A. M. Hetherington and F. I. Woodward, The role of stomata in sensing and driving environmental change, Nature, vol.424, pp.901-908, 2003.

M. R. Roelfsema and R. Hedrich, the light of stomatal opening: New insights into 'the Watergate', vol.167, pp.665-691, 2005.

T. H. Kim, M. Böhmer, H. Hu, N. Nishimura, and J. I. Schroeder, Guard cell signal transduction network: Advances in understanding abscisic acid, CO 2 , and Ca 2+ signaling, Annu Rev Plant Biol, vol.61, pp.561-591, 2010.

S. Y. Park, Abscisic acid inhibits type 2C protein phosphatases via the PYR/ PYL family of START proteins, Science, vol.324, pp.1068-1071, 2009.

A. Joshi-saha, C. Valon, and J. Leung, A brand new START: Abscisic acid perception and transduction in the guard cell, Sci Signal, vol.4, p.4, 2011.

J. M. Kwak, NADPH oxidase AtrbohD and AtrbohF genes function in ROSdependent ABA signaling in Arabidopsis, EMBO J, vol.22, pp.2623-2633, 2003.

C. Sirichandra, Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase, FEBS Lett, vol.583, pp.2982-2986, 2009.

B. Brandt, Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action, Proc Natl Acad Sci, vol.109, pp.10593-10598, 2012.

D. Geiger, Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair, Proc Natl Acad Sci, vol.106, pp.21425-21430, 2009.

S. C. Lee, W. Lan, B. B. Buchanan, and S. Luan, A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells, Proc Natl Acad Sci, vol.106, pp.21419-21424, 2009.

A. Grondin, Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation, Plant Cell, vol.27, pp.1945-1954, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01353933

M. Melotto, W. Underwood, J. Koczan, K. Nomura, and S. Y. He, Plant stomata function in innate immunity against bacterial invasion, Cell, vol.126, pp.969-980, 2006.

R. Lozano-durán, G. Bourdais, S. Y. He, and S. Robatzek, The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity, New Phytol, vol.202, pp.259-269, 2014.

D. H. Mclachlan, M. Kopischke, and S. Robatzek, Gate control: Guard cell regulation by microbial stress, New Phytol, vol.203, pp.1049-1063, 2014.

D. Dou and J. M. Zhou, Phytopathogen effectors subverting host immunity: Different foes, similar battleground, Cell Host Microbe, vol.12, pp.484-495, 2012.

S. Mersmann, G. Bourdais, S. Rietz, and S. Robatzek, Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity, Plant Physiol, vol.154, pp.391-400, 2010.

A. R. Khokon, Involvement of extracellular oxidative burst in salicylic acidinduced stomatal closure in Arabidopsis, Plant Cell Environ, vol.34, pp.434-443, 2011.

Y. Kadota, Direct regulation of the NADPH oxidase RBOHD by the PRRassociated kinase BIK1 during plant immunity, Mol Cell, vol.54, pp.43-55, 2014.

J. L. Montillet and H. Hirt, New checkpoints in stomatal defense, Trends Plant Sci, vol.18, pp.295-297, 2013.

G. Deger and A. , Guard cell SLAC1-type anion channels mediate flagellininduced stomatal closure, New Phytol, vol.208, pp.162-173, 2015.

C. Maurel, Aquaporins in plants, Physiol Rev, vol.95, pp.1321-1358, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01282576

N. Uehlein, C. Lovisolo, F. Siefritz, and R. Kaldenhoff, The tobacco aquaporin NtAQP1 is a membrane CO 2 pore with physiological functions, Nature, vol.425, pp.734-737, 2003.

M. Dynowski, G. Schaaf, D. Loque, O. Moran, and U. Ludewig, Plant plasma membrane water channels conduct the signalling molecule H 2 O 2, Biochem J, vol.414, pp.53-61, 2008.

G. P. Bienert and F. Chaumont, Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide, Biochim Biophys Acta, vol.1840, pp.1596-1604, 2014.

C. Wang, Reconstitution of CO 2 regulation of SLAC1 anion channel and function of CO2-permeable PIP2;1 aquaporin as carbonic anhydrase 4 interactor, Plant Cell, vol.28, pp.568-582, 2016.

S. Tian, Plant aquaporin AtPIP1;4 links apoplastic H2O2 induction to disease immunity pathways, Plant Physiol, vol.171, pp.1635-1650, 2016.

V. V. Belousov, Genetically encoded fluorescent indicator for intracellular hydrogen peroxide, Nat Methods, vol.3, pp.281-286, 2006.

A. Costa, H 2 O 2 in plant peroxisomes: An in vivo analysis uncovers a Ca( 2+ )-dependent scavenging system, Plant J, vol.62, pp.760-772, 2010.

B. Schwessinger, Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1, PLoS Genet, vol.7, p.1002046, 2011.

G. P. Bienert, Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes, J Biol Chem, vol.282, pp.1183-1192, 2007.

E. W. Miller, B. C. Dickinson, and C. J. Chang, Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling, Proc Natl Acad Sci, vol.107, pp.15681-15686, 2010.

M. Hara-chikuma, Aquaporin-3-mediated hydrogen peroxide transport is required for NF-?B signalling in keratinocytes and development of psoriasis, Nat Commun, vol.6, p.7454, 2015.

J. R. Thiagarajah, J. Chang, J. A. Goettel, A. S. Verkman, and W. I. Lencer, Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia, Proc Natl Acad Sci, vol.114, pp.568-573, 2017.

F. Vieceli-dalla-sega, Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells, Biochim Biophys Acta, vol.1843, pp.806-814, 2014.

R. M. Cordeiro, Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins, Biochim Biophys Acta, vol.1850, pp.1786-1794, 2015.

K. Prado, Regulation of Arabidopsis leaf hydraulics involves lightdependent phosphorylation of aquaporins in veins, Plant Cell, vol.25, pp.1029-1039, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00921030

B. Péret, Auxin regulates aquaporin function to facilitate lateral root emergence, Nat Cell Biol, vol.14, pp.991-998, 2012.

C. Manzano, The emerging role of reactive oxygen species signaling during lateral root development, Plant Physiol, vol.165, pp.1105-1119, 2014.

J. Rhee, T. Horie, S. Sasano, Y. Nakahara, and M. Katsuhara, Identification of an H2 O2 permeable PIP aquaporin in barley and a serine residue promoting H2 O2 transport, Physiol Plant, vol.159, pp.120-128, 2017.

G. P. Bienert, R. B. Heinen, M. C. Berny, and F. Chaumont, Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide, Biochim Biophys Acta, vol.1838, pp.216-222, 2014.

Y. Shang, C. Dai, M. M. Lee, J. M. Kwak, and K. H. Nam, BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in Arabidopsis, Mol Plant, vol.9, pp.447-460, 2016.

Y. Song, Y. Miao, and C. P. Song, Behind the scenes: The roles of reactive oxygen species in guard cells, New Phytol, vol.201, pp.1121-1140, 2014.

M. Boudsocq, Differential innate immune signalling via Ca( 2+ ) sensor protein kinases, Nature, vol.464, pp.418-422, 2010.

U. Dubiella, Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation, Proc Natl Acad Sci, vol.110, pp.8744-8749, 2013.

Y. Miao, An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses, Plant Cell, vol.18, pp.2749-2766, 2006.

M. Meinhard, P. L. Rodriguez, and E. Grill, The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling, Planta, vol.214, pp.775-782, 2002.

A. Daszkowska-golec and I. Szarejko, Open or close the gate -stomata action under the control of phytohormones in drought stress conditions, Front Plant Sci, vol.4, p.138, 2013.

N. Leonhardt, Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant, Plant Cell, vol.16, pp.596-615, 2004.

S. Gilroy, A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling, Trends Plant Sci, vol.19, pp.623-630, 2014.

V. Nekrasov, Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity, EMBO J, vol.28, pp.3428-3438, 2009.

R. Yoshida, ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis, Plant Cell Physiol, vol.43, pp.1473-1483, 2002.

T. Ramahaleo, R. Morillon, J. Alexandre, and J. Lassalles, Osmotic water permeability of isolated protoplasts. Modifications during development, Plant Physiol, vol.119, pp.885-896, 1999.

, Supporting Information Rodrigues et al

, The pip2;1-1, pip2;1-2, pip2;1-PIP2;1, S121A, and S121D lines were series of PCR with the following primers: 5?-GACTCGAGATGGCAAAGGATGTGGCAGCCGTTC-3? and 5?-GAGATACCGGCGGTGCAGTAG-3? for Col-0, 5?-TGCAG-CAAAACCCACACTTTTACTTC-3? and 5?-GAGCGTCGGTC-CCCACATTCTATAC-3? for pip2;1-1, 5?-GCTTGTTGAACCGAC-ACTTTTAACATAAG-3? and 5?-GAGATACCGGCGGTGC-AGTAG-3? for pip2;1-2, 5?-GACTCGAGATGGCAAAGGATGT-GGCAGCCGTTC-3? and 5?-CCCTAGGTAAAGCCACTTTAC-GTGCC-3? for S121A, 5?-GACTCGAGATGGCAAAGGATGTG-GCAGCCGTTC-3? and 5?-CCCYAGGTAAATCCACTTTAC-GTGCC-3? for S121D. The presence of the HyPer transgene was also determined by PCR using 5?-CCCGAATCCAAAATG-GAGATGGCAAGCCAGGGC-3? and 5?-CCCGAATTCTTA-AACCGCCTGTTTTAAAAC-3? primers and its expression was characterized by imaging at 530 nm after excitation at 438 nm or 475 nm. For subsequent protoplast isolation, SI Materials and Methods Plant Materials and Growth Conditions