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Abstract. We introduce a new method to compute conformal parame-
terizations using a recent definition of discrete conformity, and establish
a discrete version of the Riemann mapping theorem. Our algorithm can
parameterize triangular, quadrangular and digital meshes. It can also be
adapted to preserve metric properties. To demonstrate the efficiency of
our method, many examples are shown in the experiment section.
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Introduction

Parameterizations are one to one maps from 3D discrete surfaces to the Euclidean
plane. Parameterizations are widely used in computer graphics allowing one to
simplify difficult 3D problems in easy 2D tasks. For instance, texture mapping,
a very classical application, boils down to the trivial task of mapping an image
on a rectangular domain. Parameterizations also allow to consider a mesh as
the image of a function from the plane to the 3D space, and thus work with
functions instead of 3D sets. Such a representation is useful for applications as
morphing, surface fitting, etc.

A parameterization should preserve the geometrical properties of the mesh:
angles (conformal map), areas (authalic maps), lengths (isometric map), etc. It is
known that maps which are both conformal and authalic are isometric, and only
developable surfaces have an isometric flat parameterization. In practice, one
often look for conformal maps. Parameterization preserve angles, lengths ratios
locally, and more generally the local aspect of the mesh. It is often sufficient to
obtain a good parameterization.

In this paper we present a new algorithm to compute conformal parameteri-
zations using the definition of discrete conformity as given in [14]. Theoretically,
it is shown to be a generalization of the cotan conformal coordinates methods [18,
5] and it leads to a discrete version of the Riemann mapping theorem with closer
boundary conditions than those of classical conformal techniques. In practice,
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the algorithm consists in minimizing a discrete energy measuring conformity.
It can be adapted to take care of metric properties such as lengths and areas
allowing to compute low-stretch quasi-conformal parameterization with natural
boundaries. The energies being expressed in terms of the vertices coordinates and
not the angles as ABF method [19], it is also possible to perform constrained
texture mapping as shown in Figure 1 (b).

The rest of the paper is organized as follows. In Section 1 we introduce the
definition of discrete conformal maps for quadrangular meshes and adaptations
for triangular and digital meshes. In Section 2, we discuss boundary conditions
ensuring uniqueness. In particular we establish a discrete version of the Rie-
mann mapping theorem and give conditions leading to the same solution as the
cotan conformal coordinates methods. In Section 3, we describe the minimiza-
tion algorithm used to compute parameterization in practice. Various energies
are introduced to preserve more or less angles, areas, lengths or the boundary.
Numerical illustrations and comparative studies are given in Section 4.

(a) (b) (c)

Fig. 1: Examples of
(a) unconstrained texture mapping of a mesh
(b) constrained texture mapping of a mesh
(c) unconstrained texture mapping of a digital surface

1 Discrete conformal parameterizations

1.1 Case of quadrangular meshes

In real continuous theory, a surface parameterization is a bijective application
from the surface S in R3 to the plane: (x, y, z) ∈ S 7→

(
s(x, y, z), t(x, y, z)

)
∈

R2. For meshes, it boils down to a point v′ = (s, t) assigned to each vertex
v = (x, y, z). In the sequel, we will identify v′ with the complex number s+ it.
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Locally identifying each face (v0, v1, v2, v3) of a quad mesh to points in the
plane (in one way or another) one can view the diagonals v2 − v0 and v3 − v1
as two complex numbers and compute the ratio ρ = v3−v1

i(v2−v0) , which is defined

up to a global similarity. Following [14], we call this data a discrete conformal
structure and will say that a parameterization is discrete conformal if it preserves
the ratios ρ. In other words, for all faces of the mesh, we require that

v′3 − v′1
v′2 − v′0

= iρ. (1)

Geometrically, such a parameterization preserves the angle between the diago-
nals and the ratio of their lengths. Intuitively, it corresponds to the following
characterization of conformity : a map is conformal if and only if its derivative
is a similarity everywhere. For simplicity, we can rewrite (1) as a linear equation

v′3 − v′1 = iρ(v′2 − v′0), (2)

As a consequence, a conformal parameterization is a solution of a (complex
valued) linear system.

Remark 1. Even if the four vertices of a quad are not in the same plane we can
define the ratio ρ. Indeed, the diagonals in R3, when not colinear, can be viewed
as two vectors spanning a plane, wherein the complex ratio can be computed.
This choice amounts to defining the normal to the surface as the cross-product of
these diagonals. A prior knowledge of the normal, therefore of the tangent plane,
is another way to identify the quad-face to a quadrilateral in the complex plane,
by projecting the vertices onto this tangent plane. The ratio does not depend on
the choice of the normal basis identifying the tangent plane with the complex
numbers. Together, all these identifications of the tangent plane at each quad,
considered as local charts, form an atlas of the surface.

1.2 Case of triangular meshes

In practice, for practical reasons, one often use triangular meshes. The definition
can be adapted to this case: we add a new (combinatorial) dual point to each
face and to each boundary edge, a standard procedure in remeshing. Then for
each edge of the initial mesh we form a quadrangle by joining the extremities of
the edge with

1. the two dual points inside the adjacent faces if it is not a boundary edge,
2. the dual points inside the adjacent face and on the edge if it is a boundary

edge.

A detailled version of these two steps is given in Figure 2. On the left, we display
the initial triangular mesh and the dual points, and on the right the obtained
quadrangular faces.

By definition, quads consist of two triangles that do not necessarily belong
to the same plane. To determine the ρ coefficient, we rotate one of them until
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(a) (b)

Fig. 2: Construction of a quadrangular mesh from a triangular one.
One dual point per face and boundary edge, displayed by a small bullet.
(a) Initial triangular mesh and dual points.
(b) Resulting quadrangular mesh, one quad per initial edge.

it belongs to the plane of the second, that is to say we flatten them using the
intrinsic metric of the polyhedral surface. Once we have this quad structure and
a ρ for each quad we look for a parameterization using the way described in
Section 1.1. In particular, we parameterize both the initial vertices and the dual
points.

Remark 2. The use of the extrinsic (as in Remark 1) or intrinsic distances does
not seem to imply big differences as noted in another context in [2].

1.3 Case of digital surfaces

The definition we gave in Section 1.1 needs to be adapted to parameterize digital
surfaces whose faces are surfels. Indeed, these faces are planar squares and all
the ρ coefficients are equal to 1. Therefore a more meaningful discrete conformal
structure has to be defined, using extrinsic or non local data such as a given
normal vector [15]. We compute first a normal vector of each face using the
method described in [8]. It allows us to determine the tangent plane of the
surface in each surfel. Then, we project the four edgels on this plane, obtaining a
parallelogram which better approximates the continuous surface than the initial
surfel. Finally, we define the ρ coefficient of a surfel as the one of this projected
parallelogram. An example of the construction is depicted in Figure 3.

2 Boundary conditions and uniqueness

2.1 Solutions of the conformal system

We denote by nf , ne, nb and nv respectively, the number of faces, edges, bound-
ary edges and vertices of the mesh. The linear system (2) consists of 2nf real
equations and 2nv real unknowns. As a mesh always has more vertices than faces
it does not have a unique solution.
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Fig. 3: Definition of the ρ coefficient of a surfel, the one of the parallelogram
obtained by projecting the surfel on the tangent plane.

More precisely, the Euler characteristic of the disc is

1 = nf − ne + nv, (3)

and according to a classical mesh property

4nf = 2ne − nb. (4)

Adding 2× (3) to (4) we obtain

2(nv − nf ) = nb + 2.

Hence, in order to ensure uniqueness we need nb + 2 real constraints.

2.2 A discrete version of the Riemann mapping theorem

The Riemann mapping theorem states that each surface which is homeomor-
phic to the closed unit disc admits a conformal parameterization. Moreover, the
holomorphic map is unique if one boundary is mapped to the other one and the
images of 3 boundary points are fixed [1, 21, 3, 9].

We can use the nb+2 degrees of freedom of the linear system to respect similar
boundary conditions. First, we enforce the boundary of the parameterization to
remain on the unit circle, adding nb real constraints. Unfortunately, it remains 2
degrees of freedom and we can only fix the images of two boundary vertices. Since
discrete conformal maps are known to converge to continuous conformal maps
when the faces sizes tends to 0 we would expect similar boundary conditions. So
we can wonder where the extra-freedom has gone. The issue is that our system is
over-determined. It can be observed by freeding one of the fixed boundary points
from begin stuck to the circle. If we only ask it belongs to the tangent line in this
point, the solution will eventually be very close to the circle. Therefore fixing
three points will give an optimal solution which is of a very low, but in general
non null, conformal energy. The process is displayed on Figure 4.

However, our boundary conditions, i.e send the boundary on the circle, fix
2 points and let the third one the tangent line, are much closer to the Riemann
theorem than those of other classical discrete conformal algorithms. Indeed, [7,
18] fix all the boundary points and [5, 12] fix two boundary points but the other
ones are not mapped on the circle.
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(a) (b)

point fixed on the circle
point on the circle, not fixed
point on the tangent line, not fixed

Fig. 4: (a) Boundary conditions of the Riemann theorem.
(b) Boundary conditions of the discrete version.

2.3 Generalization of the cotan conformal coordinates methods

In this section, we will show that discrete conformal parameterization are gener-
alizations of the cotan conformal coordinates methods [18, 5]. More precisely, we
will show that a convenient choice of the dual points and the additional nb + 2
boundary constraints lead to the same parameterizations as those computed with
these methods.

We remind the reader that they apply to triangular meshes and consist in
solving a linear system.
The equations for interior points are the same for both methods: for each interior
point vi, ∑

j : vj neighbour of vi

(
cotαi,j + cotβi,j

)
(v′j − v′i) = 0 (5)

where αi,j and βi,j are the opposite angles to the edge [vi, vj ], as show on Fig-
ure 5 (a).
They differ for boundary points:

– in [18], the boundary is fixed, often on a convex boundary.
– in [12, 5], each boundary coordinate v′i verifies∑

∆ijk

cotαi,j(v
′
i − v′j) + cotβk,j(v

′
i − v′k) = i×

∑
∆ijk

(v′k − v′j). (6)

where the sum is over all the triangles ∆ijk = (vi, vj , vk) containing vi. Two
boundary coordinates have also to be fixed to ensure invariance to translation
and rotation.
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vi vj

αi,j

βi,j

(a)

mi,j

vi vj

vk

vl

ci,j

di,j

αi,j

βi,j

(b)

Fig. 5: (a) Definition of the angles in the cotan formula
(b) Notations used in the proof of Proposition 1

Proposition 1.

Consider the following choices of dual points and boundary equations

i) the dual points are the circumcenters of the faces and the middles
of the boundary edges

ii) the coordinates of the initial (non dual) boundary vertices and
one of the dual boundary point are fixed.

iii) the coordinates of two initial boundary points are fixed, the co-
ordinates of dual boundary points are in the middle of the image
of boundary initial edges.

With the same choice of fixed points,

1. conditions i) and ii) results in the same coordinates for initial
vertices as with the first cotan conformal coordinates method.

2. conditions i) and iii) results in the same coordinates for initial
vertices as with the second cotan conformal coordinates method.

Proof (of 1.).

We remark that ii) consists in nb

2 + 1 complex linear equations, so due to the
results of Section 2.1, there exists one paramaterization satisfying i) and ii). We
only have to show that the coordinates of initial vertices verify (5).

Consider two adjacent faces of the mesh (vi, vj , vk) and (vi, vl, vj). We denote
by ci,j and di,j their circumcenters. An example of the construction is shown on
Figure 5 (b). We begin by computing the conformal coefficient ρi,j of the quad
(vi, vl, vj , vk) constructed from the edge [vi, vj ]. We also denote by mi,j the mid-
dle of [vi, vj ] and by αi,j and βi,j the angles in vk and vl.
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First, since the angle in mi,j is right, ρi,j is real:

ρi,j =
‖ci,j −mi,j‖
‖vj − vi‖

+
‖di,j −mi,j‖
‖vj − vi‖

.

and
‖ci,j −mi,j‖
‖vj − vi‖

=
1

2
cot ̂vici,jvj .

Second, due to the inscribed angle theorem

̂vici,jvj = αi,j .

Hence

ρi,j =
1

2
(cotαi,j + cotβi,j).

Adding the equations of (2) involving the vertex vi we obtain

i

2

∑
j

(cotαi,j + cotβi,j)(v
′
j − v′i) = i

∑
j

ρi,j(v
′
j − v′i) = i

∑
j

(c′i,j −d′i,j) = 0, (7)

the last equality being true because the edges [c′i,j , d
′
i,j ] form a loop. So (5) is

verified. ut

Proof (of 2.).

Similarly to the proof of 2., we only have to prove that the solution verifies
(6). For a boundary vertex vi, the left hand side of equation (7) becomes

i

2

(
cotαi,i1(v′i1 − v

′
i) + cotβi,i2(v′i2 − v

′
i) +

∑
j : vj /∈boundary

(cotαi,j + cotβi,j)(v
′
j − v′i)

)
= − i

2

∑
∆ijk

(
cotαi,j(v

′
i − v′j) + cotβk,j(v

′
i − v′k)

)
(8)

where vi1 and vi2 are the next and previous (initial) boundary points.
As for the right hand side, it becomes

c′i,i1 −m
′
i,i1 +m′i,i2 − d

′
i,i2 +

∑
(c′i,j − d′i,j)

= m′i,i2 −m
′
i,i1 =

1

2
(v′i2 − v

′
i1) =

1

2

∑
∆ijk

(v′k − v′j). (9)

Multiplying (8) and (9) by 2i, we obtain (6). ut

Given this proposition, it appears that the boundary conditions introduced by
the Intrinsic parameterization method are no so natural as they can seem at first
sight. Moreover our definition of conformity allowing arbitrary dual points can
be of interest, when some angles of the triangles are obtuse. Then the circumcen-
ters are not necessarily inside the triangle and the cotan conformal coordinates
methods can fail.
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3 Minimization algorithms

3.1 Energy minimization

Many parameterizations methods, including [5, 7, 12, 18], consist in solving sparse
linear systems. As the system of equations (2) is also sparse, we could think of
using similar techniques. But the boundary condition, i.e. remaining on a circle,
is not linear and even not quadratic. That is why we implement a non-linear
minimization technique.

We denote by ρi,j the ρ coefficient of the face containing the diagonal [vi, vj ].
Then we introduce the conformal energy

H =
∑∣∣(v′l − v′j)− ρi,j(v′k − v′i)∣∣2

where the sum is over all the quads (vi, vj , vk, vl) of the mesh,
and the boundary energy

C =
∑(

|v′i|2 − 1
)2

where the sum is over all the boundary vertices vi except the two ones whose
parameters are fixed. We search the parameters v′i minimizing the total energy

E = αH + βC

for chosen positive real coefficients α and β.
The minimization is performed using the limited-memory BFGS algorithm. It

is a quasi-Newton algorithm optimized for large Hessians. Moreover it computes
an approximation of the second derivatives of the function from the exact gradi-
ent so we only need to compute the first derivative of E. Note that the derivative
of H can be easily determined using complex numbers. Indeed, if v′i = xi + yi,

∂

∂xi

∣∣(v′l − v′j)− ρi,j(v′k − v′i)∣∣2 = 2 Re
(
ρ̄
(
v′l − v′j − ρ(v′k − v′i)

))
∂

∂yi

∣∣(v′l − v′j)− ρi,j(v′k − v′i)∣∣2 = 2 Im
(
ρ̄
(
v′l − v′j − ρ(v′k − v′i)

))
.

We have to take care of initial conditions to reach the right minimum. Indeed,
there is no uniqueness in the Riemann theorem when the map is not supposed
injective. So the energy E has several (global) minima and with a convenient
choice of initial conditions we could perfectly reach a non injective conformal
parameterization. Such a parameterization is depicted on Figure 6 (b).

In practice it is efficient to start from an initial parameterization whose in-
terior points are in (0, 0) and whose boundary points are on the unit circle with
the same distances between them as on the mesh. Then the process unfolds the
interior points, more or less like the relaxation of a network of spring. To have
less distortion it is generally better to choose the fixed points as far as possible
from each other. An example is given in Figure 6 (a) where the fixed points are
represented by big dots.
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(a) (b)

Fig. 6: (a) Example of initial parameterization,
boundary points on the circle, interior points in 0.

(b) Example of non injective parameterization.

3.2 Preservation of lengths and areas

Boundary conditions introduced yet are interesting theoretically due to their
connection to the Riemann mapping theorem but not very useful practically
since they produce strong length distortions near the boundary. Moreover, even
if conformity is the key feature of parameterization, it is not the only criterion
to ensure a good texture mapping. Indeed, conformal maps can lead to parame-
terizations which are very tight in some regions and more sparse in others. If we
map a checkerboard with such a parameterization we obtain big squares in the
first regions and little ones in the others which is of course unsatisfactory.

To obtain a more natural boundary and reduce metric distortions we propose
to replace the energy term C by other ones measuring metric distortions. Pre-
cisely, we introduce three new cost functions L′, L and A attached to preserve
respectively lengths of boundary edges, lengths of all edges, and areas of faces

L =
∑

boundary edge
[vi,vj ]

(
|v′i − v′j |2 − ‖vi − vj‖2

)2
,

L =
∑

edge [vi,vj ]

(
|v′i − v′j |2 − ‖vi − vj‖2

)2
,

A =
∑
face

(vi,vj ,vk,vl)

((
Im(v′j − v′i)(v′k − v′i)− ‖(vj − vi) ∧ (vk − vi)‖

)2
+
(

Im(v′k − v′i)(v′l − v′i)− ‖(vk − vi) ∧ (vl − vi)‖
)2)

and we propose to minimize the energy

E = αH + βA+ γL+ δL′

where α, β, γ and δ are nonnegative real numbers to be chosen.
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As any isometric transformation of a given parameterization has the same
energy we have to fix the image of one boundary point and the slope of the next
boundary edge to ensure uniqueness of the solution. For numerical reasons the
algorithm described in previous section does not converge in general towards the
right local minimum if we use the same initial conditions. Instead we propose
the following two steps minimization.

1. minimize H with a fixed boundary

2. use this minimum as initial condition to minimize E.

Step 1 being much faster with respect to step 2, it does not affect convergence
speed to perform two minimizations. Moreover, at step 1 we can relax the stop-
ping criteria since we need not to converge the exact minimum. We only want
to unfold a little the parameterization to be closer to the minimum and allow
step 2 to converge.

Remark 3. Another classical Riemann-Hilbert condition [21] is to preserve bound-
ary metric. The use of energy E = H + L′ allows to be close to this condition.
It can also be useful in practice since it is faster to compute L′ than L or A.

Remark 4. For a given quad (v0, v1, v2, v3) our area energy preserve indepen-
dently the areas of two triangles (v0, v1, v2) and (v0, v2, v3) instead of the area of
the whole quad directly. It avoids the formation of non convex quads when the
area coefficient β is high.

3.3 Stabilizing the boundary

When using the boundary metric energy L′, for numerical reason, little artefacts
can appear along the boundary. An example of boundary with two such artefacts
is shown on Figure 7. This problem can also occur, but less frequently, using
energies L and A with very low coefficient α and β. In this section we present
improvments to get a greater numerical precison for boundary vertices.

(a) (b)

Fig. 7: Little artefacts on the boundary using the boundary metric energy L′

(a) Whole boundary (b) Zoom in on critical regions
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The sum of the exterior angles of any polygon is 2π. And each little artefact of
Figure 7 increase this sum of 2π. So if we could preserve the boundary angles we
would prevent the formation of these artefacts. Thus we propose to add an energy
term to preserve angles between boundary edges. To have a differentiable energy,
in the same way as conformity, we introduce complex coefficients measuring both
angles and lengths ratios. More precisely, for each boundary vertex vi, we denote
by p(i) and n(i) the indices of the previous and next vertex along the boundary
and associate to vi the complex number ρ = reiθ where

r =
‖vn(i) − vi‖
‖vp(i) − vi‖

and the argument θ is the sum of the angles in vi. In case of Figure 8,

θ = α1 + α2 + α3.

vp(i)
vi

vn(i)
α1

α2
α3

Fig. 8: An example of definition of ρ = reiθ for the boundary vertex vi,

ρ = reiθ with r =
‖vn(i)−vi‖
‖vp(i)−vi‖

and θ = α1 + α2 + α3.

Then we introduce the cost function B

B =
∑∣∣z′n(i) − z′i − ρi(z′i − z′p(i))∣∣2.

Remark 5. As the conformal energy H already intends to preserve boundary
angles, energy B is a little redundant. But it is important numerically: in a way
we strengthen the conformal energy for boundary vertices to force the boundary
to remain valid all along the process.

Remark 6. The definition of ρ described in this section can also be used to
compute parameterizations of a triangular meshes without constructing a quad-
rangular ones. Indeed we can define for each triangle (v0, v1, v2) the coefficient
ρ as v2−v0

v1−v0 , to preserve the angle and the length ratio between the edges [v0, v1]
and [v0, v2] and thus the shape of the triangle. All the previously detailed meth-
ods can be adapted to this definition. It has the advantage of being simpler and
needing less computation time. However the definition depends on the choice of
v0, and the results of Section 2 are no longer valid.
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4 Numerical results

4.1 Unconstrained parameterization of mesh

In this section parameterizations of triangular meshes are computed with dif-
ferent coefficients α, β, etc, to study the influences of the different energies. We
also give comparisons with ABF method.

Remind that the energies do not share the same dimension: H has the di-
mension of an area, L and L′ of a length to the power 4 and A of an area to the
power 2. We first normalize them in order to have coefficients more independent
of the mesh. We denote by a, l and l′ respectively the mean of the faces areas,
the edges lengths and the boundary edges lengths. And we divide H and B by
a, A by a2, L by l4 and L′ by l′4.

Texture mappings are shown on Figure 9 and statistical features displayed in
Table 1. The line “angles” give the mean angular error (not the the value of H).

To measure area distortions, we compute for each face the ratio

√
min

(
ap
am
, amap

)
where am is the area of the face and ap the area of the corresponding face in
the parameterization. It should be close to 1. The line ‘‘areas” give the mean of
these ratios. The line “lengths” give the mean ratio of edges lengths in the same
way.

We observe in practice that the use of an average of H and L′ allows to
compute conformal paramaterizations with a natural boundary but a little more
stretch than ABF. Using energy E = αH + βA with a small area coefficient β
also leads to conformal parameterization and reduce the stretch. In particular,
the choice α = 100 and β = 1 gives for most meshes results very similar to ABF.
An advantage of the method, is that we can also relax the conformal equation
and use a high area coefficient to better preserve areas. Energy E = H + 10A
seems to be a good choice to obtain a visually authalic texture mapping. As for
energy L, it is less useful since it tends to produce folds when we increase its
coefficient.

Our method also proves to be very efficient with unnatural boundaries as
shown on Figure 10 and 9.

Remark 7. We did not show the texture mapping of ABF since it was almost
the same as with E = 100H +A.
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(a) (b) (c)

Fig. 9: Examples of texture mappings with different cost functions
(a) E = H + L′, conformal and isometric along the boundary
(b) E = 100H +A, conformal, more area preserving, similar to ABF
(c) E = H + 10A, quasi-conformal, area preserving.
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(a) (b)

Fig. 10: Examples of parameterization of meshes with unatural boundaries
(a) Texture mapping
(b) Boundary of the parameterization
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cow (2,000 faces) E = H + L′ +B E = 100H +A E = H + 10A ABF

time (sec) 1.32 0.94 0.87

angles (rad) 0.06 0.06 0.25 0.05

areas 0.48 0.62 0.85 0.63

lengths 0.41 0.56 0.81 0.58

pig (6,000 faces) E = H + L′ +B E = 100H +A E = H + 10A ABF

time (sec) 8 11 15

angles (rad) 0.07 0.06 0.87 0.05

areas 0.58 0.71 0.20 0.68

lengths 0.51 0.66 0.79 0.62

face (30,000 faces E = H + L′ +B E = 100H +A E = H + 10A ABF

time (sec) 50 33 36

angles (rad) 0.01 0.01 0.07 0.01

areas 0.93 0.93 0.98 0.93

lengths 0.93 0.94 0.98 0.93

Table 1: Quantitative comparison of parameterizations

4.2 Digital surfaces

We also show parameterizations of digitals surfaces. Normal vectors are com-
puted using the convolution method of [8]. We observe that remarks of previous
section concerning the choice of energies and coefficients apply to the digital case
too. Two examples are displayed on Figure 11.

It is interesting to compare our digital method with non voxels ones such as
ABF. On the one hand we obtain better texture mappings. Indeed, as shown
on Figure 12, due to the use of smoother normals, the checkerboard squares are
smoother than those of ABF. On the other hand, when on look at a (plane)
conformal parameterization we often have an impression of relief. It is also the
case with our digital parameterization since we clearly distinguish little cubes.
It is much less clear with the ABF parameterization.
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(a) (b)

Fig. 11: Examples of texture mapping on digital surfaces
(a) Cat quasi-conformal parameterization with E = H + 10A.
(b) Half-head conformal parameterization with E = 100H +A

(a) (b)

Fig. 12: Comparison of digital and ABF methods.
Zoom in on the parameterization of the cat (Figure 11 (a)).
(a) Digital method (b) ABF method.
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4.3 Constrained texture mapping

Another important application of parameterization techniques is texture map-
ping of a 2D image on a 3D model. The main features of the image and the model
must fit. Therefore positions of the corresponding points of the parameterization
must be fixed. Our method can be adapted to that case. In fact it only reduces
the number of variables of the function to minimize: we consider the points that
are not fixed.

In the example of Figure 14 we map an image of a face on a mask of Nefertiti.
We select manually 13 corresponding points. They are displayed with thin points
on the figure. On Figure 14 (a), we map the image on the mesh to see that
the 13 points are mapped to the right position. On Figure 14 (b) we display
the map of a checkerboard with the same parameterization, it shows that the
parameterization is still conformal.

Fig. 13: Corresponding 13 points in the image and the mesh.

(a) (b)

Fig. 14: Textured 3D model with (a) an image face and (b) a checkerboard.
Same parameterization computed with E = H + 0.01A.
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Conclusion

We have described a new method of conformal parameterization that can be
applied to different meshes, including quadrangular meshes and digital surfaces.
An important feature of our approach is the use of a recent definition of dis-
crete conformity that permits to have discrete theorems close to the continuous
ones. Moreover, it is very flexible since the use of different cost functions allows
to preserve more or less shapes, the metric, the boundary or positions. Many
experimental results are shown to illustrate the different possibilities.
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