A progressive reduced basis/empirical interpolation method for nonlinear parabolic problems

Abstract : We investigate new developments of the combined Reduced-Basis and Empirical Interpolation Methods (RB-EIM) for parametrized nonlinear parabolic problems. In many situations, the cost of the EIM in the offline stage turns out to be prohibitive since a significant number of nonlinear time-dependent problems need to be solved using the full-order model. In the present work, we develop a new methodology, the Progressive RB-EIM (PREIM) method for nonlinear parabolic problems. The purpose is to reduce the offline cost while maintaining the accuracy of the RB approximation in the online stage. The key idea is a progressive enrichment of both the EIM approximation and the RB space, in contrast to the standard approach where the EIM approximation and the RB space are built separately. PREIM uses full-order computations whenever available and RB computations otherwise. Another key feature of PREIM is to select twice the parameter in a greedy fashion, the second selection being made after computing the full-order solution for the firstly-selected value of the parameter. Numerical examples are presented on nonlinear heat transfer problems.
Type de document :
Article dans une revue
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2018, 40 (5), pp.A2930-A2955
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01599304
Contributeur : Amina Benaceur <>
Soumis le : mardi 17 juillet 2018 - 11:10:32
Dernière modification le : mercredi 20 février 2019 - 09:58:12

Fichier

draft_article_sisc.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01599304, version 4
  • ARXIV : 1710.00511

Collections

Citation

Amina Benaceur, Virginie Ehrlacher, Alexandre Ern, Sébastien Meunier. A progressive reduced basis/empirical interpolation method for nonlinear parabolic problems. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2018, 40 (5), pp.A2930-A2955. 〈hal-01599304v4〉

Partager

Métriques

Consultations de la notice

238

Téléchargements de fichiers

66