Nitrate supply to grapevine rootstocks – new genome-wide findings
Anna Medici, Benoît Lacombe, Sandrine Ruffel

To cite this version:
Anna Medici, Benoît Lacombe, Sandrine Ruffel. Nitrate supply to grapevine rootstocks – new genome-wide findings. Journal of Experimental Botany, Oxford University Press (OUP), 2017, 68 (15), pp.3999-4001. 10.1093/jxb/erx273. hal-01594960

HAL Id: hal-01594960
https://hal.archives-ouvertes.fr/hal-01594960
Submitted on 26 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Nitrate supply to grapevine rootstocks – new genome-wide findings

Anna Medici,* Benoit Lacombe and Sandrine Ruffel

Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes ‘Claude Grignon’, Place Pierre Viala, 34060 Montpellier, France

Correspondence: anna.medici@supagro.fr

Understanding the plant response to nitrate availability is crucial for sustainable agriculture. In viticulture, there is an additional element to consider: the choice of scion–rootstock couple, which allows the management of environmental cues (including nitrate availability) and productivity. Using the two rootstocks 1103 Paulsen and Riparia Gloire de Montpellier, known to confer different vigour to grafted Cabernet Sauvignon scions, Cochetel et al. (2017) have now performed the first genome-wide transcriptome study indicating the genetic basis of the response to heterogeneous nitrate supply in this situation.

Some of the first written evidence of the use of grafting for grapevine (Vitis vinifera) cultivation is an ancient Sumeric text, interpreted by historians as referring to a technique for coping with an environmental stress (Mudge et al., 2009). From its ancient discovery through development in the 19th century, today grafting is applied to more than 70 woody perennial crop species cultivated for their fruits. Different rootstocks can differently modulate the growth of a given grapevine scion. For example, a Cabernet Sauvignon (CS) scion grafted onto a Riparia Gloire de Montpellier (CS/RGM) rootstock is less vigorous than the same CS scion grafted onto a 1103 Paulsen (1103P) rootstock (Lecourt et al., 2015). The Cochetel et al. paper is the first report on the transcriptional reprogramming which occurs in these rootstocks (RGM and 1103P) when subjected to a nitrate-varying environment. The experimental set-up allowed the identification of modules of genes that were: (i) specifically linked to a rootstock genotype, (ii) common to the grapevine root response to nitrate and (iii) specific to the nitrate response of one variety of rootstock. The large amount of information obtained in this work on rootstock-specific gene modules will be a valuable source of molecular markers for selecting top-performing rootstock–scion combinations.

Hubs for nitrate-responsiveness of rootstocks

Studying gene regulatory networks allows the identification of hubs, which are potentially key regulators of a specific condition (genotype and/or treatment). This approach was used to identify key factors that regulate nitrogen-responsive networks in Arabidopsis (Gutiérrez et al., 2008; Canales et al., 2014). Even though phylogenetically distant, Cochetel et al. have now demonstrated that grapevine and Arabidopsis share a common set of genes regulated by nitrate availability. For example, they show that VvNRT2.4a, a member of the high-affinity nitrate transporter family, is modulated by N supply in the two rootstocks.
Thinking and focusing on a single response or pathway is understanding the complex response to nutrient availability. High-throughput methodologies are powerful tools for exploring this area. It is now clear that the root system used by Cochetel et al. is an extremely useful tool for exploring this area. It is now clear that the root system response involves some molecular actors expressed in the foliar part of the plant (Ruffel et al., 2011, 2016; Ohkubo et al., 2017). The scion–rootstock combination effect arises from a bi-directional interaction, in which signals coming from the roots affect the scion physiology and vice versa. Adding the nitrate-heterogeneous compartments of the split root, we obtain a tri-partite system (the scion and the two parts of the split-root system). In a heterogeneous soil, a nutrient signal coming from one side of the root system should reach the distant parts of the root passing through the scion. Following this idea, it would be remarkable if the different responses to nitrate supply observed in CS/1103P and CS/RGM grafting combinations were due to a scion element that differentially interacts with the two rootstocks. Cochetel et al. point out the strong responsiveness of N-related genes (e.g. NRT2.4a, NPF6.3) under high nitrate treatment in RGM compared to 1103P. It is an open question as to whether this high N-responsiveness is explained by the fact that CS also integrates (in an additive way) the low nitrate information coming from the other side of the RGM roots, but not from the 1103P roots. However, completion of the transcriptomic data with CS/RGM and CS/1103P under split homogeneous conditions (high and low nitrate) will provide the answer.

An N-responsive, tri-partite system

Ruffel et al. (2011) identified sets of genes responding to the local or systemic response to nitrate availability, and the split-root system used by Cochetel et al. is an extremely useful tool for exploring this area. It is now clear that the root system response involves some molecular actors expressed in the foliar part of the plant (Ruffel et al., 2011, 2016; Ohkubo et al., 2017). The scion–rootstock combination effect arises from a bi-directional interaction, in which signals coming from the roots affect the scion physiology and vice versa. Adding the nitrate-heterogeneous compartments of the split root, we obtain a tri-partite system (the scion and the two parts of the split-root system). In a heterogeneous soil, a nutrient signal coming from one side of the root system should reach the distant parts of the root passing through the scion. Following this idea, it would be remarkable if the different responses to nitrate supply observed in CS/1103P and CS/RGM grafting combinations were due to a scion element that differentially interacts with the two rootstocks. Cochetel et al. point out the strong responsiveness of N-related genes (e.g. NRT2.4a, NPF6.3) under high nitrate treatment in RGM compared to 1103P. It is an open question as to whether this high N-responsiveness is explained by the fact that CS also integrates (in an additive way) the low nitrate information coming from the other side of the RGM roots, but not from the 1103P roots. However, completion of the transcriptomic data with CS/RGM and CS/1103P under split homogeneous conditions (high and low nitrate) will provide the answer.

New directions: not just nitrate

High-throughput methodologies are powerful tools for understanding the complex response to nutrient availability. Thinking and focusing on a single response or pathway is too restrictive – the system is more complex and able to integrate different environmental signals from the roots, which often share points of cross-talk (Kellermeier et al., 2014; Briat et al., 2015). Interestingly, the GARP transcription factor function is among the gene categories enriched for 1103P and RGM rootstocks under heterogeneous N supply. Recently it was demonstrated that GARP transcription factors are at the convergence between nitrate and phosphate signals in Arabidopsis (Medici et al., 2015; Nagarajan et al., 2016). In addition, the authors found that strigolactone biosynthesis genes were among the most tightly regulated in low nitrate conditions, in a rootstock-dependent manner. Strigolactones are important hormonal regulators of the phosphate starvation response (Sun et al., 2014; Kumar et al., 2015). Since N and P are fundamental macronutrients for plant biomass determination, the findings of Cochetel et al. suggest that a fine tuning of the three steps of acquisition, assimilation and allocation of N and P mineral forms takes place in grapevine rootstocks and is linked to the control of the scion growth. The close relationship between N and P levels in grafted grapevines was already studied in a root ionome analysis on the same varieties, which showed that N and P are finely modulated and influenced by the rootstock (Lecourt et al., 2015). Two particular unanswered questions remain. First, which molecular elements are responsible for the communication between rootstock and scion? And second, how is the N/P balance maintained even in a two-species assembly? Different mobile molecules such as hormones, miRNAs, proteins or small peptides are already targets of investigation as mobile elements connecting leaves and roots in non-grafted plants. These might also be good targets for understanding scion–rootstock communication. More specifically, SSPs (Small Secretory Peptides) and in particular CLE and CEP peptides, which are known to be regulated by multiple nutrient deficiencies and involved in the autoregulation of mycorrhization in different species (de Bang et al., 2017), are emerging as important long-distance signalling molecules and will certainly receive increasing attention in this research area.

Key words: Grafting, grapevine, nitrate, RNA-seq, rootstocks, scion–rootstock couple, transcriptome, viticulture.

References

