E. A. Blaber, Microgravity Induces Pelvic Bone Loss through Osteoclastic Activity, Osteocytic Osteolysis, and Osteoblastic Cell Cycle Inhibition by CDKN1a/p21, PLoS ONE, vol.270, issue.4, p.61372, 2013.
DOI : 10.1371/journal.pone.0061372.t003

URL : http://doi.org/10.1371/journal.pone.0061372

M. H. Lafage-proust, Space-related bone mineral redistribution and lack of bone mass recovery after reambulation in young rats, Am J Physiol, vol.274, pp.324-334, 1998.

L. Vico, Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts, The Lancet, vol.355, issue.9215, pp.1607-1611, 2000.
DOI : 10.1016/S0140-6736(00)02217-0

E. S. Orwoll, Skeletal health in long-duration astronauts: Nature, assessment, and management recommendations from the NASA bone summit, Journal of Bone and Mineral Research, vol.82, issue.1B, pp.1243-1255, 2013.
DOI : 10.1016/0002-9343(87)90274-9

R. T. Turner, Invited review: what do we know about the effects of spaceflight on bone?, J Appl Physiol, vol.89, pp.840-847, 1985.

S. B. Doty, E. R. Morey-holton, G. N. Durnova, and A. S. Kaplansky, Morphological studies of bone and tendon, J Appl Physiol, vol.73, pp.10-13, 1985.

G. L. Evans, E. Morey-holton, and R. T. Turner, Spaceflight has compartment-and gene-specific effects on mRNA levels for bone matrix proteins in rat femur, J Appl Physiol, vol.84, pp.2132-2137, 1985.

E. R. Morey and D. J. Baylink, Inhibition of bone formation during space flight, Science, vol.201, issue.4361, pp.1138-1141, 1978.
DOI : 10.1126/science.150643

R. F. Zernicke, Spaceflight effects on biomechanical and biochemical properties of rat vertebrae, Am J Physiol, vol.258, pp.1327-1332, 1990.

T. A. Bateman, Histomorphometric, physical, and mechanical effects of spaceflight and insulin-like growth factor-I on rat long bones, Bone, vol.23, issue.6, pp.527-535, 1998.
DOI : 10.1016/S8756-3282(98)00135-5

J. A. Eurell and L. E. Kazarian, Quantitative histochemistry of rat lumbar vertebrae following spaceflight, Am J Physiol, vol.244, pp.315-318, 1983.

I. Kitajima, Vertebral growth disturbance in rapidly growing rats during 14 days of spaceflight, J Appl Physiol, vol.81, pp.156-163, 1985.

T. J. Wronski, Lack of effect of spaceflight on bone mass and bone formation in group-housed rats, J Appl Physiol, vol.85, pp.279-285, 1985.

T. J. Wronski, E. R. Morey-holton, S. B. Doty, A. C. Maese, and C. Walsh, Histomorphometric analysis of rat skeleton following spaceflight, Am J Physiol, vol.252, pp.252-255, 1987.

W. S. Jee, T. J. Wronski, E. R. Morey, and D. B. Kimmel, Effects of spaceflight on trabecular bone in rats, Am J Physiol, vol.244, pp.310-314, 1983.

L. Vico, S. Bourrin, C. Genty, S. Palle, and C. Alexandre, Histomorphometric analyses of cancellous bone from COSMOS 2044 rats, J Appl Physiol, vol.75, pp.2203-2208, 1985.

A. C. Vailas, Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry, FASEB J, vol.4, pp.47-54, 1990.

P. Patterson-buckendahl, Fragility and composition of growing rat bone after one week in spaceflight, Am J Physiol, vol.252, pp.240-246, 1987.

G. L. Mechanic, Regional distribution of mineral and matrix in the femurs of rats flown on Cosmos 1887 biosatellite, FASEB J, vol.4, pp.34-40, 1990.

D. J. Simmons, M. D. Grynpas, and G. D. Rosenberg, Maturation of bone and dentin matrices in rats flown on the Soviet biosatellite Cosmos 1887, FASEB J, vol.4, pp.29-33, 1990.

D. J. Simmons, J. E. Russell, and M. D. Grynpas, Bone maturation and quality of bone material in rats flown on the space shuttle 'Spacelab-3 Mission, Bone Miner, vol.1, pp.485-493, 1986.

S. Tavella, Bone Turnover in Wild Type and Pleiotrophin-Transgenic Mice Housed for Three Months in the International Space??Station (ISS), PLoS ONE, vol.615, issue.3, p.33179, 2012.
DOI : 10.1371/journal.pone.0033179.s006

B. Berg-johansen, Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments, Journal of Orthopaedic Research, vol.10, issue.1, pp.48-57, 2016.
DOI : 10.1097/01241398-199011000-00002

S. A. Lloyd, Osteoprotegerin is an effective countermeasure for spaceflight-induced bone loss in mice, Bone, vol.81, pp.562-572, 2015.
DOI : 10.1016/j.bone.2015.08.021

T. F. Lang, A. D. Leblanc, H. J. Evans, and Y. Lu, Adaptation of the Proximal Femur to Skeletal Reloading After Long-Duration Spaceflight, Journal of Bone and Mineral Research, vol.89, issue.4 Suppl, pp.1224-1230, 2006.
DOI : 10.1359/jbmr.060509

D. M. Spengler, E. R. Morey, D. R. Carter, R. T. Turner, and D. J. Baylink, Effects of Spaceflight on Structural and Material Strength of Growing Bone, Experimental Biology and Medicine, vol.174, issue.2, pp.224-228, 1983.
DOI : 10.3181/00379727-174-41729

V. L. Ferguson, R. A. Ayers, T. A. Bateman, and S. J. Simske, Bone development and age-related bone loss in male C57BL/6J mice, Bone, vol.33, issue.3, pp.387-398, 2003.
DOI : 10.1016/S8756-3282(03)00199-6

B. P. Halloran, Changes in Bone Structure and Mass With Advancing Age in the Male C57BL/6J Mouse, Journal of Bone and Mineral Research, vol.22, issue.1B, pp.1044-1050, 2002.
DOI : 10.1093/geronj/30.2.157

A. Andreev-andrievskiy, Mice in Bion-M 1 Space Mission: Training and Selection, PLoS ONE, vol.9, issue.8, p.104830, 2014.
DOI : 10.1371/journal.pone.0104830.t006

M. Shimbo, Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies, Experimental Animals, vol.65, issue.2, pp.175-187, 2016.
DOI : 10.1538/expanim.15-0077

G. Trudel, Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the Women International Space Simulation for Exploration study, Journal of Applied Physiology, vol.107, issue.2, pp.540-548, 1985.
DOI : 10.1152/japplphysiol.91530.2008

URL : https://hal.archives-ouvertes.fr/hal-00441303

A. Caillot-augusseau, Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: observations in two cosmonauts, Clin Chem, vol.46, pp.1136-1143, 2000.

P. Collet, Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans, Bone, vol.20, issue.6, pp.547-551, 1997.
DOI : 10.1016/S8756-3282(97)00052-5

S. M. Smith, Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry, Journal of Bone and Mineral Research, vol.44, issue.3, pp.1896-1906, 2012.
DOI : 10.1016/j.bone.2008.11.014

S. M. Smith, Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes, Am J Physiol, vol.277, pp.1-10, 1999.

S. M. Smith, Bone Markers, Calcium Metabolism, and Calcium Kinetics During Extended-Duration Space Flight on the Mir Space Station, Journal of Bone and Mineral Research, vol.71, issue.4 Suppl, pp.208-218, 2005.
DOI : 10.1016/8756-3282(94)00045-2

URL : http://onlinelibrary.wiley.com/doi/10.1359/JBMR.041105/pdf

J. Rittweger and D. Felsenberg, Recovery of muscle atrophy and bone loss from 90??days bed rest: Results from a one-year follow-up, Bone, vol.44, issue.2, pp.214-224, 2009.
DOI : 10.1016/j.bone.2008.10.044

K. Puustjarvi, Do More Highly Organized Collagen Fibrils Increase Bone Mechanical Strength in Loss of Mineral Density After One-Year Running Training?, Journal of Bone and Mineral Research, vol.25, issue.Suppl. 1, pp.321-329, 1999.
DOI : 10.1042/bj2520495

M. Saito, S. Soshi, and K. Fujii, Effect of Hyper- and Microgravity on Collagen Post-Translational Controls of MC3T3-E1 Osteoblasts, Journal of Bone and Mineral Research, vol.230, issue.Suppl, pp.1695-1705, 2003.
DOI : 10.1042/bj2300475

M. A. Hammond, Removing or truncating connexin 43 in murine osteocytes alters cortical geometry, nanoscale morphology, and tissue mechanics in the tibia, Bone, vol.88, pp.85-91, 2016.
DOI : 10.1016/j.bone.2016.04.021

A. Vatsa, Osteocyte morphology in fibula and calvaria ??? Is there a role for mechanosensing?, Bone, vol.43, issue.3, pp.452-458, 2008.
DOI : 10.1016/j.bone.2008.01.030

N. V. Rodionova, V. S. Oganov, and N. Zolotova, Ultrastructural changes in osteocytes in microgravity conditions, Advances in Space Research, vol.30, issue.4, pp.765-770, 2002.
DOI : 10.1016/S0273-1177(02)00393-9

H. M. Britz, Prolonged unloading in growing rats reduces cortical osteocyte lacunar density and volume in the distal tibia, Bone, vol.51, issue.5, pp.913-919, 2012.
DOI : 10.1016/j.bone.2012.08.112

B. Busse, Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone, Aging Cell, vol.26, issue.Suppl_I, pp.1065-1075, 2010.
DOI : 10.22203/eCM.v006a05

P. Milovanovic, The Formation of Calcified Nanospherites during Micropetrosis Represents a Unique Mineralization Mechanism in Aged Human Bone, Small, vol.12, issue.3, 2017.
DOI : 10.3390/md12074231

V. David, Noninvasive In Vivo Monitoring of Bone Architecture Alterations in Hindlimb-Unloaded Female Rats Using Novel Three-Dimensional Microcomputed Tomography, Journal of Bone and Mineral Research, vol.10, issue.Suppl 2, pp.1622-1631, 2003.
DOI : 10.1111/j.1365-2818.1974.tb03878.x

D. Farlay, G. Panczer, C. Rey, P. D. Delmas, and G. Boivin, Mineral maturity and crystallinity index are distinct characteristics of bone mineral, Journal of Bone and Mineral Metabolism, vol.16, issue.1, pp.433-445, 2010.
DOI : 10.1016/S8756-3282(95)80385-8

URL : https://hal.archives-ouvertes.fr/inserm-00453448

E. P. Paschalis, Spectroscopic Characterization of Collagen Cross-Links in Bone, Journal of Bone and Mineral Research, vol.125, issue.10, pp.1821-1828, 2001.
DOI : 10.1007/BF00369214

D. Farlay, The Ratio 1660/1690 cm???1 Measured by Infrared Microspectroscopy Is Not Specific of Enzymatic Collagen Cross-Links in Bone Tissue, PLoS ONE, vol.4, issue.3, p.28736, 2011.
DOI : 10.1371/journal.pone.0028736.t001