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Abstract

Let ψ be a multi-dimensional random variable. We show that
the set of probability measures Q such that the Q-martingale SQ

t =
EQ [ψ| Ft] has the Martingale Representation Property (MRP) is ei-
ther empty or dense in L∞-norm. The proof is based on a related
result involving analytic fields of terminal conditions (ψ(x))x∈U and
probability measures (Q(x))x∈U over an open set U . Namely, we show
that the set of points x ∈ U such that St(x) = EQ(x) [ψ(x)| Ft] does not
have the MRP, either coincides with U or has Lebesgue measure zero.
Our study is motivated by the problem of endogenous completeness
in financial economics.
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1 Introduction

Let (Ω,F , (Ft),P) be a filtered probability space, Q be an equivalent prob-
ability measure, and S = (Sit) be a multi-dimensional martingale under Q.
It is often important to know whether S has the Martingale Representa-
tion Property (MRP), that is, whether every local martingale under Q is a
stochastic integral with respect to S. For instance, in mathematical finance
such MRP corresponds to the completeness of the market with stock prices
S. By Jacod’s theorem, S has the MRP if and only if Q is its only equivalent
martingale measure.

In many applications, S is defined in a forward form, as a solution of an
SDE, and the verification of the MRP is quite straightforward. Suppose, for
example, that S is a d-dimensional Itô process such that

dSt = σt(αtdt+ dBt),

where B is a d-dimensional Brownian motion, α = (αt) is a d-dimensional
market price of risk process and σ = (σt) is a d × d-dimensional volatility
process. Let us assume that the local martingale

Zt = exp

(
−
∫ t

0

αsdBs −
1

2

∫ t

0

|αs|2 ds
)
, t ≥ 0,

is uniformly integrable; this fact can usually be verified by Novikov’s or
Kazamaki’s conditions. By Girsanov’s theorem, Z is the density process of
an equivalent martingale measure Q for S. If the filtration is generated by
B, then S has the MRP (equivalently, Q is its only equivalent martingale
measure) if and only if the matrix-valued volatility process σ = (σt) has full
rank dP× dt almost surely.

We are interested in the situation where both S and Z are described in
a backward form through their terminal values:

Z∞ =
dQ
dP

=
ζ

E[ζ]
,

St = EQ[ψ|Ft], t ≥ 0,

(1)

where ζ > 0 and ψ = (ψi) are given random variables. Such setup naturally
arises in the problem of endogenous completeness of financial economics,
where the random variable ψ represents the terminal values of the traded
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securities and Q defines an equilibrium pricing measure. The term “endoge-
nous” indicates that the stock prices S = (Si) are computed by (1) as part
of the solution. The examples include the construction of Radner equilib-
rium [1, 4, 10, 6] and the verification of the completeness property for a
market with options [2, 11].

The main focus of the existing literature has been on the case when the
random variables ζ and ψ are defined in terms of a Markov diffusion in a
form consistent with Feynman-Kac formula. The proofs have relied on PDE
methods and, in particular, on the theory of analytic semigroups [7]. A key
role has been played by the assumption that time-dependencies are analytic.

In this paper we do not impose any conditions on the form of the random
variables ζ and ψ. Our main results are stated as Theorems 2.3 and 3.1. In
Theorem 2.3 we show that the set

Q(ψ) ,
{
Q ∼ P : SQ

t , EQ [ψ| Ft] has the MRP
}

is either empty or L∞-dense in the set of all equivalent probability measures.
In Theorem 3.1 we consider analytic fields of probability measures (Q(x))x∈U
and terminal conditions (ψ(x))x∈U over an open set U . We prove that the
exception set

I ,
{
x ∈ U : St(x) , EQ(x) [ψ(x)| Ft] does not have the MRP

}
either coincides with U or has Lebesgue measure zero.

We expect the results of this paper to be useful in problems of financial
economics involving the endogenous completeness property. One such appli-
cation, to the problem of optimal investment under price impact, is discussed
in Remark 2.5.

2 Density of the set of probability measures

with the MRP

We work on a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual
conditions of completeness and right-continuity; the initial σ-algebra F0 is
trivial and F = F∞. We denote by L1 = L1(R

d) and L∞ = L∞(Rd) the
Banach spaces of (equivalence classes of) d-dimensional random variables ξ
with the norms ‖ξ‖L1 , E [|ξ|] and ‖ξ‖L∞ , inf {c > 0 : P [|ξ| ≤ c] = 1}.
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We use the same notation L1 for the isometric Banach space of uniformly
integrable martingales M with the norm ‖M‖L1 , ‖M∞‖L1 .

For a matrix A = (Aij) we denote its transpose by A∗ and define its norm
as

|A| ,
√

trAA∗ =

√∑
i,j

|Aij|2.

If X is a m-dimensional semimartingale and γ is a m × n-dimensional X-
integrable predictable process, then γ·X =

∫
γ∗dX denotes the n-dimensional

stochastic integral of γ with respect to X. We recall that a n×k-dimensional
predictable process ζ is (γ · X)-integrable if and only if γζ is X-integrable.
In this case, ζ · (γ ·X) = (γζ) ·X is a k-dimensional semimartingale.

Definition 2.1. Let Q be an equivalent probability measure (Q ∼ P) and S
be a d-dimensional local martingale under Q. We say that S has the Mar-
tingale Representation Property (MRP) if every local martingale M under
Q is a stochastic integral with respect to S, that is, there is a predictable
S-integrable process γ with values in Rd such that

M = M0 + γ · S.

Remark 2.2. Jacod’s theorem in [5, Section XI.1(a)] states that S has the
MRP if and only if there is only one Q ∼ P such that S is a local martingale
under Q. Thus, there is no need to mention Q in the definition of the MRP.

Let ψ = (ψi)i=1,...,d be a d-dimensional random variable. We denote by
Q(ψ) the family of probability measures Q ∼ P such that EQ [|ψ|] <∞ and
the Q-martingale

SQ
t = EQ [ψ| Ft] , t ≥ 0,

has the MRP.
This is our first main result.

Theorem 2.3. Suppose that ψ ∈ L1(R
d) and Q(ψ) 6= ∅. Then for every

ε > 0 there is Q ∈ Q(ψ) such that

‖dQ
dP
− 1‖L∞ ≤ ε.

The proof is based on Theorem 3.1 from Section 3 and on the following
elementary lemma. We recall the definition of an analytic function with
values in a Banach space at the beginning of Section 3.
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Lemma 2.4. Let ζ be a nonnegative random variable. Then the map x 7→
e−xζ from (0,∞) to L∞ is analytic.

Proof. Fix y > 0. For every ω ∈ Ω the function x 7→ e−xζ(ω) has a Taylor’s
expansion

e−xζ(ω) =
∞∑
n=0

An(y)(ω)(x− y)n, x ∈ R, (2)

where

An(y) =
1

n!

dn

dxn
(
e−xζ

)
|x=y =

1

n!
(−1)nζne−yζ .

We deduce that

‖An(y)‖L∞ ≤
1

n!
max
t≥0

(tne−yt) =
1

n!

(
n

ey

)n
≤ K

1√
n

(
1

y

)n
,

where the existence of a constant K > 0 follows from Stirling’s formula:

lim
n→∞

√
2πn

n!

(n
e

)n
= 1.

It follows that the series in (2) converges in L∞ provided that |x− y| < y.

Proof of Theorem 2.3. We take R ∈ Q(ψ), denote ζ , dR
dP , and for x > 0

define the random variables

ζ(x) ,
1− e−xζ

x
+

x

1 + x
,

ξ(x) , ζ(x)ψ,

and a probability measure Q(x) such that

dQ(x)

dP
=

ζ(x)

E [ζ(x)]
.

We set ζ(0) , ζ, ξ(0) , ζψ, and Q(0) , R and observe that for every
ω ∈ Ω the functions x 7→ ζ(x)(ω) and x 7→ ξ(x)(ω) on [0,∞) are continuous.
Since

|ζ(x)| ≤ ζ sup
t≥0

1− e−t

t
+

x

1 + x
≤ ζ + 1,

the dominated convergence theorem yields that x 7→ ζ(x) and x 7→ ξ(x) are
continuous maps from [0,∞) to L1. By Lemma 2.4, x 7→ ζ(x) is an analytic
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map from (0,∞) to L∞ and thus x 7→ ζ(x) and x 7→ ξ(x) are analytic maps
from (0,∞) to L1. Theorem 3.1 then implies that the exception set

I , {x > 0 : Q(x) 6∈ Q(ψ)}

is at most countable.
Choose now any ε > 0. Since

− 1

1 + x
≤ ζ(x)− 1 ≤ 1

x
− 1

1 + x
,

there is x0 = x0(ε) such that the assertion of the theorem holds for every
Q(x) with x ≥ x0 and x 6∈ I.

Remark 2.5. Theorem 2.3 plays a key role in our work, in progress, on the
problem of optimal investment in a “backward” model of price impact [3, 8].
There are a large investor with utility function U = U(x) and initial capital
X0 and a market maker with exponential utility function

V (y) =
1

a

(
1− e−ay

)
, y ∈ R,

where a > 0 is the absolute risk-aversion coefficient. The investor looks for
a predictable process γ = (γt) of the numbers of stocks that maximizes the
expected utility:

u(X0) = sup
γ

E [U(X0 + γ · S(γ)T )] .

While the terminal stock prices are fixed to random dividends ψ:

ST (γ) = ψ,

their intermediate values are set so that the opposite position to the demand
γ is optimal for the market maker:

−γ = arg max
ζ

E [V (ζ · S(γ)T )] .

The standard first-order conditions in optimal investment lead to the expres-
sion for prices S(γ) in a backward form:

St(γ) = EQ(γ) [ψ| Ft] ,
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where
dQ(γ)

dP
=

V ′(−γ · S(γ)T )

E [V ′(−γ · S(γ)T )]
=

exp (aγ · S(γ)T )

E [exp (aγ · S(γ)T )]
.

Theorem 2.3 allows us to relax this apparently complex stochastic control
problem into a simple static framework. More precisely, we show that

u(X0) = max
ξ∈C

E [U(X0 + ξ)] ,

where C is the family of random variables given by

C , {ξ : E [ξV ′(−ξ)] = 0} =
{
ξ : E

[
ξeaξ

]
= 0
}
.

The main ingredient of the proof is the assertion that the family of terminal
gains of trading strategies

D , {ξ : ξ = γ · S(γ)T for some demand γ}

is L∞-dense in C, which can be interpreted as an approximate completeness
of the model. This claim follows from Theorem 2.3, after we observe that a
random variable ξ ∈ C also belongs to D if the Q(ξ)-martingale S(ξ) has the
MRP, where

St(ξ) = EQ(ξ) [ψ| Ft] ,
dQ(ξ)

dP
=

V ′(−ξ)
E [V ′(−ξ)]

=
exp (aξ)

E [exp (aξ)]
.

3 The MRP for analytic fields of martingales

Let X be a Banach space and U be an open connected set in Rd. We recall
that a map x 7→ X(x) from U to X is analytic if for every y ∈ U there exist a
number ε = ε(y) > 0 and elements (Yα(y)) in X such that the ε-neighborhood
of y belongs to U and

X(x) =
∑
α

Yα(y)(x− y)α, |y − x| < ε.

Here the series converges in the norm ‖·‖X of X, the summation is taken
with respect to multi-indices α = (α1, . . . , αd) ∈ Zl

+ of non-negative integers,

and if x = (x1, . . . , xd) ∈ Rd, then xα ,
∏d

i=1 x
αi
i .

This is our second main result.
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Theorem 3.1. Let U be an open connected set in Rl and suppose that the
point x0 ∈ Rl belongs to the closure of U . Let x 7→ ζ(x) and x 7→ ξ(x) be
continuous maps from U ∪ {x0} to L1(R) and L1(R

d), respectively, whose
restrictions to U are analytic. For every x ∈ U ∪{x0}, assume that ζ(x) > 0
and define a probability measure Q(x) and a Q(x)-martingale S(x) by

dQ(x)

dP
=

ζ(x)

E [ζ(x)]
, St(x) = EQ(x)

[
ξ(x)

ζ(x)

∣∣∣∣Ft] .
If the Q(x0)-martingale S(x0) has the MRP, then the exception set

I , {x ∈ U : the Q(x)-martingale S(x) does not have the MRP}

has Lebesgue measure zero. If, in addition, U is an interval in R, then the
set I is at most countable.

The following example shows that any countable set I in R can play the
role of the exception set of Theorem 3.1. In this example we choose ζ(x) = 1
(so that Q(x) = P) and take x 7→ ξ(x) to be a linear map from R to L∞(R).

Example 3.2. Let (Ω,F , (Fn),P) be a filtered probability space, where the
filtration is generated by independent Bernoulli random variables (εn) with

P [εn = 1] = P [εn = −1] =
1

2
.

It is well known that every martingale (Nn) admits the unique “integral”
representation:

Nn = N0 +
n∑
k=1

hk(ε1, . . . , εk−1)εk, (3)

for some functions hk = hk(x1, . . . , xk−1), k ≥ 1, where h1 is just a constant.
Let I = (xn) be an arbitrary sequence in R. We define a linear map

x 7→ ξ(x) from R to L∞(R) by

ξ(x) =
∞∑
n=1

(x− xn)

2n(1 + |xn|)
εn = ψ0 + ψ1x,

where ψ0 and ψ1 are bounded random variables:

ψ0 = −
∞∑
n=1

xn
2n(1 + |xn|)

εn, ψ1 =
∞∑
n=1

1

2n(1 + |xn|)
εn.
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We have that

Mn(x) = E [ξ(x)| Fn] = E [ξ(x)|ε1, . . . , εn] =
n∑
k=1

(x− xk)
2k(1 + |xk|)

εk

and thus

∆Mn(x) = Mn(x)−Mn−1(x) =
(x− xn)

2n(1 + |xn|)
εn.

If x 6∈ I, then the martingale (Nn) from (3) is a stochastic integral with
respect to M(x):

Nn = N0 +
n∑
k=1

hk(ε1, . . . , εk−1)
2k(1 + |xk|)

(x− xk)
∆Mk(x).

However, if xm ∈ I, then the martingales M(xm) and

L(m)
n =

n∑
k=1

1{k=m}εk = 1{n≥m}εm, n ≥ 0,

are orthogonal. Hence, L(m) does not admit an integral representation with
respect to M(xm).

The rest of the section is devoted to the proof of Theorem 3.1. It relies
on Theorems A.1 and B.1 from the appendices and on the lemmas below.

Throughout the paper all operations on stochastic processes are defined
pointwise, for every (t, ω). In particular, if X is a matrix-valued process,
then |X| denotes the one-dimensional process of the running norm:

|X|t (ω) , |Xt(ω)| .

Let X be a (uniformly) square integrable martingale taking values in
Rm. We denote by [X] = ([X i, Xj]) its process of quadratic variation and by
〈X〉 = (〈X i, Xj〉) its predictable process of quadratic variation; they both
take values in the cone Sm+ of symmetric nonnegative m ×m-matrices. We
define the predictable increasing process

AX , tr 〈X〉 =
m∑
i=1

〈
X i, X i

〉
.
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Standard arguments show that there is a predictable process κX with values
in Sm+ such that

〈X〉 = (κX)2 · AX .

On the predictable σ-algebra P of [0,∞)× Ω we introduce a measure

µX(dt, dω) , dAXt (ω)P [dω] .

For a nonnegative predictable process γ the expectation under µX is given
by

EµX [γ] = E
[∫ ∞

0

γdAX
]

= E
[∫ ∞

0

γtdA
X
t

]
.

We observe that this measure is finite:

µX([0,∞)× Ω) = E
[
AX∞
]

= E
[
|X∞ −X0|2

]
<∞.

For predictable m-dimensional processes (γn) and γ the notation γn
µX→ γ

stands for the convergence in measure µX :

∀ε > 0 : µX [|γn − γ| > ε]→ 0, n→∞.

Lemma 3.3. Let X be a square integrable martingale with values in Rm

and γ be a predictable m-dimensional process. Then γ is X-integrable and
γ ·X = 0 if and only if κXγ = 0, µX − a.s..

Proof. Since γ1{|γ|≤n} ·X → γ ·X as n→∞ in the semimartingale topology,
we can assume without a loss in generality that γ is bounded. Then γ ·X is
a square integrable martingale with predictable quadratic variation

〈γ ·X〉t =

∫ t

0

∣∣κXγ∣∣2 dAX =

∫ t

0

∣∣κXs γs∣∣2 dAXs
and the result follows from the identity:

E
[
(γ ·X)2∞

]
= E [〈γ ·X〉∞] = E

[∫ ∞
0

∣∣κXγ∣∣2 dAX] = EµX
[∣∣κXγ∣∣2] .
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For every predictable process ζ taking values in Sm+ we can naturally
define a Sm+ -valued predictable process ζ⊕ such that for all (t, ω) the matrix
ζ⊕t (ω) is the pseudo-inverse to the matrix ζt(ω).

From Lemma 3.3 we deduce that if α is an integrand for X then the
predictable process

β , κX
⊕
κXα

is also X-integrable and α ·X = β ·X. Moreover, |β| ≤ |α|, by the minimal
norm property of the pseudo-inverse matrices. In view of this property, we
call a predictable m-dimensional process γ a minimal integrand for X if γ is
X-integrable and

γ = κX
⊕
κXγ.

From the definition of a minimal integrand we immediately deduce that∣∣κXγ∣∣ ≤ ∣∣κX∣∣ |γ| , |γ| ≤
∣∣∣κX⊕∣∣∣ ∣∣κXγ∣∣ , (4)

where, following our convention, both the norm and the inequalities are de-
fined pointwise, for every (t, ω).

We denote by H1 = H1(R
d) the Banach space of uniformly integrable

d-dimensional martingales M with the norm:

‖M‖H1 , E
[
sup
t≥0
|Mt|

]
.

By Davis’ inequality, the convergence Mn → 0 in H1 is equivalent to the
convergence [Mn]1/2∞ → 0 in L1, where [Mn] is the quadratic variation process
of Mn.

We say that a sequence (Nn) of local martingales converges to a local
martingale N in H1,loc if there are stopping times (τm) such that τm ↑ ∞
and Nn,τm → N τm in H1. Here as usual, we write Y τ , (Ymin(t,τ)) for a
semimartingale Y stopped at a stopping time τ .

Lemma 3.4. Let X be a square integrable martingale with values in Rm and
(γn) be a sequence of predictable m-dimensional X-integrable processes such

that the stochastic integrals (γn ·X) converge to 0 in H1,loc. Then κXγn
µX→ 0.

If, in addition, (γn) are minimal integrands then γn
µX→ 0.
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Proof. It is sufficient to consider the case of minimal integrands. By local-
ization, we can suppose that γn ·X → 0 in H1, which by Davis’ inequality is
equivalent to the convergence of ([γn ·X]1/2∞ ) to 0 in L1.

Assume for a moment that |γn| ≤ 1. Then [γn ·X] ≤ [X] and the theorem
of dominated convergence yields that [γn ·X]∞ → 0 in L1. As

E [[γn ·X]∞] = E [〈γn ·X〉∞] = E
[∫ ∞

0

∣∣κXγn∣∣2 dAX] = EµX
[∣∣κXγn∣∣2] ,

we deduce that κXγn
µX→ 0, which in view of (4), also implies that γn

µX→ 0.
In the general case, we observe that

βn ,
1

1 + |γn|
γn

are minimal integrands for X such that |βn| ≤ 1 and [βn ·X] ≤ [γn ·X].

Hence, by what we have already proved, βn
µX→ 0, which clearly yields that

γn
µX→ 0 and then that κXγn

µX→ 0.

Lemma 3.5. Let X be a square integrable m-dimensional martingale and
γ = (γij) be a predictable X-integrable process with values in Rm×d. Then X
is a stochastic integral with respect to Y , γ ·X, that is X = X0 + ζ · Y for
some predictable Y -integrable d×m-dimensional process ζ, if and only if

rankκXγ = rankκX , µX − a.s.. (5)

Proof. We recall that a predictable process ζ is Y = γ ·X-integrable if and
only if γζ is X-integrable. From Lemma 3.3 we deduce that ζ is Y -integrable
and satisfies

X = X0 + ζ · Y = X0 + ζ · (γ ·X) = (γζ) ·X

if and only if
κXγζ = κX , µX − a.s..

However, the solvability of this linear equation with respect to ζ is equivalent
to (5) by an elementary argument from linear algebra.
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Lemma 3.6. Let U be an open connected set in Rd and x 7→ σ(x) be an
analytic map with values in k × l-matrices. Then there is a nonzero real-
analytic function f on U such that

E ,

{
x ∈ U : rankσ(x) < sup

y∈U
rankσ(y)

}
= {x ∈ U : f(x) = 0} .

In particular, the set E has Lebesgue measure zero and if d = 1, then it
consists of isolated points.

Proof. Let m , supy∈U rankσ(y). If m = 0, then the set E is empty and we
can take f = 1. If m > 0, then the result holds for

f(x) =
∑
α

detσα(x)σ∗α(x),

where (σα) is the family of all m × m sub-matrices of σ. The remaining
assertions follow from the well-known properties of zero-sets of real-analytic
functions.

Proof of Theorem 3.1. Without restricting generality we can assume that
ζ(x0) = 1 and, hence, Q(x0) = P. Proposition 2 in [9] shows that if some
multi-dimensional local martingale has the MRP, then there is a bounded,
hence square integrable, m-dimensional martingale X that has the MRP.
We fix such X and use for it the Sm+ -valued predictable process κX and
the finite measure µX on the predictable σ-algebra P introduced just before
Lemma 3.3.

We define the martingales

Yt(x) , E [ζ(x)| Ft] , Rt(x) , E [ξ(x)| Ft] ,

and observe that R(x) = S(x)Y (x). Let α(x) and β(x) be integrands for X
with values in Rm and Rm×d, respectively, such that

Y (x) = Y0(x) + Y−(x)α(x) ·X,
R(x) = R0(x) + Y−(x)β(x) ·X,

where as usual, Y− stands for the left-continuous process (Yt−). Integration
by parts yields that

dR(x)− S−(x)dY (x) = Y−(x)d(S(x) + [S(x), α(x) ·X]).

13



It follows that

S(x) + [S(x), α(x) ·X] = S0(x) + σ(x) ·X,

where

σ(x) = β(x)− α(x)S∗−(x).

From Theorem B.1 we deduce that S(x) has the MRP (under Q(x)) if and
only if the stochastic integral σ(x) ·X has the MRP. By Lemma 3.5 the latter
property is equivalent to

rankκXσ(x) = rankκX , µX − a.s.,

and therefore, the exception set I admits the description:

I =
{
x ∈ U : µX [D(x)] > 0

}
,

where for x ∈ U ∪ {x0} the predictable set D(x) is given by

D(x) =
{

(t, ω) : rankκXt (ω)σt(x)(ω) < rankκXt (ω)
}
.

From Theorem A.1 we deduce the existence of the integrands α(x) and
β(x) and of the modifications of the martingales Y (x) and R(x) such that
for every (t, ω) ∈ [0,∞)× Ω the function

x 7→ σt(x)(ω) = βt(x)(ω)− αt(x)(ω)
R∗t−(x)(ω)

Yt−(x)(ω)
,

taking values in the space of m× d-matrices, is analytic on U . Hereafter, we
shall use these versions.

Let λ be the Lebesgue measure on Rl and B = B(U) be the Borel σ-
algebra on U . Since for every (t, ω) the function x 7→ σt(x)(ω) is continuous
on U , the function (t, ω, x) 7→ σt(x)(ω) is P × B-measurable. It follows that

E ,
{

(t, ω, x) : rankκXt (ω)σt(x)(ω) < rankκXt (ω)
}
∈ P × B.

From Fubini’s theorem we deduce the equivalences:

(µX × λ) [E] = 0 ⇔ µX [F ] = 0 ⇔ λ [I] = 0,
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where

F ,
{

(t, ω) : λ
[{
x ∈ U : rankκXt (ω)σt(x)(ω) < rankκXt (ω)

}]
> 0
}
.

Hence to obtain the multi-dimensional version of the theorem we need to
show that µX(F ) = 0.

From Lemma 3.6 and the analyticity of the function x 7→ σt(x)(ω) we
deduce that

F =
{

(t, ω) : rankκXt (ω)σt(x)(ω) < rankκXt (ω), ∀x ∈ U
}
. (6)

We recall now that if (xn) is a sequence in U that converges to x0, then
the martingales (R(xn), Y (xn)) converge to the martingale (R(x0), Y (x0)) =
(S(x0), 1) in L1. By Lemma A.3, passing to a subsequence, we can assume
that (R(xn), Y (xn))→ (R(x0), Y (x0)) in H1,loc. From Lemma 3.4 we deduce
that

κXα(xn)
µX→ 0,

κXβ(xn)
µX→ κXβ(x0) = κXσ(x0).

It follows that

κXσ(xn) = κX(β(xn)− α(xn)S∗−(xn))
µX→ κXβ(x0) = κXσ(x0).

Passing to a subsequence we can choose the sequence (xn) so that

κXσ(xn)→ κXσ(x0), µX − a.s..

As a 7→ rank a is a lower-semicontinuous function on matrices, it follows that

lim inf
n

rankκXσ(xn) ≥ rankκXσ(x0), µX − a.s..

Accounting for (6) we obtain that

F ⊂ D(x0), µX − a.s..

However, as S(x0) has the MRP, Lemma 3.5 yields that µX [D(x0)] = 0 and
the multi-dimensional version of the theorem follows.
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Assume now that U is an open interval in R and that contrary to the
assertion of the theorem the exception set I is uncountable. Then there are
ε > 0, a closed interval [a, b] ⊂ U , and a sequence (xn) ⊂ [a, b] such that

µX [D(xn)] ≥ ε, n ≥ 1.

Since for every (t, ω) the function x 7→ σt(x)(ω) is analytic, we deduce from
Lemma 3.6 that on every closed interval the integer-valued function x 7→
rank(κXt (ω)σt(x)(ω)) has constant value except for a finite number of points,
where its values are smaller. Hence, if

rank(κXt (ω)σt(xn′)(ω)) < rank(κXt (ω)) for countable (n′) ⊂ (n),

then
rank(κXt (ω)σt(x)(ω)) < rank(κXt (ω)) for all x ∈ U.

Accounting for (6) it follows that

lim sup
n

D(xn) , ∩n ∪m≥n D(xm) = F

and thus
µX [F ] ≥ lim sup

n
µX [D(xn)] ≥ ε.

However, as we have already shown, µX [F ] = 0 and we arrive to a contra-
diction.

A Analytic fields of martingales and stochas-

tic integrals

We denote by D∞([0,∞),Rd) the Banach space of RCLL (right-continuous
with left limits) functions f : [0,∞)→ Rd equipped with the uniform norm:
‖f‖∞ , supt≥0 |f(t)|.

Theorem A.1. Let U be an open connected set in Rl and x 7→ ξ(x) be
an analytic map from U to L1(R

d). Then there are modifications of the
accompanying d-dimensional martingales

Mt(x) , E [ξ(x)| Ft] ,
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such that for every ω ∈ Ω the maps x 7→M·(x)(ω) taking values in D∞([0,∞),Rd)
are analytic on U .

If in addition, the MRP holds for a local martingale X with values in Rm,
then there is a stochastic field x 7→ σ(x) of integrands for X such that

M(x) = M0(x) + σ(x) ·X,

and for every (t, ω) ∈ [0,∞)× Ω the function x 7→ σt(x)(ω) taking values in
m× d-matrices is analytic on U .

The proof of the theorem is divided into a series of lemmas. For a multi-
index α = (α1, . . . , αl) ∈ Zl

+ we denote

|α| , α1 + · · ·+ αl.

The space H1 has been introduced just before Lemma 3.4.

Lemma A.2. Let (Mα)α∈Zl+ be uniformly integrable martingales with values

in Rd such that ∑
α

2|α|‖Mα‖L1 <∞.

Then there is an increasing sequence (τm) of stopping times such that {τm =∞} ↑
Ω and ∑

α

‖Mα,τm‖H1 <∞, m ≥ 1.

Proof. We define the martingale

Lt , E

[∑
α

2|α| |Mα
∞|

∣∣∣∣∣Ft
]
, t ≥ 0,

and stopping times

τm , inf {t ≥ 0 : Lt ≥ m} , m ≥ 1.

Clearly, {τm =∞} ↑ Ω as m→∞ and |Mα| ≤ 2−|α|L. Moreover,

‖Lτm‖H1 = E
[

sup
0≤t≤τm

Lt

]
≤ m+ E [Lτm ] = m+ L0 <∞.

It follows that ∑
α

‖Mα,τm‖H1 ≤ ‖Lτm‖H1

∑
α

2−|α| <∞.
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Lemma A.3. Let (Mn) and M be uniformly integrable martingales such that
Mn → M in L1. Then there exists a subsequence of (Mn) that converges to
M in H1,loc.

Proof. Since Mn →M in L1 there exists a subsequence (Mnk) such that

∞∑
k=1

‖Mnk+1 −Mnk‖L12k <∞.

Lemma A.2 implies that Mnk →M in H1,loc.

Let X be a square integrable martingale taking values in Rm. As in Sec-
tion 3 we associate with X the increasing predictable process AX , tr 〈X〉,
the Sm+ -valued predictable process κX such that 〈X〉 = (κX)2 · AX , and a

finite measure µX(dt, dω) , dAXt (ω)P [dω] on the predictable σ-algebra P of
[0,∞)× Ω. We recall that an integrand γ for X is minimal if

γ = κX
⊕
κXγ. (7)

Lemma A.4. Let X be a bounded martingale with values in Rm and (γα)α∈Zl+
be minimal integrands for X such that∑

α

‖γα ·X‖H1 <∞. (8)

Then ∑
α

|γα|2 =
∑
α

|γαt (ω)|2 <∞, µX − a.s.. (9)

Proof. By Davis’ inequality, (8) is equivalent to∑
α

E
[
[γα ·X]1/2∞

]
<∞.

By replacing if necessary γα with 1
1+|γα|γ

α, we can assume without a loss of

generality that |γα| ≤ 1. Let us show that in this case the increasing optional
process

Bt ,
∑
α

[γα ·X]t , t ≥ 0,
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is locally integrable. Since

B∞ =
∑
α

[γα ·X]∞ ≤
(∑

α

[γα ·X]1/2∞

)2
<∞,

we only need to check that the positive jump process ∆B is locally inte-
grable. Actually, we shall show that supt≥0 ∆Bt is integrable. Indeed, as X
is bounded, there is a constant c > 0 such that |(γα)∗∆X| ≤ c. Hence,

sup
t≥0

∆Bt ≤
∑
α

((γα)∗∆X)2 ≤ c
∑
α

|(γα)∗∆X| ≤ c
∑
α

[γα ·X]1/2∞ ,

where the right-hand side has finite expected value.
Since for every stopping time τ

E [Bτ ] =
∑
α

E [[γα ·X]τ ] =
∑
α

E
[∫ τ

0

∣∣κXγα∣∣2 dAX] ,
the local integrability of B yields the existence of stopping times (τm) such
that τm ↑ ∞ and∑

α

E
[∫ τm

0

∣∣κXγα∣∣2 dAX] =
∑
α

EµX
[∣∣κXγα∣∣2 1[0,τm]

]
<∞.

It follows that ∑
α

∣∣κXγα∣∣2 <∞, µX − a.s..

This convergence implies (9) in view of inequalities (4) for minimal inte-
grands.

Lemma A.5. Let X be a square integrable martingale taking values in Rm

and (γn) be minimal integrands for X such that (Mn , γn · X) are uni-
formly integrable martingales. Suppose that there are a uniformly integrable
martingale M and a predictable process γ such that Mn → M in L1 and
γnt (ω) → γt(ω) for every (t, ω). Then γ is a minimal integrand for X and
M = γ ·X.

Proof. In view of characterization (7) for minimal integrands, the minimality
of every element of (γn) implies the minimality of γ provided that the latter
is X-integrable. Thus we only need to show that γ is X-integrable and
M = γ ·X.
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By Lemma A.3, passing to subsequences, we can assume that Mn =
γn ·X →M in H1,loc. Since the space of stochastic integrals is closed under
the convergence in H1,loc, there is a X-integrable predictable process γ̃ such
that M = γ̃ ·X. From Lemma 3.4 we deduce that

κX(γn − γ̃)
µX→ 0.

It follows that
κX(γ̃ − γ) = 0, µX − a.s.,

and Lemma 3.3 yields the result.

Proof of Theorem A.1. It is sufficient to prove the existence of the required
analytic versions only locally, in a neighborhood of every y ∈ U . Hereafter,
we fix y ∈ U . There are ε = ε(y) ∈ (0, 1) and a family (ζα = ζα(y))α∈Zl+ in
L1 such that

ξ(x) = ξ(y) +
∑
α

ζα(x− y)α, max
i
|xi − yi| < 2ε,∑

α

E [|ζα|] (2ε)|α| <∞,

where the first series converges in L1.
By taking conditional expectations with respect to Ft we obtain that

Mt(x) = Mt(y) +
∑
α

Lαt (x− y)α, max
i
|xi − yi| < 2ε, (10)

where Lαt , E [ζα| Ft] and the series converges in L1. Lemma A.2 yields an
increasing sequence (τm) of stopping times such that {τm =∞} ↑ Ω and∑

α

‖Lα,τm‖H1ε
|α| <∞, m ≥ 1.

It follows that ∑
α

sup
t≥0
|Lαt (ω)| ε|α| <∞, P− a.s.

and we can modify the martingales (Lα) so that the above convergence holds
true for every ω ∈ Ω. Then the series in (10) converges uniformly in t for
every ω ∈ Ω and every x such that maxi |xi − yi| < ε. Thus, it defines the
modifications of M(x) for such x with the required analytic properties.
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For the second part of the theorem we observe that the statement is
invariant with respect to the choice of the local martingale X that has the
MRP. Proposition 2 in [9] shows that we can choose X to be a bounded
m-dimensional martingale.

As X has the MRP, there are minimal integrands σ(y) and (γα) such that

M(y) = M0(y) + σ(y) ·X,
Lα = Lα0 + γα ·X, α ∈ Zl

+.

From Lemma A.4 we deduce that∑
α

|γαt (ω)|2 ε2|α| <∞

for all (t, ω) except a predictable set of µX-measure 0. By Lemma 3.3 we can
set γα = 0 on this set without changing γα · X. Then the series converges
for every (t, ω). As ε ∈ (0, 1), we deduce that∑

α

|γαt (ω)| ε2|α| <∞

and thus for x = (x1, . . . , xl) such that maxi |xi − yi| < ε2 and every (t, ω)
we can define

σt(x)(ω) , σt(y)(ω) +
∑
α

γαt (ω)(x− y)α.

By construction, the function x→ σt(x)(ω) is analytic in a neighborhood of
y. By Lemma A.5, for every x such that maxi |xi − yi| < ε2 the predictable
process σ(x) is an integrand for X and

M(x) = M(y) +
∑
α

Lα(x− y)α

= M0(x) + σ(y) ·X +
∑
α

(γα ·X)(x− y)α

= M0(x) + σ(x) ·X.
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B The MRP under the change of measure

Let X be a d-dimensional local martingale and Z > 0 be the density process
of P̃ ∼ P. We denote by Z̃ , 1/Z the density process of P under P̃ and set

L , Z̃− · Z and L̃ , Z− · Z̃. Using integration by parts we deduce that

d(Z̃X) = X−dZ̃ + Z̃−dX̃,

where
X̃ = X +

[
X, L̃

]
.

It follows that X̃ is a d-dimensional local martingale under P̃. Of course, this
is just a version of Girsanov’s theorem.

We observe that the relations between X and X̃ are symmetric in the
sense that

X = X̃ +
[
X̃, L

]
.

Indeed, as we have already shown, Y , X̃ +
[
X̃, L

]
is a d-dimensional local

martingale. Clearly, the local martingales X and Y have the same initial
values and the same continuous martingale parts. Finally, they have identical
jumps:

∆(Y −X) = ∆(
[
X, L̃

]
+
[
X̃, L

]
) = ∆X(∆L̃+ ∆L+ ∆L̃∆L)

= ∆X∆(ZZ̃) = 0.

Theorem B.1. The local martingale X has the MRP if and only if the local
martingale X̃ under P̃ has the MRP.

Proof. By symmetry, it is sufficient to prove only one of the implications.
We assume that X has the MRP. Let M̃ be a local martingale under P̃.
The arguments before the statement of the theorem yield the unique local
martingale M such that

M̃ = M +
[
M, L̃

]
.

If now H is an integrand for X such that M = M0 +H ·X, then

M̃ = M̃0 +H · (X +
[
X, L̃

]
) = M̃0 +H · X̃.
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