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Abstract—In this paper we address the question of the rela-
tionships between visualization challenges and the representation
components that provide solutions to these challenges. Our ap-
proach involves extracting such relationships through an identifi-
cation of the context and the components of a significant number
of representations and a comparison of the result to existing
theoretical studies. To make such an identification possible, we
rely on a characterization of the representation context based
on a thoughtful aggregation of existing characterizations of the
data type, the tasks and the context of use of the representations.
We illustrate our approach on a use-case with examples of a
relationships extraction and of a comparison of that relationships
to the theory. We believe that the establishment of such relation-
ships makes it possible to understand the mechanisms behind
the representations, in order to build a representation design
recommendation tool. Such a tool will enable us to recommend
the components to use in a representation, given a visualization
challenge to address.

Keywords-Visualization Process, Characterization Survey, Mul-
tidimensional Data, Task Taxonomies

I. INTRODUCTION

Although the field of data visualization has been widely
studied, it still has many challenges to face, such as dealing
with huge amounts of data [15]. Based on the fact that
each component of a visual representation solves a specific
aspect of a given challenge, we believe that existing visual
representations contain keys solving new challenges. If we
identify relationships between representation components and
the aspects of the challenge that they solve, we can decompose
the new challenges, identify aspects that have already been
solved by the field, and design a solution based on the
corresponding components. Cases where new challenges have
no common aspects with old ones are also informative, as they
highlight specific needs for new components.

In this paper we present an approach to build a repository
containing the relationships between representation compo-
nents and challenge aspects. This repository is built through
theoretical foundations and through the analysis of numerous

existing representations, for the purposes of supporting the
design of visualizations that solve new challenges. In section
II, we identify the main parameters of a visualization challenge
by analyzing the visualization process. In section III, we
characterize each of the parameters identified with the help
of both individual existing characterizations and aggregations
of existing characterizations, in order to list the challenge
aspects. Then, in section IV, we identify the components of
the existing representation and finally, in section V, we present
how we extract relationships between challenge aspects and
components of existing representations to build the repository.

II. IDENTIFICATION OF THE MAIN ASPECTS OF
VISUALIZATION CHALLENGES

To describe a visualization challenge requires answering
the three generic questions: why, what and how regarding
the context of a representation. Visual representation being
a part of the whole visualization process, representation is
entirely conditioned by this process. As such, accessing the
representation context requires identifying the factors that
impact the visualization process. In this section we identify the
main aspects of visualization challenges by identifying these
factors.

As Chen and Jänicke [9] did in their information flow
description, we can first identify the factors that impact the
visualization as noise over sub-processes. We identify noise
over viewing, perception and cognition, which designates the
context of use as one of the parameters of representations.
Vickers et al. [34] address this issue from a more theoretical
point of view, explaining that visualization states refer to
models. As such, the parameters of these models correspond to
the required parameters. Vickers et al. highlight a data model
and a question model that designate the data type and the tasks
as parameters of the representations. Applying this analysis
to van Wijk’s process [33], [28], which is a more generic
visualization process, we confirm the identification of the three
elements: the data (the data type), the user perception and
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Fig. 1. The visualization process according to van Wijk

action (the context of use), and the user needs (the tasks) (see
figure 1). We compare this result with the empiric parameters
described by Pfitzner [24] as the data type, the user’s expertise,
the context (user’s experience, history, intention, need, and
device) and the task type. According to Coutaz and Thevenin
[31], the context of use contains the user’s expertise, the
environment and the device, such that the proposed parameters
match every aspect of the empirical description. Thanks to
the existing visualization process definitions and parameter
descriptions, we identify three main characteristics of the
representation context: the data type, the task type (as a
transcription of the user’s need) and the context of use (in-
cluding the user’s expertise, the environment and the device).
As such, in order to describe a visualization challenge, we
need to establish the values of the data type, the task type and
the context of use for the issue that we aim to solve. So the
next step of our approach is to identify which values these
characteristics can take to allow such a description.

III. CHARACTERIZATION OF THE CONTEXT OF VISUAL
REPRESENTATIONS

In this section we detail the three parameters that have
been identified in section II to characterize the context of
visual representations. This characterization consists of a series
of enumerations such that we could easily implement it in
a tool that would recommend visual representations. For
practical use, we associate these enumerations with a specific
iconography.

A. Data type

To address the various data characteristics that have an
impact on the representation, we first characterize the data
with respect to its volume. Then we define the data in terms
of structural organization. Finally, we focus on the properties
of the data attributes through their cardinality, their structural
properties and their nature.

1) Data volume: With the increase of big data problem-
atics, it is necessary to define what this means in terms of
data volume. Jankun-Kelly et al. explain that the volume issue
in visualization is caused by two facts: hardware processing
limits and human perception limits [15]. As the hardware
processing capacity is not in the scope of this paper, we focus
on the human perception limits. Jankun-Kelly et al. explain
that two elements cannot be perceived separately if they are

not spaced according to a minimum angle from the user’s
point of view. To summarize, they present a perception limit
depending on many factors, including pixel size, distance to
the screen and ambient luminosity. According to that, the
perception limit is more defined by the context of use than
by the data characteristics. However, we can at least agree
that if the amount of data is bigger than the number of pixels
on the screen, it raises perception issues. This highlights the
existence of a high volume limit, which is difficult to quantify.
On the other hand, it is easy to recognize one to four objects
in a group at a glance [12], highlighting the existence of a
well-defined low volume limit. To conclude, we identify three
characterizing volumes of data: a low volume, a high volume
and an intermediate volume (see figure 2).

Fig. 2. Icons representing the three data volume characteristics: low volume,
medium volume and high volume.

2) Structural organization of data: Hascoët and Beaudoin-
Lafon propose a review of visualization and interaction tech-
niques in the domain of information searches [14]. It aims
to associate specific solutions to each data structure type,
providing a detailed data structure characterization based on
four categories: lists, trees, graphs and data bound by a
similarity index, also called vector models. A list corresponds
to an ordered set of data elements like, for example, words in a
text. This notion of ordering can differ from one attribute to the
other and as such is more about attribute nature than structure.
A tree or hierarchical structure, like for example chapters
over sections, is not structured through an attribute relation as
ordering is for lists. A tree is defined by hierarchical relations
between data elements. It is the same for graph structures,
except that the relations may have specific meanings. For
instance, social media contain graph structures specifying
the relation between users. The relation can be mutual or
unilateral, in other words ordered. Finally, data structured by
a similarity criterion are data for which the similarities can
be quantified. For example, a set of marked exercises will
be quantifiable through their marks. This relation is, as for
lists, specific to the attributes, as we can consider the mark
value as one of the attributes of the exercise. Among the
four characteristics defined by Hascoët and Beaudoin-Lafon,
two are based on relations between attributes and correspond
to unstructured data. The tree structure corresponds to a
specific case of an oriented relation between data, while the
graph corresponds to a structure of oriented and unoriented
relations (see figure 3). This characterization is not complete,
as we do not identify the characteristics behind the list and
the data structured by similarity, which is related to attribute
properties.

3) Attribute cardinality: Shneiderman proposes a charac-
terization of data that takes into account attribute cardinality
[30]. It presents the following data types: 1-dimensional, 2-
dimensional, 3-dimensional, temporal, multidimensional, tree,
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Fig. 3. Icons representing the three data structure characteristics: unstructured
relation, unoriented relation and oriented relation.

and graph. As we aim for cardinality characteristics, we
will focus on the *-dimensional and the multidimensional.
Shneiderman details 1-dimensional as linear data types, like
textual documents or program source code which are all
organized in a sequential manner. 2-dimensional corresponds
to planar or map data like geographic maps or newspaper
layouts. 3-dimensional corresponds to real-world objects such
as items with volume and some potentially complex relation-
ship with other items. Finally, multidimensional corresponds
to most relational and statistical databases in which items
with n attributes become points in an n-dimensional space.
As such, we extract from Shneiderman’s characterization four
categories based on the number of attributes that permit a
unique identification of a data item, which we include in our
characterization figure 4).

Fig. 4. Icons representing the attribute cardinalities: 1-dimensional, 2-
dimensional, 3-dimensional and multidimensional.

4) Attribute structural properties: Bertin [4] and many
authors after him [19], [38], characterize information repre-
sentation by defining three data categories : nominal, ordinal,
and quantitative. Data is nominal when its value is quali-
tative and non-ordered, like animal names. The relationship
between two nominal data elements is based on similarities or
differences. Data is ordinal when its value is qualitative and
ordered, like the letters of the alphabet. Such data elements
can be distinguished on the basis of an ordering. Data is
quantitative when its value is quantitative, like temperature.
These three characteristics allow us to describe data attributes
independently, and we retrieve the ordering and quantification
relationships introduced by Hascoët and Beaudoin-Lafon. As
such we include them in our characterization (see figure 5).

Fig. 5. Icons representing the attribute type characteristics: nominal, ordinal
and quantitative.

5) Attribute nature: In a 2D chart, the choice to put one
attribute as abscissa and the other as ordinate is not arbitrary.
Representations vary depending on whether they represent
characteristic or referential attributes [26]. A characteristic
attribute is a data attribute corresponding to a measured
or observed property (e.g. temperature), while a referential
attribute is a data attribute reflecting an aspect of the context
in which the measurement was made (e.g. time). As such we

identify two different natures of the attribute (see figure 6).
The set of referential attributes of a piece of data makes it
possible to describe a data item in a unique manner, such that
the multidimensional aspect of a data item can be related to
its number of referential attributes.

Fig. 6. Icons representing the attribute nature characteristics: characteristic
and referential.

6) Synthesis: We have established that the data type of a vi-
sualization challenge is decomposable into several categories.
Considering a challenge as a set of activities, each activity is
related to a data set that is characterized by a volume and a
structure. Each datum of these data contains a specific number
of attributes that are characterized by a structural property and
a nature. In addition, some studies propose characterizations
of the temporal aspects of the data [1, Chapter 3] or of their
dimensional aspects [20, Chapter 2]. In this study we aim to
propose a generic approach and as such we will not consider
these categorizations, but the approach is adaptable enough to
be augmented in further studies.

B. Tasks

In this section, we analyze existing task taxonomies in
order to be able to describe the task type of a visualization
challenge. As we did not find an existing taxonomy that
fits our descriptive objective, we built a new one. In order
to ensure that this new taxonomy computes the strengths
of existing taxonomies, we built it based on the criteria of
completeness and independence. Completeness ensures the
possibility of describing all representations, while indepen-
dence guarantees a unique description and therefore allows
for characterization. Shneiderman’s work [30] is a widely used
taxonomy that describes the activity of data visualization [24].
Shneiderman proposes the following tasks: Overview, Zoom,
Filter, Detail-on-demand, Relate, History, and Extract. We
can distinguish global apprehension tasks, allowing access to
data, as Overview and History, but also tasks increasing the
understanding of details, as Zoom, Filter, Detail-on-demand,
and Extract, and analytic tasks such as Relate. However, some
tasks address the same underlying need. For instance, zoom
can be used to access detail on demand. By merging the tasks
with the same underlying need we identify two tasks :

• Identify value corresponds to identifying an attribute
value or a category (see figure 7).

• Access information corresponds to finding an element
matching some criterion (value, part of a structure, etc.)
(see figure 8).

However, we cannot use this taxonomy to describe activities
requiring comparing or sorting so we must carry on with the
analysis.

There is a second, old but widely used taxonomy which bet-
ter matches our expectations: the one from Wehrend and Lewis
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Fig. 7. Chart representing data value by position in one dimension. This
representation illustrates the identify value task by allowing us to access the
value of a specific square on a mouse-over.

Fig. 8. Chart representing data value by position in one dimension. This
representation illustrates the access information task by allowing us to identify
the data whose values are between 2 and 3 with the help of reference lines.

[37]. This taxonomy, popularized by Keller [17], includes
the following tasks: Identify, Locate, Distinguish, Categorize,
Cluster, Distribute, Rank, Compare, Associate, and Correlate.
This taxonomy has the particularity of being empirical and
comes from a study analyzing more than ninety visualizations.
This taxonomy contains tasks similar to Shneiderman’s, like
Locate as the apprehension task or Identify and Categorize as
tasks that allow us to access information. It also brings new
tasks like Distinguish, Cluster/Associate, Distribute, Rank,
Compare, and Correlate. This taxonomy seems to be more
exhaustive, but the presence of two association tasks means
that it does not meet the criterion of independence. Except
these two association tasks, it makes it possible to identify
five new tasks:

• Sort corresponds to identifying the ordering of a set of
elements or the ranking of an element among others (see
figure 9).

• Compare corresponds to evaluating the difference be-
tween two attributes (see figure 10).

• Distinguish corresponds to the detection of a singularity
(see figure 11).

• Identify distribution corresponds to identifying the dis-
tribution of an attribute (see figure 12).

• Associate corresponds to the identification of a group of
data based on their similarity (see figure 13).

• Correlate corresponds to the identification of a relation
between two data (see figure 14).

However, as the taxonomy of Shneiderman was established in
1990 in a rising field, we prefer to comparison it to more recent
taxonomies to ensure that it fully covers today’s activities.

Fig. 9. Chart representing data values by height. This representation
illustrates the sort task by allowing us to identify that the penultimate data
on the right have a higher value than the other data.

Fig. 10. Chart representing data values by height. This representation
illustrates the compare task by allowing us to identify that the data on the
right has a value one third higher than the data on the left.

Fig. 11. Chart representing data values by color. This representation
illustrates the distinguish task by allowing us to distinguish the fourth square
from the others.

Fig. 12. Chart representing the amount of data by height according to their
values. This representation illustrates the identify distribution task by allowing
us to identify that the data are spatially distributed according to two values.

Fig. 13. Chart representing data values by position in two dimensions. This
representation illustrates the associate task by allowing us to associate data
in two groups.

Fig. 14. Chart representing data values by color and shape. This represen-
tation illustrates the correlate task by allowing us to conclude that there is a
correlation between the value encoding the color and that encoding the shape,
as the circles are always darker than the squares.

Keller’s taxonomy is used by Ward [26], who briefly rede-
fines the tasks for which the initial definition was ambiguous.
Ward thus proposes the following tasks: Identify characteristic;
Locate boundaries, critical points, other features; Distinguish
regions of different characteristics; Categorize or classify;
Rank based on some order; Compare to find similarities
and differences; Associate into relationship; and Correlate by
classifying. It is worth noting that Ward does not include
the tasks Cluster and Distribute. One can understand that
the Cluster task is covered by the Associate into relation-
ship task. However, Ward says nothing about the Distribute
task. As Ward details Keller’s taxonomy, according to our
interpretation, it does not impact the previous proposition but
consolidates its definition. While not being an outcome of
Wehrend’s work, Amar’s taxonomy [2] is still very similar.
This taxonomy is also empirical but is more recent and used in
many studies [18]. It comprises the following tasks: Retrieve
value; Filter; Compute derived value; Find extremum; Sort;
Determine range; Characterize distribution; Find anomalies;
Cluster; and Correlate. As such, it includes the task of iden-
tification of a distribution and an additional Compute derived
value task, which we generalize as follow :

• Create information corresponds to the production of
new information by the user (see figure 15).

Finally, some recent taxonomies identify different levels of
abstraction for the tasks [6], [29]. In this work we aim to
identify a synthetic taxonomy enabling us to enumerate user
needs, which corresponds to a unique task type. Based on that,
we argue that these taxonomies describe more than the tasks
we aim for. For example some also describe the interaction
functions, and thus are too large for our purpose. They propose
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Fig. 15. Chart representing data values by position in two dimensions. This
representation illustrates the create data task by allowing us to create a group
of data.

a complete approach that follows a different path that the one
chosen in this paper.

To summarize, we have compiled the strengths of existing
taxonomies in a set of nine tasks (see figure 16).

C. Context of use

The context of use is defined by Thevenin and Coutaz as
having three dimensions: the platform, the environment and the
user [31]. In this section we examine these three dimensions.

1) Platform: The platform corresponds to the physical
devices through which users interact. It regroups the devices
used for action, processing and perception. We have stated
previously that the processing performance was not within the
scope of this paper, as such we do not consider the different
processing devices. Regarding the action devices that belong
to the interaction field, we cannot summarize an entire field
with a set a parameters, so we do not take them into account in
our characterization so far. As such we are only interested in
describing the different devices that influence the perception.
The majority of representation propositions are designed to
be perceived on a medium screen, around 15 inches wide.
However, with the generalization of touch and multi-touch
interactions, this use is extended to larger displays, such as
tables [35], [3]. With the increasing need for portability, the
representations are also designed to be perceived on mobile
displays, such as smartphones [5], [21]. Moreover, with the
increasing quantity of data, the representations also extend
their use to large-scale displays, such as walls [16], [25].
Finally, with the increasing dataset sizes, we see more and
more visualizations on immersive devices [32], [13], [11].

Quite often, the choice of the platform is not made a priori
and the designer may need to be oriented towards the most
appropriated platform. However, as it may also be a design
constraint, we add it to the proposed characterization (see
figure 17).

Fig. 17. Icons representing devices types: portable device, simple screen(s),
large screen(s) and immersive device.

2) Environment: The work environment can impact the
user’s performance in a number of different ways based on:
lighting, thermal comfort, physical ergonomics, noise, and
vibration [23]. However, we cannot clearly establish that
these characteristics condition the representation. With some
exceptions, such as the use of night and day light modes, the
environment impacts performance a lot, but it does not impact
the representation.

3) User: Users also have an impact on the visualization
process because of their knowledge, experience or physical
capabilities. We focus on the characterization of the user
experience and user expertise. User experience includes all the
characteristics that globally distinguish users. For example, the
signification of colors varies between countries, so that users
from different cultures will not experience color visualization
in the same manner. Taking into account user experience
means considering what characterizes a user. This means
taking into consideration a great number of details. It is
therefore difficult to propose an exhaustive characterization
of the user experience. As such, we propose to highlight
the impact of user experience in the characterization of the
representation. User expertise defines the user’s reaction when
facing a problem. This reaction depends on how often the
user has been confronted with the problem. Rasmussen et
al. propose a characterization of several cognitive functions
associated with expertise levels: skills, rules and knowledge
[27]. The cognitive function knowledge induces the highest
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cognitive load. It is used in the case of a new problem to
solve. The user who has no expertise in a subject can only rely
on his/her knowledge. The cognitive function rules induces
less cognitive load because it is based on the use of acquired
predefined processes, called rules. The rules correspond to
actions that the user knows must be performed in a particular
situation. Rules creation implies already having faced the
situation several times. Finally, the skill level implies the
lowest amount of cognitive load, because it is based on almost
unconscious reactions acquired through long-term experience.
We include these three characteristics in our characterization
(see figure 18).

Fig. 18. Icons representing the level of user’s expertise: skill, rules and
knowledge.

D. Context synthesis

Considering a survey of existing visualization characteriza-
tions, we have formalized the characteristics of visualization
challenges. We have identified these characteristics according
to the data type, the user’s need and the context of use.
However, all these elements characterize the visualization
challenges on different levels. A visualization challenge is de-
scribed by a unique context of use (device and user expertise)
and a set of activities. Each activity is described by a task and
the characteristics of the data on which the task is applied,
namely the data volume, the data structure and the properties
of the attributes. Each attribute is described by a structural
property and a nature. The whole context characterization is
synthesized in figure 19. This characterization does not take
into account the attribute cardinality, as it is implied by the
number of referential attributes.

CHALLENGE
a device
a user expertise
activities

ACTIVITY
a task
a data volume
a data structure
attributes

ATTRIBUTE
a structural prop.
a nature

Fig. 19. Schematic representation of the organization of the characteristics
of the visualization challenges

IV. IDENTIFICATION OF THE REPRESENTATION
COMPONENTS

To list the different components that constitute the rep-
resentations, we use the structure brought by the InfoVis
Pipeline, which describes the representation as comprising data
transformations, visual mappings, view transformations and
interaction [8]. We do not aim to be exhaustive but rather
to highlight the possible segmentations of a representation.

The data transformations are all techniques that enable
us to extract meaning from the data by processing. The
main data transformations in visualization are aggregation,

projection, and filtering techniques [15]. The visual map-
ping corresponds to the transposition of the information to
be presented into visual elements (attribute value, structure).
Bertin [4] identifies the visual variables position, size, color
intensity, grain, color hue, orientation and shape. This
list was completed over years [19], [20] adding connection,
volume, and motion. The visual transformations correspond
to the set of processes that cause variation int the view
parameters [10]. There are three possible variations: the level
of details (e.g. Overview+Detail, Zoom), the represented
attributes (e.g. parallel coordinates) and the represented data
(e.g. navigation). Accessing the different views is performed
through a spatial separation (e.g. parallel coordinate) or tem-
poral separation (e.g. zoom), enabling various representation
solutions. Even though the interaction is already represented in
the previous processes (e.g. zoom, like almost every temporal
separation transformation), it also includes other aspects, such
as selecting, linking or filtering [22].

We have identified several representation components from
the three parts of the InfoVis Pipeline [8]. Despite the fact
that our identification may not be exhaustive, it allows us
to decompose most of the representations into elementary
components.

V. CHARACTERIZATION OF THE RELATIONSHIPS BETWEEN
CHALLENGE ASPECTS AND REPRESENTATION

COMPONENTS

To fill the repository of the relationships between challenge
aspects and representation components, we propose extracting
these relationships from numerous existing representations,
using the characterization of the context and of the compo-
nents of a representation. We thus propose consolidating the
extracted relationships by comparing them with the theoretical
studies on the matter. To illustrate our approach, we exemplify
these two steps through the analysis of an existing represen-
tation tool.

A. Extraction on an existing representation

First, to extract relationships from an existing representa-
tion, we need to describe the representation according to the
proposed characterization of the context. We need to identify
characteristics of the context of use, and then describe the
activity thanks to the proposed task taxonomy. By doing this,
we identify which data these tasks apply to and how many
attributes we also characterize. Once these different levels of
characterization are processed, we can describe the representa-
tion components involved and link them to different levels of
the context (challenge, activity or attribute), according to their
nature (data transformation, visual mapping, view transforma-
tion and interaction). For instance, each visual variable is often
associated with the characteristics of a specific attribute, while
the view transformation is often common to the activity. The
links being established, we associate sets of components with
each activity, duplicating the other characteristics, as they are
common to the entire challenge. We exemplify the extraction
of the relationships between the representation context and
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representation components over a complex use case, namely
the analysis of radar signal pulses to extract radar signal
characteristics.

One of the tools used for radar signal analysis consists
of several 2D charts (see Figure 20). Each chart represents
attributes specific to the radar signal: the pulse width, the
pulse repetition period and the frequency over time. This
representation makes it possible to identify the characteristics
of the attributes of the radar signal that may vary through
time or may be mixed with other signals. The first step of
the analysis involves identifying clusters inside the charts
that are considered to belong to the same radar. Once a
cluster is identified (often according to frequency attribute), the
operator selects the data and colors them in order to distinguish
their values throughout the representation. The operator thus
identifies the variation of each attribute.

Now, we use our characterization of the challenge aspects
and the representation components to extract the relationships
that we summarize in Table I. In the table, the relationships
are divided according to the activity level (such that each task
is related to a set of components). This use-case description
highlights four tasks. The first task processed by the operator
is the association of the data according to their values of
time and frequency. Secondly, by selecting these data, the
user creates the information that they potentially belong
to the same radar. Thirdly, through the color, the operator
accesses this information throughout the view and fourthly,
the operator can identify the values of each attribute of these
data. We know that the operator is an expert in his/her domain
and that the volume of data is medium, as it is higher than
four and lower than the number of pixels. For the nature
of the attributes, the radar attributes are all quantitative,
but concerning the create information tasks, the ”potentially
belongs to a unique radar” value is nominal, and given the
nature of the radar signal all these attributes are characteristic,
except for time and frequency, which are referential. Finally,
the device currently used to access this representation is a
simple screen. The first task, the association according to two
attributes, is enabled by the position, one for each attribute.
The creation task is brought by the selection. The access
information task is feasible using the color and the multiview.
The value identification task is possible four times thanks to
the position.

Among the relationships established above, some are clear,
such as the selection that we illustrate by our iconography
(see figure 21), but some others are yet to be discussed. For
instance, the position is present four times in the extracted

TABLE I
SYNTHESIS OF THE RELATIONSHIPS ESTABLISHED FOR THE RADAR

USE-CASE.

representation component challenge aspect
position and position • Device: simple screen

• Expertise: high
• An activity:
− Task: associate
− Data volume: medium
− An attribute:
∗ Structural prop.: quantitative
∗ Nature: referential

− An attribute:
∗ Structural prop.: quantitative
∗ Nature: referential

selection • Device: simple screen
• Expertise: high
• An activity:
− Task: create information
− Data volume: medium
− An attribute:
∗ Structural prop.: nominal
∗ Nature: characteristic

color and multiview • Device: simple screen
• Expertise: high
• An activity:
− Task: access information
− Data volume: medium
− An attribute:
∗ Structural prop.: nominal
∗ Nature: characteristic

position and position • Device: simple screen
• Expertise: high
• An activity:
− Task: identify value
− Data volume: medium
− An attribute:
∗ Structural prop.: quantitative
∗ Nature: characteristic

− An attribute:
∗ Structural prop.: quantitative
∗ Nature: referential

relationships, and while we cannot deny the implication of
the use of the position to represent time in the identification of
varying values, we can question the association task. To make
a decision about this type of uncertainty and more generally to
validate the extracted relationships, we analyze other existing
representations and compare the extracted propositions with
theoretical studies.

B. Comparison with theoretical studies

In order to consolidate the relationships extracted from the
analysis of an existing tool, we compare them with studies
about component properties. We exemplify our approach by
analyzing the properties of the position component.

  

pulse
width

time

pulse
repetition

period

time

frequency

time

Fig. 20. Illustration of the three 2D charts used in radar signal analysis



DRAFTFig. 21. Illustration of the extracted relationship concerning selection: it
summarizes one of the challenges that the selection solves.

Bertin identifies different visual variables and associates
them with one or more perceptive powers, laying the foun-
dation of graphic semiology [4]. This work states that the use
of a particular visual variable to represent a given datum en-
courages a specific perception. According to him, the encoding
of a value with the position strongly enables the identification
of its quantitative, ordinal and dissociative aspects, and also
permits the identification of its associative aspect. These are
respectively related to the tasks compare, sort, distinguish and
associate. Mackinlay continues Bertin’s work by highlighting
the fact that this perceptual power comes directly from the data
[19]. Instead of combining the perceptual power and visual
variables, he proposes associating the properties of the data
with visual variables. For instance, as ordering and comparison
tasks are based on the use of the ordinal and quantitative
properties respectively, it is useless to perform these tasks on
data that do not have the corresponding properties. Regarding
position, Mackinlay states that it allows us to reveal any
property of the data (quantitative, ordinal and nominal). These
propositions confirm the facts deduced from the previous
representation description that position permits us to process
an identification task on quantitative attributes.

Following the Gestalt theory [7], when elements are placed
close to each other they tend to be perceived as a group, and
contrarily when elements are placed without proximity they
tend to be perceived as separate shapes. This allows us to
validate the use of position for association tasks. However, this
does not give any precision about the data used, nor about the
context of use.

Regarding the nature of the data, only time and space rep-
resentations allow us to distinguish a represented element that
has different values, and the values of referential components
differ from one another, by definition. As such the position is
a first choice to represent referential attributes. Moreover, as
a matter or fact, position is usable in only three dimensions,

such that it allows only data with three referential components
to be displayed.

Regarding the amount of data and the device, Jankun-Kelly
et al. explain that there is a perceptive limitation in the use
of the position [15]. According to Ware, humans need at least
an angle of one arc per minute between two visual elements
on a screen to distinguish them [36]. At a viewing distance of
57 cm, this requires a density of 60 pixels per centimeter. As
such, the position can be used for medium volume of data on
small and normal screens and for high volume of data for large
screens. Regarding stereo acuity, and as such most immersive
devices, the angle is ten arcs per second but the distance to
the screen is biased by the lens. We were not able to find a
study that offers a precise specification.

To conclude, we have established that the position is indeed
an appropriate visual variable to process identification tasks
on quantitative attributes. It is also preferred for referential
attributes and make it possible to handle medium to high data
volume according to the device. Finally, the position makes
the association task possible.

C. Synthesis of the characterization of the relationships

We have detailed the different components of a representa-
tion and used them to describe an existing visualization tool.
We have described the context of this tool and identified the
relationships between the characterized context and the com-
ponents. Moreover, we have compared an extracted relation-
ship with theoretical studies to consolidate this relationship.

Components identification and the two examples have en-
abled us to present the approach we use to identify the rela-
tionships between challenges and representation components.

VI. CONCLUSION

The present study presents a procedure to create a repository
that identifies the relations between aspects of visualization
challenges and representation components. Its objective is
to support the resolution of new visual challenges and the
implementation of a visualization design recommendation
system. According to a synthesis of existing definitions of
the visualization process, we have identified the three main
parameters that characterize visualization challenges: the data
typology, the user’s task and the context of use. We have an-
alyzed in detail these parameters using a synthesis of existing
characterizations. Then we have presented our approach to
extract the relations by identifying the main components of a
representation, illustrated a relation extraction on a complex
use case and exemplified the reinforcement of the extraction
by detailing the identification of the properties of the position
component. In further work, we first aim to augment the
presented repository with inference rules in order to set the
basis of a recommendation system for visualization. Then,
we will test this system on several use-cases to produce
representations and evaluate them with end users, in order to
assess the whole approach.
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Krüger. Geolens: Multi-user interaction with rich geographic informa-
tion. Proc. DEXIS 2011, pages 16–19, 2012.

[36] Colin Ware. Information Visualization: Perception for Design. Elsevier,
2012.

[37] S. Wehrend and C. Lewis. A problem-oriented classification of vi-
sualization techniques. Proceedings of the First IEEE Conference on
Visualization: Visualization ‘90, pages 139 – 143, 469, 1990.

[38] Leland Wilkinson. The grammar of graphics, 1999.


