Addition of dairy lipids and probiotic Lactobacillus fermentum CECT 5716 in infant formula programs gut microbiota, epithelial permeability, immunity and GLP-1 secretion in adult minipigs


To cite this version:
Marion Lemaire, Gaëlle Boudry, Stéphanie Ferret-Bernard, Isabelle Nogret, Michele Formal, et al.. Addition of dairy lipids and probiotic Lactobacillus fermentum CECT 5716 in infant formula programs gut microbiota, epithelial permeability, immunity and GLP-1 secretion in adult minipigs. 50. Annual Meeting of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN), May 2017, Prague, Czech Republic. 64 (Suppl. 1), 2017, Journal of Pediatric Gastroenterology and Nutrition. <hal-01595024>
Addition of dairy lipids and probiotic Lactobacillus fermentum CECT 5716 in infant formula programs gut microbiota, epithelial permeability, immunity and GLP-1 secretion in adult minipigs

M. Lemaire1-2, S. Dou3, G. Boudry1, S. Ferret-Bernard1, I. Nogret1, M. Formal1, A. Cahú3, L. Le Normand1, G. Randuineau1, S. Guérin1, V. Romé1, M. Rhiimi1, P. Le Ruyet2, I. Cuinet2, C. Baudry4, P. Gérard4, S. Blat1, I. Le Huérrou-Luron1

1 INRA, INSERM, Univ Rennes 1, Univ Bretagne Loire, Nutrition Metabolism and Cancer (NuMeCan), Rennes, France; 2 Lactalis RAD, 35240 Retiers, France; 3 INRA, UMR1348 PEGASE, Saint-Gilles, France; 4 Micalis Institute, INRA, AgroParisTech, Univ Paris-Saclay, Jouy-en-Josas, France

marion.lemaire@inra.fr

Introduction

Postnatal nutrition may have long-lasting metabolic and physiologic impacts in adulthood. Since gut microbiota has been identified as a key factor of this nutritional imprinting, its modulation through infant formula (IF) composition could represent a good strategy to improve the health of formula-fed infants. The addition of dairy lipids (DL) or of a probiotic strain (Lactobacillus fermentum CECT 5716 (Lf)) have been associated with benefits in childhood, especially on gut microbiota composition. However, the interaction between DL and Lf on the short- and long-term remains unknown. The objective of this study was therefore to investigate, in a Yucatan minipig model, the long-term effects of the addition of DL and Lf in IF on adult gut microbiota and physiology.

Context and objective

Results

Methods

Analyses at PND28 and PND140:
- Gut microbiota composition (16S RNA sequencing)
- Gut microbiota metabolism (1H NMR)

Analyses at PND140:
- Intestinal permeability (Using chambers)
- Mucosal immunity (cytokine secretion of ileal explants challenged with LPS)
- Endocrine function (density of GLP-1 secreting cells, meal test)
- Metabolism (lipid profile, glucose tolerance (IVGTT))

Statistics:
- Phenotypic variables: ANOVA testing diet, gender and replication factors followed by post-hoc tests. * : p < 0.05 and # : p <0.1
- Microbiota composition: Edge R

Final day before weaning
Birth
PND2
Weaning
PND28
Standard diet 1 month
HE diet 3 months
IVGTT
Birth
PND2
Weaning
PND28
Standard diet 1 month
HE diet 3 months

1. Gut microbiota composition and metabolism

In piglets (PND28)
- Rectal microbiota composition

In young adults (PND140)
- Rectal microbiota composition

2. Intestinal permeability (PND140)

Transcellular permeability
- Ileum

Paracellular permeability
- Ileum

LPS passage
- Jejunum

3. In vitro secretion of LPS-stimulated ileal explants (PND140)

4. Entero-insular axis (PND140)

The addition of DL (± Lf) had a beneficial effect on the endocrine function in young adulthood by enhancing GLP-1 basal and meal-stimulated secretory capacities.

5. Host metabolism (PND140)

Plasma lipid profile

HOMA-IR

Conclusion

This study highlights a long-term programming effect of the infant formula composition. This nutritional imprinting, mainly targeting gut microbiota and physiology (barrier, immune and endocrine functions), is different with the addition of dairy lipids alone or associated with the probiotic Lf. Dairy lipids have mainly impacted on the immune function whereas the probiotic Lf has mainly an impact on the barrier and endocrine functions. These long-term effects could be mediated by long-lasting changes in gut microbiota composition and metabolism.

This work was funded by Lactalis Group. The authors acknowledge all the technical staff (ULPS, N2B team) for their expert assistance and help. The authors wish to thank the Nutrition, Chemical Food Safety and ConsumerBehaviour research division of the INRA for financing the metabolomics study and the analytical platform for metabolomics and toxicology (C. Carlet, M. Tremblay-Franco, MetaSurTAXIDN, INRA, UMR1331 Toxalim, Toulose, France) for their help in interpreting these results.

Page dimensions: 2384.3x3370.8
[0x0]DL - DL+Lf
[0x0]*
[0x0]DL
[0x0]DL
[0x0]DL
[0x0]Analyses at PND140:
[0x0]Analyses at PND28 and PND140:
[0x0]DL
[0x0]PL - DL+Lf
[0x0]DL
[0x0]2
[0x0]DL
[26x35]DL
[28x276]Transcellular permeability
[29x84]Conductance
[29x115]LPS-F
[Image 29x3114 to 2316x3371]
[31x132]Density
[31x138]pmol/l
[34x276]Paracellular permeability
[Image 38x2908 to 2351x3092]
[40x32]0
[40x147]2
[40x205]60
[41x127]200
[42x190]400
[43x127]10
[44x190]20
[44x206]60
[45x253]80
[49x2647]microbiota
[49x2690]addition
[49x2778]Postnatal
[52x93]2
[54x290]to meal-stimulation
[55x690]Transcellular
[Image 56x2469 to 88x2500]
[58x2227]differenciating
OTUs
[58x975]OTUs
[62x138]200
[62x174]300
[62x210]400
[65x797]or with Lf were different, the addition of Lf inducing a modulation of more families in the long
differenciating in young adults.

The IF composition modulated gut microbiota composition and metabolism on the short- and long-term, implicating the same main phyla and families at both stages. The effects of DL alone or with Lf were different, the addition of Lf inducing a modulation of more families in the long-term.

The addition of DL+Lf increased intestinal trans- and paracellular permeabilities and prevented LPS passage in the upper gut of young adult minipigs.

The addition of DL±Lf induced a more permeable phenotype in the upper gut of young adult minipigs.

The IF composition modulated gut microbiota composition and metabolism on the short- and long-term, implicating the same main phyla and families at both stages. The effects of DL alone or with Lf were different, the addition of Lf inducing a modulation of more families in the long-term.

The addition of DL+Lf increased intestinal trans- and paracellular permeabilities and prevented LPS passage in the upper gut of young adult minipigs.