as 1||

∑
Ti. We first introduce the main properties and

existing results of the problem, then determine parameters for Memorization and finally report
the computational results.

5.1. Preliminaries

The problem involves scheduling a set of n jobs N = {1, 2, . . . , n} on a single machine. For
each job j, a processing time p j and a due date d j are given and the objective is to arrange the
jobs into a sequence S = (a1, ..., an) so as to minimize T (N, S ) =

∑n
j=1 max{

∑ j
i=1 pai − da j , 0}.

This problem is a classic scheduling problem known to be NP-hard in the ordinary sense Du and
Leung (1990). It has been extensively studied in the literature.

The current state-of-the-art exact method in practice is a Branch & Bound algorithm (named
as BB2001 in this paper) which solves to optimality instances with up to 500 jobs in size Szwarc
et al. (2001). The latest theoretical developments for the problem can be found in the survey of
Koulamas Koulamas (2010). The main properties of the problem can be found in Szwarc et al.
(2001), and some of them are given below.

Let (1, 2, . . . , n) be an LPT (Longest Processing Time first) sequence and ([1], [2], . . . , [n]) be
an EDD (Earliest Due Date first) sequence of all jobs.

We first introduce two important decomposition properties.

Decomposition 1. Lawler (1977) (Lawler’s decomposition) Let job 1 in the LPT sequence
correspond to job [k] in the EDD sequence. Then, job 1 can be set only in positions h ≥ k and
the jobs preceding and following job 1 are uniquely determined as B1(h) = {[1], [2], . . . , [k −
1], [k + 1], . . . , [h]} and A1(h) = {[h + 1], . . . , [n]}.

Decomposition 2. Szwarc et al. (1999) Let job k in the LPT sequence correspond to job [1] in
the EDD sequence. Then, job k can be set only in positions h ≤ (n−k +1) and the jobs preceding
job k are uniquely determined as Bk(h), where Bk(h) ⊆ {k + 1, k + 2, . . . , n} and ∀i ∈ Bk(h), j ∈
{n, n − 1, . . . , k + 1}r Bk(h), di ≤ d j

The two above decomposition rules can be applied simultaneously to derive a decomposing
branching scheme called Double Decomposition (Szwarc et al., 2001). At any node, let S i be a
set of jobs to schedule. Note that some other jobs may have already been fixed in positions before
or after S i, implying a structure such as σ1S 1σ2S 2...σiS i...σkS k over all positions, but a node
only focuses on the solution of one sub-problem, induced by one subset of jobs (S i here). With
depth-first, which is the search strategy retained in the Branch & Bound BB2001, the Double
Decomposition is always applied on S 1. This works as follows: first find the longest job ` and
the earliest due date job e in S 1. Then, apply Decomposition 1 (resp. Decomposition 2) to get the
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lists L` (resp. Le) of positions, on which ` (resp. e) can be branched on. As an example, suppose
Le = {1, 2} and L` = {5, 6}. Then, a double branching can be done by fixing job e on position 1
and fixing job ` on position 5, decomposing the jobs S i to three subsets (sub-problems): the jobs
before job e, which is ∅; the jobs between e and `; and finally the jobs after `. In the same way,
the other 3 branchings can be performed by fixing jobs e and ` in all compatible position pairs:
(1, 6), (2, 5) and (2, 6).

When branching from a node, another particular decomposition may occur as described in
Property 6. Assume that a given subset of jobs S is decomposed into two disjoint subsets B and
A, with B ∪ A = S and all jobs in B are scheduled before those in A in an optimal schedule
of S : (B, A) is then called an optimal block sequence and Property 6 states when does such
decomposition occur. In that case Decomposition 1 and Decomposition 2 are not applied, but
rather two child nodes are created, each corresponding to one block of jobs (A or B), following
Property 6 (also called the split property).

Let E j and L j be the earliest and latest completion times of job j. That is, if B j (resp. A j)
is the currently known jobs that precedes (resp. follows) job j, then E j = p(B j) + p j, and
L j = p(N r A j).

Property 6. Szwarc et al. (1999) (Split)
(B, A) is an optimal block sequence if maxi∈B Li ≤ min j∈A E j.

The value of Ei and Li of each job i can be obtained by applying Emmons’ conditions (Em-
mons, 1969) following the O(n2) procedure provided by Szwarc et al. (1999).

An initial version of solution memorization has been already implemented in BB2001, even
though it was called Intelligent Backtracking by the authors. Remarkably, lower bounds are not
used in this Branch & Bound algorithm due to the “Algorithmic Paradox” (Paradox 1) found in
Szwarc et al. (2001). This one shows that the power of Memorization largely surpasses the power
of the lower bounding procedures in the algorithm.

Paradox 1. “...deleting a lower bound drastically improves the performance of the algorithm...”

Paradox 1 is simply because many identical sub-problems occur during the exploration of the
search tree. The computation time required by lower bounding procedures to cut these identical
problems is much higher than simply solving that sub-problem once, memorizing the solution
and reusing it whenever the sub-problem appears again. In addition, pruning nodes by the lower
bound may negatively affect Memorization since the nodes that are cut cannot be memorized.

The BB2001 algorithm uses a depth-first strategy and for each node to branch on, the follow-
ing procedure is applied:

1. Search the solution of the current problem, defined by a set of jobs and a starting time of
the schedule, in “memory”, and return the solution if found; otherwise go to 2.

2. Use Property 6 to split the problem into new sub-problems, which are solved recursively
starting from step 1. If no split can be done, go to step 3.

3. Combine Decompositions 1 and 2 to branch on the longest job and the smallest-due-date
job to every candidate position. For each branching case, solve sub-problems recursively,
then store in memory the best solution among all branching cases and return it.

Note that due to Paradox 1, all lower bounding procedures are removed, which makes the
Branch & Bound algorithm a simple branching algorithm. Notice that solution memorization
can be implemented in BB2001 as suggested in section 3. In BB2001, when the database of
stored solutions is full, no cleaning strategy is used and no more partial solutions can be stored.
The memory limit of this database in BB2001 is not mentioned by Szwarc et al. (2001).
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5.2. Application of the memorization framework and improved results
We take the reference algorithm BB2001 as a basis, in which decomposition branching and

solution memorization are already chosen. The decomposition branching has been proved to be
very powerful, and there is no evidence that other branching schemes such as forward branching
or backward branching can lead to a better algorithm (see Szwarc et al. (2001)). The problem
is decomposable according to Definition 1. The main discussion relies on the relevancy of con-
sidering node memorization instead of solution memorization. As already mentioned in section
2.4.4, it is not obvious to implement node memorization, for a decomposing branching scheme,
which could outperform the solution memorization. Here, a node is structured as σ1S 1...σkS k

with the σi
′s being the partial sequences to memorize in node memorization. Assume we have

two nodes σ1S 1...σkS k and π1S ′1...π`S
′
`, it is not obvious that we will find σi and π j, i ∈ {1, .., k},

j ∈ {1, .., `}, such that σi and π j are of same jobs and have the same starting time. Moreover, it
seems complicated to design an efficient check() function deciding which of these two nodes is
dominating the other. We found no way to implement node memorization that could plausible
lead to better results than those obtained with solution memorization. Consequently, only solu-
tion memorization is considered and, as sketched in sections 2.4.5 and 2.4.6, there is no interest
in considering best-first or breadth-first search strategies.

Henceforth, the choices made by Szwarc et al. (2001) with respect to Memorization were
good choices. In the remainder, we investigate the limitations of the Memorization technique as
implemented by Szwarc et al. (2001) and propose improvements that significantly augment the
efficiency of the algorithm.

Our algorithm is based on BB2001, with two main changes. Since the memory usage was
declared as a bottleneck of BB2001, we first retest BB2001 on our machine: an HP Z400 work
station with 3.07GHz CPU and 8GB RAM. 200 instances are generated randomly for each prob-
lem size using the same generation scheme as per Potts and Van Wassenhove (1982). Processing
times are integers generated from a uniform distribution in the range [1, 100] and due dates di

are integers from a uniform distribution in the range [piu, piv] where u = 1 − T − R/2 and
v = 1 − T + R/2. Each due date is set to zero whenever its generated value is negative. Twenty
combinations (R,T ) are considered where R ∈ {0.2, 0.4, 0.6, 0.8, 1}, and T ∈ {0.2, 0.4, 0.6, 0.8}.
Ten instances are generated for each combination and the combination (R = 0.2,T = 0.6) yields
the hardest instances as reported in the literature (see Szwarc et al. (1999)) and confirmed by our
experiments. Table 9 presents the results we obtain when comparing different algorithms. For
each version, we compute the average and maximum CPU time Tavg and Tmax in seconds for
each problem size. The average and maximum number of explored nodes Navg and Nmax are also
computed. The time limit for the solution of each instance is set to 7.5 hours, and the program is
considered as OOT (Out of Time) if it reaches the time limit. Additionally, when Memorization
is enabled without a database cleaning strategy, the physical memory may be saturated by the
program, in which case the program is indicated as OOM (Out of Memory).

Our implementation of BB2001 solves instances with up to 900 jobs in size, as reported
in Table 9, with an average solution time of 764s and a maximum solution time of 9403s for
900-job instances, knowing that the original program, as tested in 2001 was limited to instances
with up to 500 jobs due to memory size limit. Their tests were done on a Sun Ultra-Enterprise
Station with a reduced CPU frequency (<450MHz) and an RAM size not stated. It is anyway
interesting to see that with just the computer hardware evolution, Memorization is augmented to
solve instances with 400 more jobs.

BB2001 is out of time (>4h) for instances with 1000 jobs, and the memory size no longer
seems to be the bottleneck. The first improvement we propose presumes on the vein of Paradox 1.
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Paradox 2. Removing the Split procedure (Property 6) from BB2001 drastically accelerates the
solution.

The effect of Paradox 2 is astonishing. The resulting algorithm NoSplit solves instances with
700 jobs with an average solution time 20 times faster: from 192s to 9s (see Table 9). In fact,
Split is performed based on precedence relations between jobs, induced by the computation of
the E j

′s and L j
′s. The computation of these precedence relations is time consuming in practice.

Moreover, as already claimed, many identical problems appear in the search tree and the Split
procedure in BB2001 is run each time. When Split is removed, identical problems are solved in
a way needing more time when first met, but then never solved twice thanks to solution memo-
rization. However, the disadvantage is also clear: more solutions are added to the database and
hence the database is filled faster than when Split is enabled. This is why NoSplit encounters
memory problems on instances with 800 jobs. Removing Split was not considered by Szwarc
et al. (2001) because Split is a very strong component of the algorithm and the computer memory
at that time also discouraged this tentative.

At this point, we have a better understanding of the power of solution memorization on this
problem and we become curious about the effectiveness of memorized solutions. In other words,
what are the stored solutions that are used effectively? To answer this question, we test cleaning
strategies as defined in section 3 to remove useless solutions when the database memory is “full”.
The most efficient strategy is proved to be LUFO by preliminary experiments not reported here.
Embedding such a memory cleaning strategy is our second contribution to the BB2001 algorithm.

In Table 9, the final implementation of the Memorization mechanism within the Branch &
Bound algorithm for the 1||

∑
Ti problem is referred to as NoSplit LUFO. All 200 instances with

1200 jobs are solved, with an average solution time of 192s, while BB2001 is limited to instances
with 900 jobs.

n 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Depth-

Navg 306205.8 OOT
Nmax 11020671
Tavg 1.4
Tmax 77

BB2001

Navg 12244.7 50662.9 130325.4 312115.8 521479.8 917491.0 1472547.3 2213671.2 3149954.5 OOT
Nmax 135242 799870 1313084 3371277 5462573 8522132 13866537 20453973 27246555
Tavg 0.1 2.0 8.3 33.7 81.1 209.5 463.4 855.3 1586.2
Tmax 3 50 117 491 1140 2579 5858 10003 18097

NoSplit

Navg 11307.2 47835.0 122962.4 295104.1 493047.5 870015.8 1406250.0 2110070.2 3009635.4 4102758.9 OOM
Nmax 132497 776561 1335920 3239773 5348951 8302464 13410893 20227299 26691043 38293210
Tavg 0.1 1.0 4.5 18.0 42.7 107.5 230.3 417.7 778.2 1258.6
Tmax 2 28 64 265 613 1374 2886 4911 9151 16855

NoSplit LUFO

Navg 11307.2 47835.0 122962.4 295104.1 493047.5 870015.8 1406250.0 2110070.2 3009635.4 4102758.9 5314954.0 OOT
Nmax 132497 776561 1335920 3239773 5348951 8302464 13410893 20227299 26691043 38293210 54926916
Tavg 0.1 1.0 4.5 18.0 42.7 107.5 230.3 417.7 778.2 1258.6 1991.7
Tmax 2 28 64 265 613 1374 2886 4911 9151 16855 26115

Table 9: Results for the 1||
∑

Ti problem

The experiments presented so far have shown that correctly tuning the Memorization mech-
anism, notably by considering a cleaning strategy and studying interference with other com-
ponents of the algorithm may lead to serious changes to its efficiency. However, the striking
point of these experiments relates to the comparison between the version of BB2001 without the
Memorization mechanism (algorithm Depth-) and NoSplit LUFO. Table 9 highlights the major
contribution of Memorization: Depth- being limited to instances with up to 300 jobs while NoS-
plit LUFO is capable of solving all instances with 1200 jobs. It is evident that Memorization is
a very powerful mechanism.
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6. Conclusion

In this paper, we focus on the application of Memorization within search tree algorithms for
the efficient solution of sequencing problems. A framework of Memorization is provided with
several memorization schemes defined. Advice is provided for choosing the best memorization
approach according to the branching scheme and the search strategy of the algorithm.

The application of the framework has been done on four scheduling problems. Even if the
impact of Memorization depends on the problem, for all the tackled problems, it was beneficial
to use it. Table 10 provides a summary of the conclusions obtained.

Problem Largest instances solved Features of the best algorithm
with memorizationWithout

memorization
With

memorization

1|ri|
∑

Ci 80 jobs 130 jobs
depth-first+

predictive node memorization

1|d̃i|
∑

wiCi 40 jobs 130 jobs
+

predictive node memorization

F2||
∑

Ci 35 jobs 40 jobs
best-first+

predictive node memorization

1||
∑

Ti 300 jobs 1200 jobs
depth-first+

solution memorization

Table 10: Conclusions on the tested problems

Fundamentally, what we call the Memorization Paradigm relies on a simple but potentially
very efficient idea: memorizing what has already been done to avoid solving identical sub-
problems in the rest of the solution process. The contribution of this paradigm strongly relies
on the branching scheme which may induce more or less redundancy in the exploration of the
solution space. It is noteworthy that the four scheduling problems dealt with in this paper mainly
serve as applications illustrating how Memorization can be done in an efficient way. However, it
is also clear that it can be applied to other hard combinatorial optimization problems, making this
contribution interesting beyond scheduling theory. In our opinion, the memorization paradigm
should be embedded into any branching algorithm, so creating a new class of branching algo-
rithms called Branch & Memorize algorithms. They may have a theoretical interest by offering
the possibility of reducing the worst-case time complexity with respect to Branch & Bound al-
gorithms. In addition, they also have an interest from an experimental viewpoint, as illustrated
in this paper.

As a future research line, we plan to evaluate Branch & Memorize algorithms on more com-
binatorial optimization problems. It may also be very promising to see how the machine learning
field could help in efficiently managing the database of stored partial solutions. More concretely,
a more intelligent database managing strategy may be conceived, which decides which solutions
to store or which solutions to remove from the database, through a learning process.
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