Addition of dairy lipids and probiotic Lactobacillus fermentum CECT 5716 in infant formula programs gut microbiota, epithelial permeability, immunity and GLP-1 secretion in adult minipigs

To cite this version:
Marion Lemaire, Gaëlle Boudry, Stéphanie Ferret-Bernard, Isabelle Nogret, Michele Formal, et al.. Addition of dairy lipids and probiotic Lactobacillus fermentum CECT 5716 in infant formula programs gut microbiota, epithelial permeability, immunity and GLP-1 secretion in adult minipigs. 50. Annual Meeting of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN), May 2017, Prague, Czech Republic. 64 (Suppl. 1), 2017, Journal of Pediatric Gastroenterology and Nutrition. <hal-01595024>

HAL Id: hal-01595024
https://hal.archives-ouvertes.fr/hal-01595024
Submitted on 26 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Addition of dairy lipids and probiotic Lactobacillus fermentum CECT 5716 in infant formula programs gut microbiota, epithelial permeability, immunity and GLP-1 secretion in adult minipigs

M. Lemaire1−2, S. Dou3, G. Boudry1, S. Ferret-Bernard1, I. Nogret1, M. Formal1, A. Cahu1, L. Le Normand1, G. Randuineau1, S. Guerin1, V. Romé1, M. Rhimi4, P. Le Rayet2, I. Cuinet2, C. Baudry2, P. Gérard1, S. Blat1, I. Le Huèrrou-Luron1

1 INRA, INSERM, Univ Rennes 1, Univ Bretagne Loire, Nutrition Metabolism and Cancer (NuMeCan), Rennes, France ; 2 Lactalis RAD, 35420 Retiers, France ; 3 INRA, UMR1348 PEGASE, Saint-Gilles, France ; *Micallis Institute, INRA, AgroParisTech, Univ Paris-Saclay, Jouy-en-Josas, France

marion.lemaire@inra.fr

Postnatal nutrition may have long-lasting metabolic and physiologic impacts in adulthood. Since gut microbiota has been identified as a key factor of this nutritional imprinting, its modulation through infant formula (IF) composition could represent a good strategy to improve the health of formula-fed infants. The addition of dairy lipids (DL) or of a probiotic strain (Lactobacillus fermentum CECT 5716 (Li)) have been associated with benefits in childhood, especially on gut microbiota composition. However, the interaction between DL and Li on the short- and long-term remains unknown. The objective of this study was therefore to investigate, in a Yucatan minipig model, the long-term effects of the addition of DL and Li in IF on adult gut microbiota and physiology.

Methods

- Analyses at PND28 and PND140:
 - Gut microbiota composition (16S rRNA sequencing)
 - Gut microbiota metabolism (1H NMR)

- Analyses at PND140:
 - Intestinal permeability (Using chambers)
 - Mucosal immunity (cytokine secretion of ileal explants challenged with LPS)
 - Endocrine function (density of GLP-1 secreting cells, meal test)
 - Metabolism (lipid profile, glucose tolerance (IVGTT))

- Statistics:
 - Phenotypic variables: ANOVA testing diet, gender and replication factors followed by post-hoc tests.
 - Microbiota composition: Edge R

Results

1. Gut microbiota composition and metabolism

In piglets (PND28)

- Birth
- Weaning
- Standard diet 1 month
- HE diet 3 months

In young adults (PND140)

- The IF composition modulated gut microbiota composition and metabolism on the short- and long-terms, implicating the same main phyla and families at both stages. The effects of DL alone or with Li were different, the addition of Li inducing a modulation of more families in the long-term.

2. Intestinal permeability (PND140)

- The addition of DL+Li increased intestinal trans- and paracellular permeabilities and prevented LPS passage in the upper gut of young adult minipigs.

3. In vitro secretion of LPS-stimulated ileal explants (PND140)

- The addition of DL (± Li) had a beneficial effect on the mucosal immunity of young adults as it decreases pro-inflammatory cytokine secretions.

4. Entero-insular axis (PND140)

- The addition of Li (+DL) had a beneficial effect on the endocrine function in young adulthood by enhancing GLP-1 basal and meal-stimulated secretory capacities.

5. Host metabolism (PND140)

- The metabolic adaptations to the HE diet were similar between groups.

Conclusion

This study highlights a long-term programming effect of the infant formula composition. This nutritional imprinting, mainly targeting gut microbiota and physiology (barrier, immune and endocrine functions), is different with the addition of dairy lipids alone or associated with the probiotic Li. Dairy lipids have mainly an impact on the immune function whereas the probiotic Li has mainly an impact on the barrier and endocrine functions. These long-term effects could be mediated by long-lasting changes in gut microbiota composition and metabolism.