Sense Embeddings in Knowledge-Based Word Sense Disambiguation

Abstract : In this paper, we develop a new way of creating sense vectors for any dictionary, by using an existing word embeddings model, and summing the vectors of the terms inside a sense's definition, weighted in function of their part of speech and their frequency. These vectors are then used for finding the closest senses to any other sense, thus creating a semantic network of related concepts, automatically generated. This network is hence evaluated against the existing semantic network found in WordNet, by comparing its contribution to a knowledge-based method for Word Sense Dis-ambiguation. This method can be applied to any other language which lacks such semantic network, as the creation of word vectors is totally unsupervised, and the creation of sense vectors only needs a traditional dictionary. The results show that our generated semantic network improves greatly the WSD system, almost as much as the manually created one.
Type de document :
Communication dans un congrès
12th International Conference on Computational Semantics, Sep 2017, Montpellier, France
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01599685
Contributeur : Loïc Vial <>
Soumis le : lundi 2 octobre 2017 - 13:43:49
Dernière modification le : jeudi 11 octobre 2018 - 08:48:03

Fichier

IWCS_2017(12).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01599685, version 1

Collections

Citation

Loïc Vial, Benjamin Lecouteux, Didier Schwab. Sense Embeddings in Knowledge-Based Word Sense Disambiguation. 12th International Conference on Computational Semantics, Sep 2017, Montpellier, France. 〈hal-01599685〉

Partager

Métriques

Consultations de la notice

251

Téléchargements de fichiers

416