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The topological characterization of chaos is applied to the irregular pulsations of a model for a star
of the W Virginis type, computed with a state-of-the-art numerical hydrodynamical code. The
banded W Vir attractor is found to possess an additional twist when compared to the Ro¨ssler band.
It is shown that the stellar light-curve contains the same dynamical information about the attractor
as the stellar radius or as the radial velocity variations. ©1996 American Institute of Physics.
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From a chaotic time series generated by a low-
dimensional dynamical system one can extract the lowest
unstable periodic orbits. The relative topological organi-
zation „twisting… of these orbits can be exploited to char-
acterize the dynamical attractor. In the present paper we
explore the usefulness of this topological method for
problems in astronomy by analyzing first as a sample
problem the well-known Rössler dynamical system and
then as a more realistic example numerical data from a
hydrodynamical model of an irregularly pulsating star.
Our ultimate purpose is the application to the light
curves and radial velocity curves of variable star data.

I. INTRODUCTION

Observations and theory have shown that in classic
variable stars such as the Cepheids and RR Lyræ stars,
pulsations are often periodic, to good accuracy. When th
are multiperiodic they just involve a couple of frequencie
In contrast, the pulsations of many of their more luminou
and metal poor Population II cousins are irregular with pu
sation pseudo-periods larger than 15 days. In the last deca
an extensive hydrodynamical survey of models of W Virg
nis type stars with numerical codes1,2 has shown that the
pulsations of the Population II objects are in fact chaotic
the dynamical sense of the word. The dominant clue pointi
to the chaotic nature of these pulsations comes from the f
that, as a control parameter is varied, namely the equilibriu
effective temperature of the models, the pulsations display
period-doubling cascade that is a route to chaotic dynam
~for a review, see Ref. 3!.

In this paper, we study the irregular pulsations of a W
Vir model computed with a state-of-the-art hydrodynamic
code. Such a code provides the time series of three differ
variables, namely the stellar radius, the radial velocity an
the luminosity. Our effort is devoted to the topological cha
acterization of the different representations of the attractor
given by each of these three variables. Indeed, by using
reconstruction method introduced by Packardet al.,4 one
CHAOS 6 (3), 1996 1054-1500/96/6(3)/466/11/$10.
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may reconstruct from a time series a state space equivalen
the original state space. In the case when the underlyi
temporal behavior is chaotic, a reconstructed chaotic attra
tor is then obtained.

The paper is organized as follows. In section II, we in
troduce the topological characterization procedure on the e
ample of the Ro¨ssler system. This section is essentially of
pedagogic character to introduce concepts to be used la
Section III provides a complete topological analysis of th
attractor induced by the stellar radius time series. In sectio
IV the equivalence between the three variables output by t
code is discussed from a dynamical point of view, and se
tion V presents a conclusion.

II. TOPOLOGICAL CHARACTERIZATION

In the last few years several works discussed the top
logical description of chaotic attractors. In particular the ide
has arisen that an attractor can be described by the popu
tion of periodic orbits, their related symbolic dynamics an
their linking numbers.5 In three dimensional cases, periodic
orbits may be viewed as knots6 and, consequently, they are
robust with respect to smooth parameter changes allowi
the definition of topological invariants under isotopy~con-
tinuous deformation!.

The topological approach is based on the organization
periodic orbits. We now present the basic concepts of top
logical characterization and symbolic dynamics. For the sa
of simplicity, we use the well-known Ro¨ssler attractor as an
example.

A. Template

The Rössler system7 is defined by the ODEs

ẋ52y2z,

ẏ5x1ay, ~1!

ż5b1z~x2c!,
46600 © 1996 American Institute of Physics
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467Letellier et al.: Chaos in variable stars
where a,b,c are the control parameters. When
(a,b,c)5(0.398,2,4) the asymptotic motion settles down o
to a strange chaotic attractor.

The attractor may be viewed as a simply stretched a
folded band. Two different strips may be exhibited from thi
attractor~Fig. 1! ~i! one which is located in the center of the
attractor is a very simple strip without anyp-twist @Fig. 1~a!#
and ~ii ! a second strip which presents a negativep-twist
@Fig. 1~b!# and is therefore similar to a Mœbius band. W
may thus distinguish two topological regions on the attracto

Following a pioneering paper by Birman and Williams,8

it has been shown5,6,9 that a template which encodes the to
pological properties of an attractor may be built in
3-dimensional state spaces. Such a template provides a v
of the attractor that conveniently exhibits the different strip
within the attractor and their relative organization. From th
Rössler attractor, a template consisting of two strips is the
extracted and displayed@Fig. 2~a!#. The band is split into two
strips, one without anyp-twist and one with a negative
p-twist @Fig. 2~a!#. Following a standard insertion
convention,9 strips must be reinjected into the bottom ban
from back to front, and from left to right. Consequently,
permutation between the strips is required, thereby leading
@Fig. 2~b!#.

FIG. 1. The two strips of the Ro¨ssler attractor.

FIG. 2. Template of the Ro¨ssler attractor. A permutation between the strip
is required by the standard insertion convention.
CHAOS, Vol. 6
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This convention allows an unambiguous description
the template by defining a linking matrix9 as follows. Diag-
onal elementsM ( i ,i ) are equal to the number ofp-twists
number of theith strip and off-diagonal elementsM ( i , j ),
iÞ j are given by the algebraic number of intersections
tween theith and thejth strips. One may then check that th
Rössler template is defined by the linking matrix

M[S 0 21

21 21D . ~2!

Each strip may be labelled: symbol 0 designs the sim
strip while symbol 1 is associated with the strip which p
sents a negativep-twist. By this way, trajectories are en
coded by a string of ‘‘0’’ and ‘‘1.’’ In particular, periodic
orbits may be encoded in a one-to-one way. We have
defined a symbolic dynamics. This procedure requires a
cise partition of the attractor which is given by a first-retu
map to a Poincare´ section.

B. First-return map

A Poincarésection is defined as the set of intersectio
of a chaotic trajectory with a plane transverse to the flow.
the Rössler system, a suitable Poincare´ section is given by

P[$~y,z!PR2ux5x2 ,ẋ.0%, ~3!

wherex25(c2Ac224ab)/2 is thex-coordinate of the cen
tral fixed point.10

The first-return map is computed with they-variable. It
presents two monotonic branches : an increasing branch
sociated with strip 0 and a decreasing branch associated
strip 1. The critical pointyc which separates the branch
precisely defines the partition. In our case,yc523.04. Thus,
each intersectionyi with the Poincare´ plane corresponds to
codeK(yi) given by

K~yi !5H 0 if yi.yc ,

1 if yi,yc .
~4!

Once periodic orbits are extracted~in the present work
by using a Newton-Raphson iteration scheme!, periodic
points in the Poincare´ section may be encoded. An orbit o
periodp hasp periodic points and is represented by a str
S of p-codes

S5K~y1!K~y2! . . .K~yp!,

whereyi ’s are they-coordinates of the periodic points.

C. Unimodal order

Each period-p point is represented by a symbolic s
quence ofp symbols. Theith point of a period-p orbit is
labelled by the string

Si5K~yi !K~yi11! . . .K~yp!K~y1! . . .K~yi21!. ~5!

All periodic points are then ordered by the unimod
order.11,12

Definition 1. The unimodal ordera 1 on the symbol set
0,1 is defined as follows.

s

, No. 3, 1996
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468 Letellier et al.: Chaos in variable stars
Let us consider two symbolic sequences

W15s1s2 . . .sksk11 . . .

and

W25t1t2 . . . tktk11 . . . ,

wheres i ’s andt j ’s designate the codes. Supposes i5t i for
all i,k andsk Þ tk . LetW*5s1 . . .sk215t1 . . . tk21 be
the common part betweenW1 andW2. We say that a string
s1s2 . . .sk21 is even ~odd! if the sum ( i51

k-1 s i is even
~odd!, and thatW* is even when no common part is foun
betweenW1 andW2. Then, we have

5
W1a1W2 if W* is even and sk,tk ,

W1a1W2 if W* is odd and tk,sk ,

W2a1W1 if W* is odd and sk,tk ,

W2a1W1 if W* is even and tk,sk .

WhenW1 a 1W2, we say thatW2 impliesW1.
A period-p orbit will be denoted by the symbolic se

quenceWi which implies the (p21) others. This sequence is
noted (Wi), with parentheses, and is called theorbital se-
quence. Two orbital sequences may also be ordered follo
ing the unimodal order. When the orbital sequence (W2)
implies the orbital sequence (W1), we say that (W2) forces
(W1) and we note (W1) a 2(W2) wherea 2 is the forcing
order. By this way, all periodic orbits are ordered. The o
bital sequence which forces all orbital sequences extrac
from the attractor is called thekneading sequence. Within
the Rössler attractor, the kneading sequence~among the or-
bits of period less than 12! is found to be~10111101010!.10

All orbits forced by the kneading sequence are found to
present in the attractor up to period 11 included, at least.

D. Symbolic plane

With numerical systems, an orbit spectrum is alwa
well-known, but within the limits imposed by round-off er
rors ~since orbits are extracted by integrating the vect
field!. Nevertheless, in the case of experimental data, pe
odic orbits are extracted from a time series by using a clo
return method in a reconstructed phase space. Due to
limited amount of data and to the influence of external nois
the orbit spectrum is rarely well-known. In particular, a
shown by Tufillaroet al.,13 the population of periodic orbits
crucially depends on the length of the time series. Con
quently, the determination of the kneading sequence is rat
inaccurate when using short experimental time series.

Fang14 has shown that an empirical procedure~also used
by Tufillaro et al.13! may however exhibit the pruning front
introduced by Cvitanovic`15 and, consequently, the kneadin
sequence. To explain this procedure, let us first recall tha
chaotic trajectory forms a string

s5 . . .s23s22s21s0s1s2s3 . . . ,

wheres0 is the present,s2 i ’s the past ands i ’s the future
( i.0).
CHAOS, Vol.
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Symbolic coordinates which span a symbolic plane a
then defined on the future and the past as follows:

xs~s!5(
i51

D
bi
2i

where bi5(
j51

i

s j ~mod 2!,

~6!

ys~s!5(
i51

D
ci
2i

where ci5(
j50

i21

s2 j ~mod 2!,

where

s5s2D . . .s23s22s21s0s1s2s3 . . .sD .

If s is an infinite symbol string generated by a chao
orbit, thenD is infinity in the above definition. However
since we are dealing with finite data sets, Tufillaroet al.13

approximate the symbolic plane coordinates of a point
takingD516. In this way, we can use a finite symbol strin
from a chaotic trajectory to generate a sequence of points
the symbolic plane displayed. The symbolic plane for t
Rössler attractor is given in Fig. 3. In the present case of
orbit spectrum governed by the unimodal order, the prun
front is suitably estimated by a line.14,16

The symbolic coordinatexs of the pruning front allows
us to determine the kneading sequence. Indeed, after ha
computed the orbital sequences of periodic orbits, the kne
ing sequence is associated with the orbital sequence wh
xs is closest to the pruning front.

In the Rössler case, the pruning front is located
xs50.8376. From the orbit spectrum of the Ro¨ssler attractor,
the kneading sequence is found to be~10111101010! whose
symbolic coordinate is 0.8375 in good agreement with t
pruning front location. In the case of experimental data,
symbolic plane will be systematically used to check the or
spectrum.

E. Template validation

A template of the Ro¨ssler attractor has been given i
section II A and the orbit spectrum is extracted. The templ
must now be checked by comparing linking numbers p
dicted by the template and the ones counted on the attra

FIG. 3. Symbolic plane of the Ro¨ssler attractor: The orbit spectrum is gov
erned by the unimodal order as shown by the pruning front well-estima
by a line.
6, No. 3, 1996
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The linking numberL(N1 ,N2) of an orbit pair is given
by the half-sum of the oriented crossings~following the con-
vention, given in Fig. 4, due to Melvin and Tufillaro9! on a
regular plane projection of orbitsN1 andN2. For example,
linking numberL(1011,1) is equal to22 ~Fig. 5!.

A comparison with the linking numberL(1011,1) pre-
dicted from the template is achieved by using an algebr
relation between symbolic dynamics and linking matrix a
cording to17

L~N1 ,N2!5
1

2 F(
i51

p1

(
j51

p2

M ~s i ,s j !1Nlay~N1 ,N2!G , ~7!

whereN1 andN2 are two orbits of periodp1 andp2, respec-
tively. Also, M (s i ,s j ) are the linking matrix elements and
Nlay(N1 ,N2) is the layering number determined by using
layering graph~sketched in Fig. 6 for the couple~1011,1!,
see Ref. 17 for details!.

In the present case, we obtain

L~1011,1!5
1

2
@3M ~1,1!1M ~1,0!1Nlay~1011,1!#

5
1

2
@232110#522, ~8!

i.e., the linking numberL(1011,1) predicted from the tem-
plate is the same as on the attractor. The template is there
compatible with the attractor. For utmost rigor, a few linkin
numbers are needed to completely check the template.

FIG. 4. Crossing convention:~a! positive crossing and~b! negative crossing.

FIG. 5. Plane projection of the orbit couple~1011,1!. The linking number
L(1011,1)5

1
2@24#522. Crossings are signed by inspection on the thi

coordinate.
CHAOS, Vol.
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As the template which carries the periodic orbits is iden
tified, the organization of the orbits within the attractor is
known. For a complete discussion about equivalence be
tween periodic orbits embedded within a strange attracto
and orbits of the template, see Ref. 18.

From a practical point of view, depending on the com-
plexity of the dynamics, the number of points per cycle may
be taken from 20 in the case of very simple dynamics like
the simple Ro¨ssler band up to 200 or more when the dynam
ics requires many symbols for its description. In other words
the amount of data available determines the knowledge o
the orbit spectrum which may be gained, high period orbit
requiring more data. For low period orbits which are usually
sufficient to specify the orbit spectrum with a reasonable
accuracy, 50 to a few hundred characteristic cycles, with a
few as 20 data per cycle, may be sufficient for an accurat
enough characterization of the attractor, making the theori
requirements compatible with limited experimental observa
tions. The acceptable noise level depends on the structure
the attractor, i.e., whether it possesses a large number
strips with manyp-twists. Clearly a lower noise level is
required with more strips.

III. W VIR ATTRACTOR ANALYSIS

A. The model

The W Vir model considered here, namely model D5200
of Ref. 2, is a realistic and state-of-the-art model in so far a
it contains all the complications that arise both in the equa
tions of state and in the opacity due to partial H and He
ionizations. The star has a mass of 0.6M( , a luminosity of
500L( , a hydrogen abundanceX50.7, and a heavy element
abundanceZ50.005. This particular model is chosen be-
cause it generates quite irregular pulsations, exhibiting a
almost fully developed chaos whose behavior appears,
least superficially, to be similar to the Ro¨ssler band behavior.

Three time series are provided by integrating the hydro
dynamical code, namely the stellar radiusR(t), the radial
surface velocityvR(t) and the luminosityL(t). These vari-
ables are displayed in Fig. 7, with a sampling time
dt52104s, i.e.,'0.023 the ‘‘period’’ or cycling time.

A global flow reconstruction from the radius time series
by Serreet al.19 showed that the chaotic attractor is not only

rd

FIG. 6. Layering graph between~1! and~1011!. Lower base is given by the
unimodal order of periodic points. Upper base is obtained by using a rever
permutation of periodic points of strip 1~whose symbolic sequences begin
by a ‘‘1’’ ! since strip 1 has a odd number ofp-twists. Periodic points of
strip 1 are thereafter permuted~again by using a reverse permutation! with
periodic points of strip 0 since the intersection numberM (1,0) between strip
1 and strip 0 is odd. The layering numberNlay(1011,1) is equal to the sum
of the intersections between~1011! and~1! ~self-intersections are not taken
into account!. HereNlay(1011,1) is null.
6, No. 3, 1996
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embeddable in 3D, but that it also has a global phys
dimension of 3. Furthermore from a computation of
Lyapunov exponents they showed that the chaotic pu
tional behavior is characterized by a fractal~Lyapunov! di-
mension equal to about 2.02. They embedded the attract
a 3D space spanned by delay coordinates20

$R~ t !,R~ t1t!,R~ t12t!%,

where t515dt is the time delay. The correspondin
R-induced attractor is displayed in Fig. 8.

On the projection of the attractor~Fig. 8!, it appears tha
the dynamics of the W Vir attractor is rather weakly dissi
tive when compared to the Ro¨ssler dynamics. Such a weak
dissipative behavior is clearly exhibited in Poincare´ sections,
as displayed in Fig. 9.

In weakly dissipative cases, Grassbergeret al.21 showed
that a good partition should pass through primary tangen
between stable and unstable manifolds. This is a genera
tion of the fact that the generating partition for the logis
map passes through the critical point. The kneading sequ
which forces all sequences of periodic orbits present wi
the attractor is therefore replaced by a set of kneading

FIG. 7. Time series of the radiusR, the radial velocityvR and the luminos-
ity L of the star.

FIG. 8. Projection of the attractor in the plane defined byR(t),R(t1t).
CHAOS, Vol.
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quences corresponding to orbits starting at primary tange
cies. Such an analysis has recently been provided by Fang
the case of the He´non map by using a symbolic plane to
exhibit the set of kneading sequences.14 For instance, such a
partition is displayed on Fig. 10 for the He´non map with
a51.4 andb50.3. One may remark that the partition is not
necessarily given by the maxima of the layered structure.

Unfortunately, the extraction of primary tangencies re
quires the knowledge of the equations governing the Poin
carémap of the dynamical system. Consequently, we cann
easily determine a perfect partition of theR-induced attrac-
tor, and periodic orbits in principle cannot safely be encoded
Moreover, the first-return map to the Poincare´ sectionPR

defined by

PR[$R~ t !,R~ t1t!PR2uR~ t !5R~ t1t!,Ṙ.0% ~9!

exhibits a layered structure~Fig. 11! which is a signature of
a weakly dissipative dynamics when compared to Ro¨ssler.
Nevertheless, two branches may be clearly approximate
exhibited and a single critical pointRc may be defined at

FIG. 9. Four different Poincare´ sections of theR-induced attractor which
show the nontrivial structure of the stretched and folded band.

FIG. 10. Partition of the He´non map by the primary tangencies between
stable and unstable manifolds ((a,b)5(1.4,0.3)).
6, No. 3, 1996
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Rc524900. Indeed, Fang has shown that symbolic s
quences with small period can be described by the unimo
order in many systems whose dissipation rate is not t
large.15,22

According to this map, a template consisting of tw
strips could possibly synthesize theR-induced attractor of
the W Vir model. Examining the Poincare´ sections of Fig. 9
which provide other points of view on the attractor, it ap
pears that the use of two strips to propose a template
only be an approximation. Furthermore, the maps are
unidimensional. We shall, however, see that a two-strip a
proximate template will nevertheless provide pertinent info
mation, valid for periodic orbits of small periods.

We first define a partition based on the first-return m
displayed in Fig. 11. Periodic orbits are hereafter extract
by using a close recurrence technique23 and encoded by a
symbolic dynamics with codes

0 if R,Rc ,
~10!

1 if R.Rc .

The population of periodic orbits is reported in Table
Let us note, however, that the number of points in the Po

FIG. 11. First return map to the Poincare´ sectionPR of the R-induced
attractor.

TABLE I. Population of periodic orbits within theR-induced attractorAR

and theL-induced attractorAL . When a periodic orbit is found, the close
return distancee is reported~in % of the attractor size!.

AR AL

Period ~W! e% e%

1 1 3.3 1.3
2 10 2.3 0.3
3
4 1011 0.4 1.1
5 10111 4.0 1.7

10110 1.1 1.8
6 101110 0.1 0.3

101111 2.4 3.3
7 1011111 0.1 3.0

1011110 0.1 0.1
8 10111010 1.0 1.0

10111110
10111111 0.4 0.2
CHAOS, Vol.
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carésection is too small to provide a very accurate kno
edge of the population of periodic orbits. For instance,
period-1 orbit encoded by~1! is found with a close return
distance of 3.3%. Such a distance is rather large fo
period-1 orbit. Actually, due to the limited time series leng
and available initial conditions, the trajectory does not v
well the neighborhood of this orbit. In particular, for sho
time series, the probability of visiting the neighborhood o
given orbit sensitivity depends on the initial conditions.23

According to the unimodal forcing order, the kneadi
sequence of theR-induced attractor is given by (10110).
Thus, the saddle-node bifurcation which creates the pai
period-3 orbits encoded by~101! and ~100! has not yet oc-
curred, explaining why no period-3 orbit is found within th
attractor~for more details, see Ref. 24!. One may also re-
mark that the period-8 orbit encoded by~10111110! is not
found within the attractor although it is forced by the knea
ing sequence~Table I!. This is not very surprising since th
longer the periodic orbit, the lower the probability to dete
it.13,23 In order to check previous statements, the symb
plane is computed and displayed in Fig. 12.

The pruning front is well approximated by a line locat
at ap50.8499. As the leading symbolic coordina
a (10110)50.8485, the kneading sequence is here confirm
Moreover, as the leading symbolic coordinatea (101) is equal
to 0.8571 and, consequently, is greater thanap ~Fig. 12!,
period-3 orbits are not present within the attractor.

One may remark that the neighborhood along the
approximating the pruning front is not well visited for hig
b-values, a fact which could indicate the existence of a m
timodal order. Nevertheless, due to the limited time se
length, it is rather delicate to definitely state about the p
sible occurrence of a multimodal order to govern the po
lation of periodic orbits. It is also true that the first-retu
map exhibits a layered structure but the amount of data is
small to resolve this issue. In practice, considering the res
obtained, it is sufficient to assume that the dynamics is g

FIG. 12. Symbolic plane of theR-induced attractor. A few periodic orbit
are reported. The pruning front may be approximated by the dashed
One may remark that the neighborhood of the orbit encoded by~1! is not
well visited by the trajectory. This fact explains the relatively large dista
of close return for this period-1 orbit.
6, No. 3, 1996
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Do
erned by an unimodal forcing order. With this assumptio
which is clearly an approximation, we are able to charact
ize the attractor in a sufficient way. Furthermore, a mo
refined description would necessitate a deep understand
of topological characterization in the case of weakly dissip
tive systems. Such an understanding is still beyond reach

B. Template extraction

In view of Fig. 11, we assume that the first-return ma
consists approximately of two monotonic branches. T
R-induced attractor must therefore be divided into two d
ferent strips. The first, labelled 0, with an even local torsio
is associated with the increasing branch, and the second
belled 1, with an odd local torsion, is associated with th
decreasing branch. By building an approximate mask of
attractorAR , one can easily exhibit the two strips~Fig. 13!.
This mask is approximated in the sense that theR-induced
attractor is reduced to a thin stretched and folded band, i
does not take into account the layered structures exhibited
the Poincare´ sections displayed in Fig. 9.

Under a revolution on the attractor, strip 1 presents o
positive p-twist while strip 0 undergoes successively on
positive and one negativep-twist, i.e., has a zero local tor-
sion. This mask may therefore be synthesized by a temp
which has one positive global torsion and two strips. One
which has a negative localp-twist ~Fig. 14!. The
R-induced attractor has therefore an additional glob
p-twist when compared to the Ro¨ssler band. As displayed in
Fig. 14, the global torsion may be reduced within the ribbo
graph.

The template is defined by the following linking matrix

M5S 0 0

0 1D . ~11!

The template has now to be checked by comparing lin
ing numbers predicted by the template with linking numbe
computed on a plane projection. For instance, we obtain

FIG. 13. Mask of theR-induced attractor. Two strips are exhibited. Strip
presents a negativep-twist and strip 0 undergoes successively through o
positive and one negativep-twists.
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L~1011,10!

5
1

2
@3M ~1,1!14M ~1,0!1M ~0,01Nlay~1011,10!#

5
1

2
@131013#513

and

L~10111,10!

5
1

2
@4M ~1,1!15M ~1,0!1M ~0,0!1Nlay~10111,10!#

5
1

2
@14101014#514,

where the layering numbers Nlay(1011,10) and
Nlay(10111,10) are given by the layering graphs displayed
Fig. 15.

The pairs of periodic orbits are displayed on plane pr
jections~Fig. 16! where oriented crossings are counted. Th
linking numbersL(1011,10) andL(10111,10) are found to
be equal to13 and14, respectively. Template predicted an
counted linking numbers are therefore found to be equ
Linking numbersL(10,1) andL(1011,1) are also found to
be equal to the template predictions. Nevertheless, by co
puting many oriented crossings for higher period orbits w
have noted that a few of them are found with a sign oppos
to the template prediction. Such reversed oriented crossi
are a signature of the layered structure which is not tak
into account by the template. Nevertheless, this layer
structure has been found to be irrelevant on the relative
ganization of small period orbits~at least up to period 5!, i.e.,
linking numbers of small period orbits are in agreement wi
the template predictions. Consequently, the proposed te
plate is a good synthesis of the topology of theR-induced
attractor. We also note that the topology of the attractor

1
ne

FIG. 14. Template of theR-induced attractor. The global torsion may be
reduced within the ribbon graph. The proposed template is represented
respect to the standard insertion convention.
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the space spanned by the three coordinatesR, vR andL has
been found to be the same as for theR-induced attractor.

C. Equivalence between the different variables

According to the embedding theorem25 it should be pos-
sible to use any physical variable for the reconstruction
long as it is generic and the embedding dimension la

FIG. 15. The layering graphs of the pair~1011,10! and ~10111,10!. ~a!
Nlay(1011,10)513. ~b! Nlay(10111,10)514.

FIG. 16. Plane projection of two pairs of periodic orbits.~a!
L(1011,10)5

1
2(2319)513. ~b! L(10111,10)5

1
2(23111)514.
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enough. However, every variable of a given system may n
contain all the pertinent information about the dynamical be
havior when one is forced to use low dimensional phas
spaces, as exemplified by two of us.26 Such is usually the
case when one deals with topological characterization whi
is limited to 3D-phase spaces. Thus, the case of the rad
velocity vR and the luminosityL must be investigated, if
only as a check of our previous results.

The case of the radial velocityvR of the stellar surface is
easy to solve since it is shown20 that derivative coordinates
are equivalent to delay coordinates. The velocityvR being
the time derivative of the stellar radiusR, vR-time series thus
contains the same information about the dynamical behav
as theR-time series.@In the specific discrete Lagrangian
hydro-code the velocity and radius are actually related b

R(t1Dt)5R(t)1 1
2 Dt(vR(t1Dt)1vR(t)), whereDt is the

numerical time-step, i.e., by a linear reshuffling of the var
ables which makes the equivalence even more straightfo
ward.#

While theR- or vR-time series are smooth enough, the
temporal behavior of the luminosity, is very jittery~Fig. 7!
because Lagrangian hydrocodes have great difficulty in r
solving the motion of the sharpH partial ionization regions.
As seen from Fig. 17, one then expects more difficulties
studying theL-attractor than theR-attractor, a fact which
could possibly be improved in the future by using an adap
tive hydrocode. It is therefore of particular interest to chec
whether theL-induced attractorAL reconstructed in a 3D
space by a time delay method can be found to be topolog
cally equivalent to theR-induced attractorAR .

As for the attractorAR , we begin the study by defining a
Poincare´ sectionPL here

PL[$L~ t !,L~ t1t!PR2uL~ t !51.7 106,
~12!

L~ t1t!.1.5 106, L̇,0%

which is chosen for its computational advantages. A firs
return map is thereafter built and displayed in Fig. 18.

Periodic orbits are extracted and encoded according to
symbolic dynamics which is given by

FIG. 17. L-induced attractor projected on the plane spanned b
$L(t),L(t1t)%) where the time delayt is equal to 15dt.
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0 if L,Lc ,
~13!

1 if L.Lc.

The population of periodic orbits is reported in Table
and is found to be exactly the same as the one obtain
within the R-induced attractor. In the computation of th
symbolic plane associated with theL-induced attractor~Fig.
19!, the pruning front is better approximated by a line than
the case of theR-induced attractor although theL-attractor is
more jittery than theR-attractor. This fact actually confirms
the sensitivity of such an analysis to the initial conditions
time series when short time series are used. Consequent
is here confirmed that the dynamics of the W Vir model
governed by an unimodal forcing order for the studied co
trol parameter. The pruning front is located atap50.8499
which is again a little bit greater than the leading symbo
coordinatea (10110). From the orbital point of view, both at-
tractorsAR andAL therefore contain the same information

We have now to check whether theL-induced attractor
possesses the same topology as theR-induced attractor. Due
to the parasitic oscillations of the luminosityL, we cannot
expect to correctly count oriented crossings between a pai

FIG. 18. First-return map to the Poincare´ section PL . A critical point
Lc5291000 splits the map in two branches.

FIG. 19. Symbolic plane associated with theL-induced attractor. The prun-
ing front is well approximated by the dashed line which is located
ap50.8499. The period-5 orbit encoded by~10110! is reported on this
plane.
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orbits when one period in the pair is large~greater than or
equal to typically 4!. For instance, a plane projection of the
pair ~1011,1! is displayed in Fig. 20. The small sampling rate
and the presence of many erratic oscillations prevent the d
termination of the linking numberL(1011,1).

Consequently, only the pair~10,1! can be used to com-
pute a linking number since period-3 orbits are not presen
within the attractor. The linking numberL(10,1) predicted
by theR-induced template is

L~10,1!5
1

2
@M ~1,1!1M ~1,0!1Nlay~10,1!#

5
1

2
@111011#511,

where the layering numberNlay(10,1) is given by the layer-
ing graph displayed in Fig. 21.

With the help of a plane projection of the pair~10,1! the
linking numberL(10,1) is found to be equal to11 in agree-
ment with theR-template prediction~see Fig. 22!.

In order to try to compute linking numbers with orbits of
higher periods, we applied a smoothing to the data. Man
oscillations are removed by the filtering process. Neverthe
less, the linking numberL(10,1) counted on a plane projec-
tion of orbit ~10! and ~1! extracted from the smoothed
L-time series is now found to be equal to21 ~Fig. 23!. The
filtering process therefore does not preserve the topology
the original data and cannot be safely used. It is then difficu
to provide a definitive conclusion concerning the topology o
theL-induced attractor. However, we may state that, relying
on the obtained results, the topology of theL-induced attrac-
tor is compatible with the topology of theR-induced attrac-

at

FIG. 20. The small sampling rate and the presence of many erratic oscill
tions prevent a correct counting of oriented crossings.

FIG. 21. The layering numberNlay(10,1) is found to be equal to11.
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tor. If we furthermore recall that the populations of periodic
orbits have been found to be the same for theR- and for the
L-induced attractors, we may conclude that both attracto
are, at least, very close and, very likely, equivalent.

IV. CONCLUSION

In this paper we have applied the topological analysis,
novel tool in astrophysics, to the analysis of the W Vir mode
pulsations that were generated by a numerical hydrodynam
cal code. The banded W Vir attractor that is reconstructe
from the temporal behavior of the stellar radius is found to
possess an additionalp-twist when compared to the Ro¨ssler
band. Since the topological properties of the dynamics th
are deduced from the model must be in agreement with o
servational data, this then provides a novel type of constrai
on the stellar models and a check on the physics that
included in the hydrocode. For instance, if the twist is indee
a robust property of W Vir type stars, it should then also b
uncovered in observed light-curve data when they becom
available. However at the present time we do not have
good understanding of the physical nature of this additiona
p-twist, and how it comes about in this oscillating system.

FIG. 22. Plane projection of the pair~10,1! : L(10,1)5
1
2(29111)511.

FIG. 23. Plane projection of the periodic orbits encoded by~10! and ~1!,
respectively. They are extracted from the smoothed luminosity time serie
The linking number is found to be different from the one counted on th
nonfiltered data.
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The attractors obtained from the stellar radius and fro
the luminosity time series possess the same population
periodic orbits. Due to the jittery character of the luminosi
time series, the topology of theL-induced attractor cannot be
characterized completely safely, though. Nevertheless,
results show that the topologies of theR- and of the
L-induced attractors are found to be compatible, and in fac
is likely that both attractors are actually equivalent. The st
lar light-curve is the most accurate and often the only o
servable quantity. From a practical point of view it is there
fore reassuring to the astrophysicist that the luminosity
generic in the sense that it contains the same dynamical
formation as the temporal variations of the surface radius
the surface radial velocity. It can thus safely be used to in
the physical and mathematical properties of this dynamic

Finally we note that unfortunately, at the present tim
the topological characterization is only available for 3D sy
tems whose dynamics is very dissipative. Until an extensi
to higher dimensions can be found our method therefore c
not be applied to more complicated observational stel
light-curves, such as R Scuti, which have a fractal dimensi
greater than 3.27
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