C. Wißing, Isotopic evidence for dietary ecology of late Neandertals in North-Western Europe, Quaternary International, vol.411, pp.327-345, 2016.

P. Pellerin, Structural characterization of red wine rhamnogalacturonan II, Carbohydr Res, vol.290, pp.183-197, 1996.

R. Apolinar-valiente, Polysaccharide Composition of Monastrell Red Wines from Four Different Spanish Terroirs: Effect of Wine-Making Techniques, Journal of Agricultural and Food Chemistry, vol.61, pp.2538-2547, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01837680

F. Cuskin, Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism, Nature, vol.517, pp.165-169, 2015.

J. Larsbrink, A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes, Nature, vol.506, pp.498-502, 2014.

A. Rogowski, Glycan complexity dictates microbial resource allocation in the large intestine, Nat Commun, vol.6, p.7481, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439017

N. M. Koropatkin, E. A. Cameron, and E. C. Martens, How glycan metabolism shapes the human gut microbiota, Nat Rev Microbiol, vol.10, pp.323-335, 2012.

E. C. Martens, Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts, PLoS Biol, vol.9, p.1001221, 2011.

M. F. Amaya, Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase, Structure, vol.12, pp.775-784, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-02554101

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

B. G. Davis, Tetrazoles of manno-and rhamno-pyranoses: Contrasting inhibition of mannosidases by 4.3.0 but of rhamnosidase by 3.3.0 bicyclic tetrazoles, Tetrahedron, vol.55, pp.4489-4500, 1999.

G. Speciale, A. J. Thompson, G. J. Davies, and S. J. Williams, Dissecting conformational contributions to glycosidase catalysis and inhibition, Curr Opin Struct Biol, vol.28, pp.1-13, 2014.

K. Fujita, Molecular cloning and characterization of a beta-L-Arabinobiosidase in Bifidobacterium longum that belongs to a novel glycoside hydrolase family, J Biol Chem, vol.286, pp.5143-5150, 2011.

M. W. Spellman, M. Mcneil, A. G. Darvill, P. Albersheim, and K. Henrick, Isolation and characterization of 3-C-carboxy-5-deoxy-l-xylose, a naturally occurring, branchedchain, acidic monosaccharide, Carbohydrate Research, vol.122, pp.115-129, 1983.

Y. Guerardel, The nematode Caenorhabditis elegans synthesizes unusual Olinked glycans: identification of glucose-substituted mucin-type O-glycans and short chondroitin-like oligosaccharides, Biochem J, vol.357, pp.167-182, 2001.

R. Russa, T. Urbanik-sypniewska, A. Choma, and H. Mayer, Identification of 3-deoxylyxo-2-heptulosaric acid in the core region of lipopolysaccharides from Rhizobiaceae, FEMS Microbiol Lett, vol.68, pp.337-343, 1991.

M. Nagae, Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum, J Biol Chem, vol.282, pp.18497-18509, 2007.

G. Sulzenbacher, Crystal structure of Thermotoga maritima alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis, J Biol Chem, vol.279, pp.13119-13128, 2004.

F. Buffetto, Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot), Ann Bot, vol.114, pp.1327-1337, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02638667

A. L. Chauvin, S. A. Nepogodiev, and R. A. Field, Synthesis of an apiose-containing disaccharide fragment of rhamnogalacturonan-II and some analogues, Carbohydr Res, vol.339, pp.21-27, 2004.

A. L. Chauvin, S. A. Nepogodiev, and R. A. Field, Synthesis of a 2,3,4-triglycosylated rhamnoside fragment of rhamnogalacturonan-II side chain A using a late stage oxidation approach, J Org Chem, vol.70, pp.960-966, 2005.

S. A. Nepogodiev, M. Fais, D. L. Hughes, and R. A. Field, Synthesis of apiosecontaining oligosaccharide fragments of the plant cell wall: fragments of