Experimental characterization of hydrogel swelling under plant cell wall environment
Carole Antoine Assor, Tancrède Alméras, Françoise Quignard, Olivier Arnould

To cite this version:
Carole Antoine Assor, Tancrède Alméras, Françoise Quignard, Olivier Arnould. Experimental characterization of hydrogel swelling under plant cell wall environment. Plant Biomechanics International Conference PBM8, Nov 2015, Nagoya, Japan. 2015. hal-01594669

HAL Id: hal-01594669
https://hal.archives-ouvertes.fr/hal-01594669
Submitted on 26 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License
The confined swelling stress could more correspond to an osmotic pressure. Additional tests will be established with different alginates structures to characterize the origin of the stress developed.

The 0.2% deformation of crystalline cellulose estimated within the G-layer require a lateral compressive stress from the matrix close to 1 MPa, that could not be reached by the osmotic pressure. From these experimental results, it appears that the confined chamber is too stiff as the matrix needs to be less confined to produce a sufficient swelling stress.

Nano hydrogels could allow to raise a polymer ratio around 20% that would be a more realistic G-layer analog and would allow to study cellulose/matrice interactions.

In parallel, free swelling of hydrogels in water is characterized:
- linear correlation between volume and mass variations of samples

swelling = \((\Delta m/m_0) \times 100\)

Effect of alginate content on hygromechanical properties:

<table>
<thead>
<tr>
<th>Alginate (% dw)</th>
<th>(\varepsilon_{\text{max}}) (%)</th>
<th>(\sigma_{\text{max}}) (kPa)</th>
<th>(G') (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129</td>
<td>0.71</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>103</td>
<td>1.60</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>1.75</td>
<td>86</td>
</tr>
</tbody>
</table>

Conclusions and perspectives
- The confined swelling stress could more correspond to an osmotic pressure. Additional tests will be established with different alginates structures to characterize the origin of the stress developed.
- The 0.2% deformation of crystalline cellulose estimated within the G-layer require a lateral compressive stress from the matrix closed to 1 MPa, that could not be reached by the osmotic pressure. From these experimental results, it appears that the confined chamber is too stiff as the matrix needs to be less confined to produce a sufficient swelling stress.
- Nano hydrogels could allow to raise a polymer ratio around 20% that would be a more realistic G-layer analog and would allow to study cellulose/matrice interactions.

References:
- C. Assor, T. Alméras, F. Quignard, O. Arnould.
- 8th Plant Biomechanics International Conference, Japan-2015.