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ON GEOMETRIC ASPECTS OF DIFFUSE GROUPS

STEFFEN KIONKE, JEAN RAIMBAULT
WITH AN APPENDIX BY NATHAN DUNFIELD

Abstract. Bowditch introduced the notion of diffuse groups as a geometric

variation of the unique product property. We elaborate on various examples
and non-examples, keeping the geometric point of view from Bowditch’s paper.

In particular, we discuss fundamental groups of flat and hyperbolic manifolds.

Appendix B settles an open question by providing an example of a group which
is diffuse but not left-orderable.

Contents

1. Introduction 1
2. Diffuse groups 4
3. Fundamental groups of infra-solvmanifolds 7
4. Fundamental groups of hyperbolic manifolds 15
5. Fundamental groups of three–manifolds 25
Appendix A. Computational aspects 29
Appendix B. A diffuse group which is not left-orderable

by Nathan M. Dunfield 31
References 35

1. Introduction

Following B. Bowditch [10], we say that a group Γ is diffuse if every finite non-
empty subset A ⊂ Γ has an extremal point, that is, an element a ∈ A such that for
any g ∈ Γ \ {1} either ga or g−1a is not in A (see also 2.1 below). A non-empty
finite set without extremal points will be called a ravel1; thus a group is diffuse if
and only if it does not contain a ravel. Every non-trivial finite subgroup of Γ is a
ravel, hence a diffuse group is torsion-free. In this work, we use geometric methods
to discuss various examples of diffuse and non-diffuse groups.

The interest in diffuse groups stems from Bowditch’s observation that they have
the unique product property (see Section 2.2 below). Originally, unique products
were introduced in the study of group rings of discrete, torsion-free groups. More
precisely, it is easily seen that if a group Γ has unique products, then it satisfies
Kaplansky’s unit conjecture. In simple terms, this means that the units in the
group ring C[Γ] are all trivial, i.e. of the form λg with λ ∈ C× and g ∈ Γ. A similar
question can be asked replacing C by some integral domain. A weaker conjecture
(Kaplansky’s zero divisor conjecture) asserts that C[Γ] contains no zero divisor, and
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1We think of this as an entangled ball of string.
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2 S. KIONKE, J. RAIMBAULT

a still weaker asserts one that it contains no idempotents other than 1Γ. There are
other approaches to the zero divisor and idempotent conjecture (see for example
[5], [47, Chapter 10]) which have succeeded in proving it for large classes of groups,
whereas the unit conjecture has (to the best of our knowledge) only been tackled
by establishing the possibly stronger unique product property. Consequently it is
still unknown if the unit conjecture holds, for example, for all torsion-free groups
in the class of crystallographic groups (see [23] for more on the subject), while the
zero-divisor conjecture is known to hold (among other) for all torsion-free groups
in the finite-by-solvable class, as proven by P. Kropholler, P. Linnell and J. Moody
in [45].

There are further applications of the unique product property. For instance, if
Γ has unique products, then it satisfies a conjecture of Y. O. Hamidoune on the
size of isoperimetric atoms (cf. Conjecture 10 in [7]). Let us also mention that it
is known that torsion-free groups without unique products exist, see for instance
[57],[54],[61],[3],[19]. We note that for the examples in [57] (and their generalization
in [61]) it is not known if the zero-divisor conjecture holds.

Using Lazard’s theory of analytic pro-p groups, one can show that every arith-
metic group Γ has a finite index subgroup Γ′ such that the group ring Z[Γ′] satisfies
the zero divisor conjecture. This work originated from the idea to study Kaplan-
sky’s unit conjecture virtually. In this spirit we establish virtual diffuseness for
various classes of groups and, moreover, we discuss examples of diffuse and non-
diffuse groups in order to clarify the border between the two. Our results are based
on geometric considerations.

1.1. Results.

1.1.1. Crystallographic groups. The torsion-free crystallographic groups, also called
Bieberbach groups, are virtually diffuse since free abelian groups are diffuse. How-
ever, already in dimension three there is a Bieberbach group ∆P which is not diffuse
[10]. In fact, Promislow even showed that the group ∆P does not satisfy the unique
product property [54]. On the other hand, the nine other 3-dimensional Bieberbach
groups are diffuse. So is there an easy way to decide whether a given Bieberbach
group is diffuse or not? In Section 3 we discuss this question and show that in
many cases it suffices to know the holonomy group.

Theorem A. Let Γ be a Bieberbach group with holonomy group G.

(i) If G is not solvable, then Γ is not diffuse.
(ii) If G has only cyclic Sylow subgroups, then Γ is diffuse.

Note that a finite group G with cyclic Sylow subgroups is meta-cyclic, thus
solvable. We further show that in the remaining case, where G is solvable and has
a non-cyclic Sylow subgroup, the group G is indeed the holonomy of both a diffuse
and a non-diffuse Bieberbach group. Moreover, we give a complete list of the 16
non-diffuse Bieberbach groups in dimension four. Our approach is based on the
equivalence of diffuseness and local indicability for amenable groups as obtained by
Linnell and Witte Morris [46]. We include a new geometric proof of their result for
the special case of virtually abelian groups.

1.1.2. Discrete subgroups of rank-one Lie groups. The class of hyperbolic groups
is one of the main sources of examples of diffuse groups in [10]: it is an immedi-
ate consequence of Corollary 5.2 loc. cit. that any residually finite word-hyperbolic
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group contains with finite index a diffuse subgroup (the same statement for unique
products was proven earlier by T. Delzant [24]). In particular, cocompact dis-
crete subgroups of rank one Lie groups are virtually diffuse (for example, given an
arithmetic lattice Γ in such a Lie group, any normal congruence subgroup of Γ of
sufficiently high level is diffuse). On the other hand, not much is known in this
respect about relatively hyperbolic groups, and it is natural to ask whether a group
which is hyperbolic relative to diffuse subgroups must itself be virtually diffuse. In
this paper we answer this question in the affirmative in the case of non-uniform
lattices in rank one Lie groups.

Theorem B. If Γ is a lattice in one of the Lie groups SO(n, 1),SU(n, 1) or Sp(n, 1)
then there is a finite-index subgroup Γ′ ≤ Γ such that Γ′ is diffuse.

In the case of an arithmetic lattice, the proof actually shows that normal con-
gruence subgroups of sufficiently large level are diffuse. We left open the case of
non-uniform lattices in the exceptional rank one group F−20

4 , but it is almost certain
that our proof adapts also to this case. Theorem B is obtained as a corollary of a
result on a more general class of geometrically finite groups of isometries. Another
consequence is the following theorem.

Theorem C. Let Γ be any discrete, finitely generated subgroup of SL2(C). There
exists a finite-index subgroup Γ′ ≤ Γ such that Γ′ is diffuse.

The proofs of these theorems use the same approach as Bowditch’s, that is a
metric criterion (Lemma 2.1 below) for the action on the relevant hyperbolic space.
The main new point we have to establish concerns the behaviour of unipotent
isometries: the result we need (Proposition 4.2 below) is fairly easy to observe for
real hyperbolic spaces; for complex ones it follows from a theorem of M. Phillips
[53], and we show that the argument used there can be generalized in a straight-
forward way to quaternionic hyperbolic spaces. We also study axial isometries of
real hyperbolic spaces in some detail, and give an optimal criterion (Proposition
4.5) which may be of use in determining whether a given hyperbolic manifold has
a diffuse fundamental group.

1.1.3. Three–manifold groups. Following the solution of both Thurston’s Geometriza-
tion conjecture (by G. Perelman [51, 52]) and the Virtually Haken conjecture (by
I. Agol [2] building on work of D. Wise) it is known by previous work of J. Howie
[40], and S. Boyer, D. Rolfsen and B. Wiest [12] that the fundamental group of
any compact three–manifold contains a left-orderable finite-index subgroup. Since
left-orderable groups are diffuse (see Section 2.2 below) this implies the following.

Theorem D. Let M be a compact three–manifold, then there is a finite-index
subgroup of π1(M) which is diffuse.

Actually, one does not need Agol’s work to prove this weaker result: the case of
irreducible manifolds with non-trivial JSJ-decomposition is dealt with in [12, Theo-
rem 1.1(2)], and non-hyperbolic geometric manifolds are easily seen to be virtually
orderable. Finally, closed hyperbolic manifolds can be handled by Bowditch’s result
(see (iv) in Section 2.1 below).

We give a more direct proof of Theorem D in Section 5; the tools we use (mainly
a ‘virtual’ gluing lemma) may be of independent interest. The relation between
diffuseness (or unique products) and left-orderability is not very clear at present;
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in Appendix B Nathan Dunfield gives an example of a compact hyperbolic three-
manifold whose fundamental group is not left-orderable, but nonetheless diffuse.

Acknowledgements. We are pleased to thank to George Bergman, Andres Navas
and Markus Steenbock for valuable comments on a first version of this paper. The
second author would especially like to thank Pierre Will for directing him to the
article [53]. We thank the anonymous referee for comments improving the exposi-
tion.

Both authors are grateful to the Max-Planck-Institut für Mathematik in Bonn,
where this work was initially developed, and which supported them financially
during this phase.

2. Diffuse groups

We briefly review various notions and works related to diffuseness and present
some questions and related examples of groups.

2.1. A quick survey of Bowditch’s paper. We give here a short recapitulation
of some of the content in Bowditch’s paper [10]. The general notion of a diffuse
action of a group is introduced there and defined as follows: let Γ be a group acting
on a set X. Given a finite subset A ⊂ X, an element a ∈ A is said to be an extremal
point in A, if for all g ∈ Γ which do not stabilize a then either ga or g−1a is not
in A. The action of Γ on X is said to be diffuse if every finite subset A of X with
|A| ≥ 2 has at least two extremal points. An action in which each finite subset
has at least one extremal point is called weakly diffuse by Bowditch; we will not
use this notion in the sequel. It was observed by Linnell and Witte-Morris [46,
Prop.6.2.] that a free action is diffuse if and only if it is weakly diffuse. Thus a
group is diffuse (in the sense given in the introduction) if and only if its action on
itself by left-translations is diffuse. More generally, Bowditch proves that if a group
admits a diffuse action whose stabilizers are diffuse groups, then the group itself is
diffuse. In particular, an extension of diffuse groups is diffuse as well.

The above can be used to deduce the diffuseness of many groups. For example,
strongly polycyclic groups are diffuse since they are, by definition, obtained from
the trivial group by taking successive extensions by Z. Bowditch’s paper provides
many more examples of diffuse groups:

(i) The fundamental group of a compact surface of nonpositive Euler character-
istic is diffuse;

(ii) More generally, any free isometric action of a group on an R-tree is diffuse;
(iii) A free product of two diffuse groups is itself diffuse;

(iv) A closed hyperbolic manifold with injectivity radius larger than log(1 +
√

2)
has a diffuse fundamental group.

We conclude this section with the following simple useful lemma, which appears
as Lemma 5.1 in [10].

Lemma 2.1. If Γ acts on a metric space (X, dX) satisfying the condition

(∗) ∀x, y ∈ X, g ∈ Γ : gx 6= x =⇒ max(dX(gx, y), dX(g−1x, y)) > d(x, y)

then the action is diffuse.
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Proof. Let A ⊂ X be compact with at least two elements. Take a, b in A with
d(a, b) = diam(A), then these are extremal in A. It suffices to check this for a.
Given g ∈ Γ not stabilizing a, then ga or g−1a is farther away from b, hence not
in A. �

Note that this argument does not require nor that the action be isometric, neither
that the function dX on X ×X be a distance. However this geometric statement
is sufficient for all our concerns in this paper.

2.2. Related properties. Various properties of groups have been defined, which
are closely related to diffuseness. We remind the reader of some of these properties
and their mutual relations.

Let Γ be a group. We say that Γ is locally indicable, if every finitely generated
non-trivial subgroup admits a non-trivial homomorphism into the group Z. In
other words, every finitely generated subgroup of Γ has a positive first rational
Betti number.

Let ≺ be a total order on Γ. The order is called left invariant, if

x ≺ y =⇒ gx ≺ gy
for all x, y and g in Γ. We say that the order ≺ on Γ is locally invariant if for all
x, g ∈ Γ with g 6= 1 either gx ≺ x or g−1x ≺ x. Not all torsion-free groups admit
orders with one of these properties. We say that Γ is left-orderable (resp. LIO) if
there exists a left-invariant (resp. locally invariant) order on Γ. It is easily seen that
an LIO group is diffuse. In fact, it was pointed out by Linnell and Witte Morris
[46] that a group is LIO if and only if it is diffuse. One can see this as follows: If Γ
is diffuse then every finite subset admits a locally invariant order (in an appropriate
sense), and this yields a locally invariant order on Γ by a compactness argument.

The group Γ is said to have the unique product property (or to have unique
products) if for every two finite non-empty subsets A,B ⊂ Γ there is an element
in the product x ∈ A · B which can be written uniquely in the form x = ab with
a ∈ A and b ∈ B.

The following implications are well-known (for a complete account see [25]):

locally indicable
(1)

=⇒ left-orderable
(2)

=⇒ diffuse
(3)

=⇒ unique products

An example of Bergman [6] shows that (1) is in general not an equivalence, i.e. there
are left-orderable groups which are not locally indicable (further examples are given
by some of the hyperbolic three–manifolds studied in [16, Section 10] which have a
left-orderable fundamental group with finite abelianization).

An explicit example showing that (2) is not an equivalence either is explained in
the appendix written by Nathan Dunfield (see Theorem B.1). However, the reverse
implication to (3), that is the relation between unique products and diffuseness,
remains completely mysterious to us. We have no idea what the answer to the
following question should be (even by restricting to groups in a smaller class, for
example crystallographic, amenable, linear or hyperbolic groups).

Question 1. Does there exist a group which is not diffuse but has unique products?

It seems extremely hard to verify, for a given group, the unique product property
without using any of the other three properties.

2.3. Some particular hyperbolic three–manifolds.
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2.3.1. A diffuse, non-orderable group. In Appendix B Nathan Dunfield describes
explicitly an example of an arithmetic Kleinian group which is diffuse but not left-
orderable – this yields the following result (Theorem B.1).

Theorem 2.2 (Dunfield). There exists a finitely presented (hyperbolic) group which
is diffuse but not left-orderable.

With Linnell and Witte-Morris’ result this shows that there is a difference in
these matters between amenable and hyperbolic groups. To verify that the group
is diffuse one can use Bowditch’s result or our Proposition 4.5.

Let us make a few comments on the origins of this example. The possibility to
find such a group among this class of examples was proposed, unbeknownst to the
authors, by A. Navas—see [25, 1.4.3]. Nathan Dunfield had previously computed a
vast list of examples of closed hyperbolic three–manifolds whose fundamental group
is not left-orderable (for some examples see [16]), using an algorithm described in
the second paper. The example in Appendix B was not in this list, but was obtained
by searching through the towers of finite covers of hyperbolic 3-manifolds studied
in [18, §6].

2.3.2. A non-diffuse lattice in PSL2(C). We also found an example of a compact
hyperbolic 3-manifold with a non-diffuse fundamental group; in fact it is the hy-
perbolic three–manifold of smallest volume.

Theorem 2.3. The fundamental group of the Weeks manifold is not diffuse.

We verified this result by explicitly computing a ravel in the fundamental group
of the Weeks manifold. We describe the algorithm and its implementations in
Section A.1. In fact, given a group Γ and a finite subset A one can decide whether
A contains a ravel by the following procedure: choose a random point a ∈ A; if
it is extremal (which we check using a sub-algorithm based on the solution to the
word problem in Γ) we iterate the algorithm on A\{a}, otherwise we continue with
another one. Once all the points of A have been tested, what remains is either
empty or a ravel in Γ.

2.3.3. Arithmetic Kleinian groups. In a follow-up to this paper we will investigate
the diffuseness properties of arithmetic Kleinian groups, in the hope of finding more
examples of the above phenomena. Let us mention two results that will be proven
there:

(i) Let p > 2 be a prime. There is a constant Cp such that if Γ is a torsion-free
arithmetic group with invariant trace field F of degree p and discriminant
DF > Cp, then Γ is diffuse.

(ii) If Γ is a torsion-free Kleinian group derived from a quaternion algebra over
an imaginary quadratic field F such that

DF 6= −3,−4,−7,−8,−11,−15,−20,−24

then Γ is diffuse.

2.4. Groups which are not virtually diffuse. All groups considered in this
article are residually finite and turn out to be virtually diffuse. Due to a lack of
examples, we are curious about an answer to the following question.

Question 2. Is there a finitely generated (resp. finitely presented) group which is
torsion-free, residually finite and not virtually diffuse?
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The answer is positive without the finiteness hypotheses: given any non-diffuse,
torsion-free, residually finite group Γ, then an infinite restricted direct product of
factors isomorphic to Γ is residually finite and not virtually diffuse.

Furthermore, if we do not require the group to be residually finite, then one
may take a restricted wreath product Γ oU with some infinite group U . The group
Γ o U is not virtually diffuse and it is finitely generated if Γ and U are finitely
generated (not finitely presented, however). Moreover, by a theorem of Gruenberg
[32] such a wreath product (Γ non-abelian, U infinite) is not residually finite. Other
examples of groups which are not virtually diffuse are the amenable simple groups
constructed by K. Juschenko and N. Monod in [42]; these groups cannot be locally
indicable, however they are neither residually finite nor finitely presented.

In the case of hyperbolic groups, this question is related to the residual properties
of these groups – namely it is still not known if all hyperbolic groups are residually
finite. A hyperbolic group which is not virtually diffuse would thus be, in light of
the results of Delzant–Bowditch, not residually finite. It is unclear to the authors
if this approach is feasible; for results in this direction see [31].

Finally, let us note that it would also be interesting to study the more restrictive
class of linear groups instead of residually finite ones.

3. Fundamental groups of infra-solvmanifolds

3.1. Introduction.

3.1.1. Infra-solvmanifolds. In this section we discuss diffuse and non-diffuse fun-
damental groups of infra-solvmanifolds. The focus lies on crystallographic groups,
however we shall begin the discussion in a more general setting. Let G be a con-
nected, simply connected, solvable Lie group and let Aut(G) denote the group of
continuous automorphisms of G. The affine group of G is the semidirect product
Aff(G) = G o Aut(G). A lattice Γ ⊂ G is a discrete cocompact subgroup of G.
An infra-solvmanifold (of type G) is a quotient manifold G/Λ where Λ ⊆ Aff(G)
is a torsion-free subgroup of the affine group such that Λ ∩ G has finite index in
Λ and is a lattice in G. If Λ is not diffuse, we say that G/Λ is a non-diffuse
infra-solvmanifold.

The compact infra-solvmanifolds which come from a nilpotent Lie group G are
characterised by the property that they are almost flat: that is, they admit Rie-
mannian metrics with bounded diameter and arbitrarily small sectional curvatures
(this is a theorem of M. Gromov, see [30], [15]). Those that come from abelian G
are exactly those that are flat, i.e. they admit a Riemannian metric with vanishing
sectional curvatures. We will study the latter in detail further in this section. We
are not aware of any geometric characterization of general infra-solvmanifolds.

3.1.2. Diffuse virtually polycyclic groups are strongly polycyclic. Recall that a group
Γ is (strongly) polycyclic if it admits a subnormal series with (infinite) cyclic factors.
By a result of Mostow lattices in connected solvable Lie groups are polycyclic (cf.
Prop. 3.7 in [55]). Consequently, the fundamental group of an infra-solvmanifold is
a virtually polycyclic group.

As virtually polycyclic groups are amenable, we can use the following striking
result of Linnell and Witte Morris [46].

Theorem 3.1 (Linnell, Witte Morris). An amenable group is diffuse if and only
if it is locally indicable.
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We shall give a geometric proof of this theorem for the special case of virtually
abelian groups in the next section. Here we confine ourselves to pointing out the
following algebraic consequence.

Proposition 3.2. A virtually polycyclic group Γ is diffuse if and only if Γ is
strongly polycyclic. Consequently, the fundamental group of an infra-solvmanifold
is diffuse exactly if it is strongly polycyclic.

Proof. Clearly, a strongly polycyclic group is a virtually polycyclic group, in addi-
tion it is diffuse by Theorem 1.2 in [10].

Assume that Γ is diffuse and virtually polycyclic. We show that Γ is strongly
polycyclic by induction on the Hirsch length h(Γ). If h(Γ) = 0, then Γ is a finite
group and as such it can only be diffuse if it is trivial.

Suppose h(Γ) = n > 0 and suppose that the claim holds for all groups of Hirsch
length at most n− 1. By Theorem 3.1 the group Γ is locally indicable and (since Γ
is finitely generated) we can find a surjective homomorphism φ : Γ → Z. Observe
that h(Γ) = h(ker(φ)) + 1. The kernel ker(φ) is diffuse and virtually polycyclic,
and we deduce from the induction hypothesis, that ker(φ) (and so Γ) is strongly
polycyclic. �

In the next three sections we focus on crystallographic groups. After the discus-
sion of a geometric proof of Theorem 3.1 in the crystallographic setting (3.2), we
will analyse the influence of the structure of the holonomy group for the existence of
ravels (3.3). We also give a list of all non-diffuse crystallographic groups in dimen-
sion up to four (3.4). Finally, we discuss a family of non-diffuse infra-solvmanifolds
in 3.5 which are not flat manifolds.

3.2. Geometric construction of ravels in virtually abelian groups. The
equivalence of local indicability and diffuseness for amenable groups which was
established by Linnell and Witte Morris [46] is a powerful result. Accordingly a
virtually polycyclic group with vanishing first rational Betti number contains a
ravel. However, their proof does not explain a construction of ravels based on the
vanishing Betti number. They stress that this does not seem to be obvious even
for virtually abelian groups. The purpose of this section is to give a geometric and
elementary proof of this theorem, for the special case of virtually abelian groups,
which is based on an explicit construction of ravels.

Theorem 3.3. A virtually abelian group is diffuse exactly if it is locally indicable.

As discussed in Section 2.2 local indicability implies diffuseness. It suffices to
prove the converse. Let Γ0 be a virtually abelian group and assume that it is not
locally indicable. We can find a finitely generated subgroup Γ ⊂ Γ0 with vanishing
first rational Betti number. If Γ contains torsion, it is not diffuse. Thus we assume
that Γ is torsion-free. Since a finitely generated torsion-free virtually abelian group
is crystallographic, the theorem follows from the next lemma.

Lemma 3.4. Let Γ be a crystallographic group acting on a euclidean space E. If
b1(Γ) = 0, then for all e ∈ E and all sufficiently large r > 0 the set

B(r, e) = { γ ∈ Γ | ‖γe− e‖ ≤ r }

is a ravel.
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Proof. We can assume e = 0 ∈ E. Let Γ be a non-trivial crystallographic group
with vanishing first Betti number and let π : Γ → G be the projection onto the
holonomy group at 0. The translation subgroup is denoted by T and we fix some
r0 > 0 so that for every u ∈ E there is t ∈ T satisfying ‖u− t‖ ≤ r0.

The first Betti number b1(Γ) is exactly the dimension of the space EG of G-fixed
vectors. Thus b1(Γ) = 0 means that G acts without non-trivial fixed points on E.
Since every non-zero vector is moved by G, there is a real number δ < 1 such that
for all u ∈ E there is g ∈ G such that

(1) ‖gu+ u‖ ≤ 2δ‖u‖.
For r > 0 let Br denote the closed ball of radius r around 0. Fix u ∈ Br; we shall
find γ ∈ Γ such that ‖γu‖ ≤ r and ‖γ−1u‖ ≤ r provided r is sufficiently large. We
pick g ∈ G as in (1) and we choose some γ0 ∈ Γ with π(γ0) = g. Define w0 = γ0(0).
We observe that for every two vectors v1, v2 ∈ E with distance d, there is x ∈ w0+T
with

max
i=1,2

(‖vi − x‖) ≤ r0 +
d

2
.

Indeed, the ball of radius r0 around the midpoint of the line between v1 and v2

contains an element x ∈ w0 +T . Apply this to the vectors v1 = u and v2 = −gu to
find some x = w0 + t. By construction we get d ≤ 2δr.

Finally we define γ = t ◦ γ0 to deduce the inequalities

‖γu‖ = ‖gu+ x‖ = ‖ − gu− x‖ ≤ r0 + δr

and

‖γ−1u‖ = ‖g−1u− g−1x‖ = ‖u− x‖ ≤ r0 + δr.

As δ < 1 the right hand side is less than r for all sufficiently large r. �

3.3. Diffuseness and the holonomy of crystallographic groups. We take a
closer look at the non-diffuse crystallographic groups and their holonomy groups. It
will turn out that for a given crystallographic group one can often decide from the
holonomy group whether or not the group is diffuse. In the following a Bieberbach
group is a non-trivial torsion-free crystallographic group. Let Γ be a Bieberbach
group, it has a finite index normal maximal abelian subgroup T ⊂ Γ. Recall
that the finite quotient G = Γ/T is called the holonomy group of Γ. Since every
finite group is the holonomy group of some Bieberbach group (by a result due to
Auslander-Kuranishi [4]), this naturally divides the finite groups into three classes.

Definition 1. A finite group G is holonomy diffuse if every Bieberbach group Γ
with holonomy group G is diffuse. It is holonomy anti-diffuse if every Bieberbach
group Γ with holonomy groupG is non-diffuse. Otherwise we say thatG is holonomy
mixed.

For example, the finite group (Z/2Z)2 is holonomy mixed. In fact, the Promislow
group ∆P (also known as Hantzche-Wendt group or Passman group) is a non-
diffuse [10] Bieberbach group with holonomy group (Z/2Z)2 – thus (Z/2Z)2 is not
holonomy diffuse. On the other hand it is easy to construct diffuse groups with
holonomy group (Z/2Z)2 (cf. Lemma 3.9 below).

In this section we prove the following algebraic characterisation of these three
classes of finite groups.

Theorem 3.5. A finite group G is
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(i) holonomy anti-diffuse if and only if it is not solvable.
(ii) holonomy diffuse exactly if every Sylow subgroup is cyclic.

(iii) holonomy mixed if and only if it is solvable and has a non-cyclic Sylow sub-
group.

The proof of this theorem will be given as a sequence of lemmata below. A
finite group G with cyclic Sylow subgroups is meta-cyclic (Thm. 9.4.3 in [34]). In
particular, such a group G is solvable and hence it suffices to prove the assertions
(i) and (ii). One direction of (i) is easy. By Proposition 3.2 a diffuse Bieberbach
group is solvable and thus cannot have a finite non-solvable quotient, i.e. a non-
solvable group is holonomy anti-diffuse. For (i) it remains to verify that every finite
solvable group is the holonomy of some diffuse Bieberbach group; this will be done
in Lemma 3.9.

In order to prove (ii), we shall use a terminology introduced by Hiller-Sah [38].

Definition 2. A finite group G is primitive if it is the holonomy group of a Bieber-
bach group with finite abelianization.

Statement (ii) of the theorem will follow from the next lemma.

Lemma 3.6. Let G be a finite group. The following statements are equivalent.

(a) G is not holonomy diffuse.
(b) G has a non-cyclic Sylow subgroup.
(c) G contains a normal primitive subgroup.

We frequently use the following notion: A cohomology class α ∈ H2(G,A) (for
some finite group G and some G-module A) is called special if it corresponds to a
torsion-free extension of G by A (cf. [38]). Equivalently, if A is free abelian, the
restriction of α to any cyclic subgroup of G is non-zero.

Proof. Hiller-Sah [38] obtained an algebraic characterisation of primitive groups.
They showed that a finite group is primitive exactly if it does not contain a cyclic
Sylow p-subgroup which admits a normal complement (see also [21] for a different
criterion).

(a) =⇒ (b): Assume G is not holonomy diffuse and take a non-diffuse Bieber-
bach group Γ with holonomy group G. As Γ is not locally indicable we find a
non-trivial subgroup Γ0 ≤ Γ with b1(Γ0) = 0. The holonomy group G0 of Γ0 is
primitive. Let p be the smallest prime divisor of |G0|. The Sylow p-subgroups of
G0 are not cyclic, since otherwise they would admit a normal complement (by a
result of Burnside [14]). Let π : Γ → G be the projection. The image π(Γ0) has
G0 as a quotient and hence π(Γ0) also has non-cyclic Sylow p-subgroups. As every
p-group is contained in a Sylow p-subgroup, we deduce that the Sylow p-subgroups
of G are not cyclic.

(b) =⇒ (c): Let p be a prime such that the Sylow p-subgroups of G are not
cyclic. Consider the subgroup H of G generated by all p-Sylow subgroups. The
group H is normal in G and we claim that it is primitive. The Sylow p-subgroups
of H are precisely those of G and they are not cyclic. Let p′ be a prime divisor of
|H| different from p. Suppose there is a (cyclic) Sylow p′-subgroup Q in H which
admits a normal complement N . As H/N is a p′-group, the Sylow p-subgroups
of H lie in N . By construction H is generated by its Sylow p-subgroups and so
N = H. This contradicts the existence of such a Sylow p′-subgroup.
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(c) =⇒ (a): Assume now that G contains a normal subgroup N E G which
is primitive. We show that G is not holonomy diffuse. Since N is primitive, there
exists Bieberbach group Λ with holonomy group N and with b1(Λ,Q) = 0. Let
A be the translation subgroup of Λ and let α ∈ H2(N,A) be the special class
corresponding to the extension Λ. The vanishing Betti number b1(Λ,Q) = 0 is
equivalent to AN = {0}.

Consider the induced Z[G]-module B := indGN (A). Let T be a transversal of N
in G containing 1G. If we restrict the action on B to N we obtain

B|N =
⊕
g∈T

A(g)

where A(g) is the N -module obtained from A by twisting with the action with g,
i.e. h ∈ N acts by g−1hg on A. In particular, BN = {0} and A = A(1G) is a direct
summand of B|N .

Observe that every class in H2(N,B) which projects to α ∈ H2(N,A) is spe-
cial and defines thus a Bieberbach group with finite abelianization. Shapiro’s
isomorphism sh2 : H2(G,B) → H2(N,A) is the composition of the restriction
resNG and the projection H2(N,B) → H2(N,A). We deduce that there is a class
γ ∈ H2(G,B) which maps to some special class β ∈ H2(N,B) (which projects onto
α ∈ H2(N,A)). Let Λ′ be the Bieberbach group (with b1(Λ′) = 0) corresponding
to β. The group corresponding to γ might not be torsion-free, so we need to vary
γ so that it becomes a special class.

Let H be the collection of all cyclic prime order subgroups C of G which intersect
N trivially. For each C ∈ H we define

MC := indGC(Z)

where C acts trivially on Z. The group N acts freely on C\G, since C ∩N = {1G}.
Therefore (MC)|N is a free Z[N ]-module. We define the Z[G]-module

M = B ⊕
⊕
C∈H

MC .

Using Shapiro’s Lemma we find classes αC ∈ H2(G,MC) which restrict to non-
trivial classes in H2(C,MC). Consider the cohomology class δ := γ ⊕

⊕
C∈H αC ∈

H2(G,M).
The class δ is special, as can be seen as follows. For every C ∈ H this follows from

the fact that αC restricts non-trivially to C. For the cyclic subgroups C ≤ N this
holds since the restriction of γ to N is special. Consequently δ defines a Bieberbach
group Γ with holonomy group G.

Finally, we claim that resNG (δ) = i∗(resNG (γ)) where i : B → M is the inclusion
map. Indeed, H2(N,MC) = 0 since MC is a free Z[N ]-module. Since resNG (γ) = β
we conclude that Γ contains the group Λ′ as a subgroup and thus Γ is not locally
indicable. �

We are left with constructing diffuse Bieberbach groups for a given solvable
holonomy group. We start with a simple lemma concerning fibre products of groups.
For 0 ≤ i ≤ n let Γi be a group with a surjective homomorphism ψi onto some fixed
group G. The fibre product ×GΓi is defined as a subgroup of the direct product



12 S. KIONKE, J. RAIMBAULT∏
i Γi by

×GΓi := { (γi)i ∈
n∏
i=0

Γi | ψi(γi) = ψ0(γ0) for all i }.

In this setting we observe the following

Lemma 3.7. If Γ0 is diffuse and kerψi ⊂ Γi is diffuse for all i ∈ {1, . . . , n}, then
×GΓi is diffuse.

Proof. There is a short exact sequence

1 −→
n∏
i=1

kerψi
j−→ ×GΓi −→ Γ0 −→ 1

so the claim follows from Theorem 1.2 in [10]. �

Lemma 3.8. Let G be a finite group and let M1, . . . ,Mn be free Z-modules with
G-action. Let αi ∈ H2(G,Mi) be classes. If one of these classes defines a diffuse
extension group of G, then the sum of the αi in H2(G,M1 ⊕ · · · ⊕Mn) defines a
diffuse extension of G.

Proof. Taking the sum of classes corresponds to the formation of fibre products of
the associated extensions, so the claim follows from Lemma 3.7. �

Lemma 3.9. Every finite solvable group is the holonomy group of a diffuse Bieber-
bach group.

Proof. We begin by constructing diffuse Bieberbach groups with given abelian ho-
lonomy group. Let A be an abelian group and let Γ1 be a Bieberbach group with
holonomy group A and projection ψ1 : Γ1 → A. Write A as a quotient of a free
abelian group Γ0 = Zk of finite rank with projection ψ0 : Zk → A. By Lemma 3.7
the fibred product Γ0 ×A Γ1 is a diffuse Bieberbach group with holonomy group A
(the kernel of ψ1 is free abelian).

Assume now that G is solvable. We construct a diffuse Bieberbach group Γ with
holonomy group G. We will proceed by induction on the derived length of G. The
basis for the induction is given by the construction for abelian groups above. Let G′

be the derived group of G. By induction hypothesis there is a faithful G′-module M
and a “diffuse” class α ∈ H2(G′,M). Consider the induced module B = indGG′(M).
The restriction of B to G′ decomposes into a direct sum

B|G′ ∼= M ⊕X.

There is a class β ∈ H2(G,B) which maps to α under Shapiro’s isomorphism

sh2 : H2(G,B) → H2(G′,M). Due to this the restriction resG
′

G (β) decomposes as

α⊕ x ∈ H2(G′,M)⊕H2(G′, X). By Lemma 3.8 the class resG
′

G (β) is diffuse.
Let Γ1 be the extension of G which corresponds to the class β. By what we have

seen, the subgroup Λ1 = ker(Γ1 → G/G′) is diffuse. Finally, we write the finite
abelian group G/G′ as a quotient of a free abelian group Γ0 = Zk. By Lemma 3.7
the fibre product Γ0 ×G/G′ Γ1 is diffuse. In fact, it is a Bieberbach group with
holonomy group G. �



ON GEOMETRIC ASPECTS OF DIFFUSE GROUPS 13

3.4. Non-diffuse Bieberbach groups in small dimensions. In this section
we briefly describe the classification of all Bieberbach groups in dimension d ≤ 4
which are not diffuse. The complete classification of crystallographic groups in
these dimensions is given in [13] and we refer to them according to their system of
enumeration.

In dimensions 2 and 3 the classification is very easy. In dimension d = 2 there
are two Bieberbach groups and both of them are diffuse. In dimension d = 3 there
are exactly 10 Bieberbach groups. The only group among those with vanishing first
rational Betti number is the Promislow (or Hantzsche-Wendt) group ∆P (which is
called 3/1/1/04 in [13]).

Now we consider the case d = 4, in this case there are 74 Bieberbach groups. As
a consequence of the considerations for dimensions 2 and 3, a Bieberbach group Γ
of dimension d = 4 is not diffuse if and only if it has vanishing Betti number or
contains the Promislow group ∆P . Vanishing Betti number is something that can
be detected easily from the classification. So how can one detect the existence of a
subgroup isomorphic to ∆P ? The answer is given in the following lemma.

Lemma 3.10. Let Γ be a Bieberbach group acting on E = R4 and assume that
b1(Γ) > 0. Let π : Γ → G be the projection onto the holonomy group. Then Γ is
not diffuse if and only if it contains elements g, h ∈ Γ such that

(i) S := 〈π(g), π(h)〉 ∼= (Z/2Z)2,
(ii) dimES = 1 and

(iii) if E = ES ⊕ V as S-module, then g · 0 and h · 0 lie in V .

Proof. Since b1(Γ) > 0, the group Γ is not diffuse exactly if it contains ∆P as a
subgroup.

Assume Γ contains ∆P and let Λ = ker(π) be the translation subgroup of Γ
(considered as a lattice in E). We claim that the holonomy group of ∆P embeds
into G via π. We show that L := ∆P ∩ Λ is the maximal abelian finite index
subgroup of ∆P . The lattice L spans a three-dimensional subspace V ⊆ E on which
∆P /L ∼= π(∆P ) acts without fixed points. Since b1(Γ) > 0 the group S = π(∆P )
has a one-dimensional fixed point space ES which is a complement of V in E.
Suppose L1 is an abelian subgroup of ∆P which contains L. Then L1/L acts
trivially on E and (as G acts faithfully on E) we conclude L1 = L.

Take g and h in Γ such π(g) and π(h) generate S, clearly g ·0, h·0 ∈ V . The group
S acts without non-trivial fixed points on V and E = ES ⊕ V is a decomposition
as S-module.

Conversely, if we can find g, h ∈ Γ as above, then they generate a Bieberbach
group of smaller dimension and with vanishing first Betti number. Hence they
generate a group isomorphic to ∆P . �

Using this lemma and the results of the previous section one can decide for each
of the 74 Bieberbach groups whether they are diffuse or not. It turns out there are
16 non-diffuse groups in dimension 4, namely (cf. [13]):

04/03/01/006, 05/01/02/009, 05/01/04/006, 05/01/07/004, 06/01/01/049,
06/01/01/092, 06/02/01/027, 06/02/01/050, 12/03/04/006, 12/03/10/005,
12/04/03/011, 13/04/01/023, 13/04/04/011, 24/01/02/004, 24/01/04/004,
25/01/01/010.

The elementary abelian groups (Z/2Z)2, (Z/2Z)3, the dihedral group D8, the al-
ternating group A4 and the direct product group A4 × Z/2Z occur as holonomy
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groups. Among these groups only four groups have vanishing first Betti number
(these are 04/03/01/006, 06/02/01/027, 06/02/01/050 and 12/04/03/011). How-
ever, one can check that these groups contain the Promislow group as well. In a
sense the Promislow group is the only reason for Bieberbach groups in dimension
4 to be non-diffuse (thus non of these groups has the unique product property).
This leads to the following question: What is the smallest dimension d0 of a non-
diffuse Bieberbach group which does not contain ∆P ? Clearly, such a group has
vanishing first Betti number. Note that there is a group with vanishing first Betti
number and holonomy (Z/3Z)2 in dimension 8 (see [38]); thus 5 ≤ d0 ≤ 8. The so-
called generalized Hantzsche-Wendt groups are higher dimensional analogs of ∆P

(cf. [63, 58]). However, any such group Γ with b1(Γ) = 0 contains the Promislow
group (see Prop. 8.2 in [58]).

3.5. A family of non-diffuse infra-solvmanifolds. Many geometric questions
are not answered by the simple algebraic observation in Proposition 3.2. For in-
stance, given a simply connected solvable Lie group G, is there an infra-solvmanifold
of type G with non-diffuse fundamental group? To our knowledge there is no cri-
terion which decides whether a solvable Lie group G admits a lattice at all. Hence
we do not expect a simple answer for the above question. We briefly discuss an
infinite family of simply connected solvable groups where every infra-solvmanifold
is commensurable to a non-diffuse one.

Let ρ1, . . . , ρn be n ≥ 1 distinct real numbers with ρi > 1 for all i = 1, . . . , n.
We define the Lie group

G := R2n oR
where s ∈ R acts by the diagonal matrix β(s) := diag(ρs1, . . . , ρ

s
n, ρ
−s
1 , . . . , ρ−sn ) on

R2n. The group G is a simply connected solvable Lie group. The isomorphism class
of G depends only one the line spanned by (log ρ1, . . . , log ρn) in Rn. For n = 1 the
group G is the three dimensional solvable group Sol, which will be reconsidered in
Section 5.

Proposition 3.11. In the above setting the following holds.

(a) The Lie group G has a lattice if and only if there is t0 > 0 such that the
polynomial f(X) :=

∏n
i=1(1− (ρt0i +ρ−t0i )X+X2) has integral coefficients.

(b) If G admits a lattice, then every infra-solvmanifold of type G is commen-
surable to a non-diffuse one.

Before we prove the proposition, we describe the group of automorphisms of G.
Let σ ∈ Aut(G), then σ(x, t) = (Wx + f(t), λt) for some λ ∈ R×, W ∈ GL2n(R)
and f ∈ Z1(R,R2n) a smooth cocycle for the action of s ∈ R on R2n via β(λ · s).
Using that H1(R,R2n) = 0 we can compose σ with an inner automorphism of G
(given by an element in [G,G]) such that f(t) = 0. Observe that the following
equality has to hold

β(λt)W = Wβ(t)

for all t ∈ R. As a consequence λ is 1 or −1. In the former case W is diagonal, in
the latter case W is a product of a diagonal matrix and

W0 =

(
0 1n
1n 0

)
.

Let D+ denote the group generated by diagonal matrices in GL2n(R) and W0, then
Aut(G) ∼= R2n oD+.
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Proof of Proposition 3.11. Ad (a): Note that N := R2n = [G,G] is the maximal
connected normal nilpotent subgroup of G. Suppose that G contains a lattice Γ.
Then Γ0 := Γ ∩ N is a lattice in N (cf. Cor. 3.5 in [55]) and Γ/Γ0 is a lattice in
G/N ∼= R. Let t0 ∈ R so that we can identify Γ/Γ0 with Zt0 in R. Take a basis
of Γ0, with respect to this basis β(t0) is a matrix in SL2n(Z). The polynomial f is
the charcteristic polynomial of β(t0) and the claim follows.

Conversely, let t0 > 0 with f ∈ Z[X] as above. Take any matrix A ∈ SL2n(Z)
with characteristic polynomial f , e.g. if f(X) = X2n+a2n−1X

2n−1 + · · ·+a1X+a0

then the matrixA with ones above the diagonal and last row (−a0,−a1, . . . ,−a2n−1)
has suitable characteristic polynomial.

Since by assumption all the ρi are distinct and real, we find P ∈ GL2n(R) with
PAP−1 = β(t0). Now define Γ0 := PZ2n and we obtain a lattice Γ := Γ0 o (Zt0)
in G.

Ad (b): Let Λ ⊂ Aff(G) be the fundamental group of an infra-solvmanifold.
Define Γ := G ∩ Λ and Γ0 := Γ ∩ N where N = R2n is the maximal normal
nilpotent subgroup. The first Betti number of Λ is b1(Λ) = dimR(G/N)Λ/Γ. The
quotient Γ/Γ0 is a lattice in R, so is of the form Zt0 for some t0 > 0.

Take any basis of the lattice Γ0 ⊆ R2n. We shall consider coordinates on R2n

with respect to this basis from now on. In particular, β(t0) is given by an integral
matrix A ∈ SL2n(Z) and further Γ is isomorphic to the strongly polycyclic group
Z2n o Z where Z acts via A. Let F/Q be a finite totally real Galois extension
which splits the characteristic polynomial of A, so the Galois group permutes the
eigenvalues of A. Moreover, the Galois group acts on Γ0 ⊗Z F so that we can find
a set of eigenvectors which are permuted accordingly. Let B ∈ GL2n(F ) be the
matrix whose columns are the chosen eigenvectors, then B−1AB = β(t0) and for
all σ ∈ Gal(F/Q) we have σ(B) = BPσ for a permutation matrix Pσ ∈ GL2n(Z).
It is easily seen that Pσ commutes with W0, and hence W = BW0B

−1 is stable
under the Galois group, this means W ∈ GL2n(Q).

Since W is of order two, we can find a sublattice L ⊂ Γ0 which admits a basis
of eigenvectors of W . Pick one of these basis vectors, say v, with eigenvalue one,
find q ∈ Z \ {0} with qΓ0 ⊂ L and take a positive integer r so that

Ar ≡ 1 mod 4q.

This way we find a finite index subgroup Γ′ := LorZ of Γ which is stable under the
automorphism τ defined by (x, t) 7→ (Wx,−t). Since we want to construct a torsion-
free group we cannot add τ into the group. Instead we take the group Λ′ generated
by ( 1

2v, 0)τ and Γ′ in the affine group Aff(G). A short calculation shows that Λ′

is torsion-free and hence Λ′ is the fundamental group of an infra-solvmanifold of
type G which is commensurable with Λ. By construction the first Betti number
b1(Λ′) = dimR(G/N)Λ′/Γ′

vanishes and so Λ′ is not diffuse by Theorem 3.1. �

4. Fundamental groups of hyperbolic manifolds

In this section we prove Theorems B and C from the introduction. We give a
short overview of rank one symmetric spaces before studying first their unipotent
and then their axial isometries in view of applying Lemma 2.1. Then we review some
well-known properties of geometrically finite groups of isometries before proving a
more general result (Theorem 4.8) and showing how it implies Theorems B and C.
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We also study the action on the boundary, resulting in Theorem 4.11, which will
be used in the next section.

4.1. Hyperbolic spaces.

4.1.1. Isometries. We recall some terminology about isometries of Hadamard man-
ifolds: if g ∈ Isom+(X) where X is a complete simply connected manifold with
non-positive curvature then g is said to be

• Hyperbolic (or axial) if min(g) = infx∈X dX(x, gx) > 0;
• Parabolic if it fixes exactly one point in the visual boundary ∂X, equiva-

lently min(g) = 0 and g has no fixed point inside X.

We will be interested here in the case where X = G/K is a symmetric space
associated to a simple Lie group G of real rank one. An element g ∈ G then acts on
X as an hyperbolic isometry if and only if it is semisimple and has an eigenvalue
of absolute value > 1 in the adjoint representation. Parabolic isometries of X are
algebraically characterised as corresponding to the non-semisimple elements of G;
their eigenvalues are necessarily of absolute value one. If they are all equal to one
then the element of G is said to be unipotent, as well as the corresponding isometry
of X.

4.1.2. Projective model. Here we describe models for the hyperbolic spaces HnA for
A = R,C,H (the symmetric spaces associated to the Lie groups SO(n, 1), SU(n, 1)
and Sp(n, 1) respectively) which we will use later for computations. We will denote
by z 7→ z the involution on A fixing R, and define as usual the reduced norm and
trace of A by

|z|A/R = zz = zz, trA/R(z) = z + z

We let V = An,1, by which we mean that V is the right A-vector space An+1

endowed with the sesquilinear inner product given by2

〈v, v′〉 = v′n+1v1 +

n∑
i=2

v′ivi + v′1vn+1.

The (special if A = R or C) isometry group G of V is then isomorphic to SO(n, 1),
SU(n, 1) or Sp(n, 1). Let:

V− = {v ∈ V | 〈v, v〉 < 0} =

{
v ∈ V | trA/R(v1vn+1) < −

n∑
i=2

|vi|A/R

}
then the image X = PV− of V− in the A-projective space PV of V can be endowed
with a distance function dX given by:

(2) cosh

(
dX([v], [v′])

2

)2

=
|〈v, v′〉|A/R
〈v, v〉〈v′, v′〉

.

This distance is G-invariant, and the stabilizer in G of a point in V− is a maximal
compact subgroup of G. Hence the space X is a model for the symmetric space
G/K (where K = SO(n),SU(n) or Sp(n) according to whether A = R,C or H).

The following lemma will be of use later.

Lemma 4.1. If v, v′ ∈ V− then trA/R(vn+1v
′
n+1〈v, v′〉) < 0.

2We use the model of [43] rather than that of [53].
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Proof. Since trA/R(vn+1v
′
n+1〈v, v′〉) does not change sign when we multiply v or v′

by a element of A from the right, we may suppose that vn+1 = v′n+1 = 1. In this
case we have:

trA/R(vn+1v
′
n+1〈v, v′〉) = trA/R(v1) + trA/R(v′1) + trA/R

(
n∑
i=2

v′ivi

)
.

Now we have

trA/R

(
n∑
i=2

v′ivi

)
≤ 2

√√√√( n∑
i=2

|vi|A/R

)
·

(
n∑
i=2

|v′i|A/R

)
by Cauchy-Schwarz, and since v, v′ ∈ V− we get

trA/R(vn+1v
′
n+1〈v, v′〉) < trA/R

(
n∑
i=2

v′ivi

)
−

n∑
i=2

|vi|A/R −
n∑
i=2

|v′i|A/R

≤ −

√√√√ n∑
i=2

|vi|A/R −

√√√√ n∑
i=2

|v′i|A/R

2

≤ 0.

�

4.2. Unipotent isometries and distance functions. In this subsection we prove
the following proposition, which is the main ingredient we use in extending the re-
sults of [10] from cocompact subgroups to general lattices.

Proposition 4.2. Let A be one of R,C or H and let η 6= 1 be a unipotent isometry
of X = HnA and a, x ∈ HnA. Then

max
(
d(a, ηx), d(a, η−1x)

)
> d(a, x).

Proof. We say that a function h : Z → R is strictly convex if h is the restriction
to Z of a strictly convex function on R (equivalently all points on the graph of h
are extremal in their convex hull and h has a finite lower bound). We will use the
following criterion, similar to Lemma 6.1 in [53].

Lemma 4.3. Let X be a metric space, x ∈ X and let φ ∈ Isom(X). Suppose that
there exists an increasing function f : [0,+∞[→ R such that for any y ∈ X the
function hy : k 7→ f(dX(y, φkx)) is strictly convex. Let

Bk = {y ∈ X : dX(y, φkx) ≤ dX(y, x)}.
Then we have B1 ∩B−1 = ∅.

Proof. Suppose there is a y ∈ X such that

dX(y, φx), dX(y, φ−1x) ≤ dX(y, x).

Since f is increasing this means that hy(1), hy(−1) ≤ hy(0): but this is impossible
since hy is strictly convex. �

Applying it to φ = η, we see that it suffices to prove that for any z, w ∈ X the
function

f : t ∈ R 7→ cosh

(
dX(z, ηtw)

2

)2
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is strictly convex on R, i.e. f ′′ > 0. Of course we need only to prove that f ′′(0) > 0
since z, w are arbitrary. By the formula (2) for arc length in hyperbolic spaces it
suffices to prove this for the function

h : t 7→ |〈v, ηtv′〉|A/R

for any two v, v′ ∈ An,1 (which we normalize so that their last coordinate equals 1).
Now we have:

d2h

dt2
=

d

dt

(
trA/R

(
〈v, ηtv′〉 d

dt
〈v, ηtv′〉

))
= 2

∣∣∣∣ ddt 〈v, ηtv′〉
∣∣∣∣
A/R

+ trA/R

(
〈v, ηtv′〉 d

2

dt2
〈v, ηtv′〉

)
.

There are two distinct cases (see either [53, Section 3] or [43, Section 1]): η can be
conjugated to a matrix of one of the following forms:1 −a −|a|A/R/2

0 1n−1 a
0 0 1

 , a ∈ An or

1 0 b
0 1n−1 0
0 0 1

 , b ∈ A totally imaginary.

In the second case we get that d2

dt2 η
t = 0, hence

d2h

dt2
= 2

∣∣∣∣ ddt 〈v, ηtv′〉
∣∣∣∣
A/R

= 2|b|A/R > 0.

In the first case (which we normalize so that |a|A/R = 1) we have at t = 0:

d2h

dt2
= 2

∣∣∣∣ ddt 〈v, ηtv′〉
∣∣∣∣
A/R
− trA/R

(
vn+1v

′
n+1〈v, v′〉

)
and hence the result follows from Lemma 4.1. �

4.3. Hyperbolic isometries and distance functions. In view of establishing
the inequality (∗) in Lemma 2.1 axial isometries in negatively curved spaces have
a much simpler behaviour than parabolic ones: one only needs to use the hyper-
bolicity of the space on which they act as soon as their minimal displacement is
large enough, as was already observed in [10] (see Lemma 4.4 below). On the other
hand, isometries with small enough minimal displacement which rotate non-trivially
around their axis obviously do not satisfy (∗) for all y; we study this phenomenon
in more detail for real hyperbolic spaces below, obtaining an optimal criterion in
Proposition 4.5.

4.3.1. Gromov-hyperbolic spaces. The following lemma is a slightly more precise
version of Corollary 5.2 [10]. It has essentially the same proof; we will give the
details, which are not contained in [10].

Lemma 4.4. Let δ > 0 and d > 0; there exists a constant C(δ, d) such that for
any δ-hyperbolic space X and any axial isometry γ of X such that min(γ) ≥ C(δ, d)
and any pair (x, a) ∈ X we have

max(d(γx, a), d(γ−1x, a)) ≥ d(x, a) + d.
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Proof. Let γ be as in the statement (with the constant C = C(δ, d) to be determined
later), let L be its axis. Let w,w′, w′′ be the projections of x, γx, γ−1x on L, and v
that of a. We will suppose (without loss of generality) that v lies on the ray in L
originating at w and passing through w′.

Now let T be a metric tree with set of vertices constructed as follows: we take
the geodesic segment on L containing all of w,w′, w′′ and v and we add the arcs
[x,w], etc. Then, for any two vertices u, u′ of T we have

dX(u, u′) ≤ dT (u, u′) ≤ dX(u, u′) + c

where c depends only on δ (see the proof of Proposition 6.7 in [11]). In this tree we
have

dT (a, γ−1x) = dX(a, v) + dX(v, w) + dX(w,w′′) + dX(w′′, γ−1x)

= dX(w, γ−1w) + dX(a, v) + dX(v, w) + dX(w, x)

= min(γ) + dT (a, x)

and using both inequalities above we get that

dX(a, γ−1x) ≥ dT (a, γ−1x)− c ≥ dX(a, x) + min(γ)− c.

We see that for min(γ) ≥ C(δ, d) = c+ d the desired result follows. �

4.3.2. A more precise result in real hyperbolic spaces. We briefly discuss a quanti-
tative version of Lemma 4.4. Bowditch observed (cf. Thm. 5.3 in [10]) that a group
Γ which acts freely by axial transformations on the hyperbolic space HnR is diffuse

if every γ ∈ Γ\{1} has translation length at least 2 log(1 +
√

2). We obtain a slight
improvement relating the lower bound on the translation length more closely to the
eigenvalues of the rotational part of the transformation.

Our proof is based on a calculation in the upper half-space model of HnR, i.e. we
consider HnR = { x ∈ Rn | xn > 0 } with the hyperbolic metric d (see §4.6 in [56]).
Every axial transformation γ on HnR is conjugate to a transformation of the form
x 7→ kAx where A is an orthogonal matrix in O(n − 1) (acting on the first n − 1
components) and k > 1 is a real number (see Thm. 4.7.4 in [56]). We say that A is
the rotational part of γ. The translation length of γ is given by min(γ) = log(k).
We define the absolute rotation rγ of γ to be the maximal value of |λ− 1| where λ
runs through all eigenvalues of A. In other words, rγ is merely the operator norm of
the matrix A− 1. The absolute rotation measures how close the eigenvalues get to
−1. It is apparent from Bowditch’s proof that the case of eigenvalue −1 (rotation of
angle π) is the problematic case whereas the situation should improve significantly
for rotation bounded away from angle π. We prove the following sharp result.

Proposition 4.5. An axial transformation γ of HnR has the property

(F) max(d(x, γy), d(x, γ−1y)) > d(x, y) for all x, y ∈ HnR
if and only if the translation length min(γ) satisfies

(♣) min(γ) ≥ arcosh(1 + rγ).

Using the same argument as above we immediately obtain the following im-
provement of Bowditch’s Theorem 5.3 (we use Proposition 4.2 to take care of the
unipotent elements).
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Corollary. Let Γ be a group which acts freely by axial or unipotent transformations
of the hyperbolic space HnR. If the translation length of every axial γ ∈ Γ satisfies
inequality (♣), then Γ is diffuse.

Remark. (1) It is a trivial matter to see that the converse of the corollary does
not hold. Take any axial transformation γ 6= 1 which does not obey inequality (♣),
then the diffuse group Γ = Z acts via γ on Hn.

(2) If γ ∈ SL2(C) is hyperbolic, with an eigenvalue λ = e`/2eiθ/2 then the
condition (♣) is equivalent to

cosh(`) ≥ 1 +
√

2− 2 cos(θ).

Proof of Proposition 4.5. Let γ be an axial transformation which satisfies (♣). We
will show that for all x, y ∈ HnR we have max(d(x, γy), d(x, γ−1y)) > d(x, y). After
conjugation we can assume that γ(a) = Aka with k > 1 and A ∈ O(n − 1).
We take x, y to lie in the upper half-space model, then we may consider them as
elements of Rn. We will suppose in the sequel that ‖x‖ ≤ ‖y‖ in the euclidean
metric of Rn, and under this hypothesis we shall prove that d(x, γy) > d(x, y).
If the opposite inequality ‖x‖ ≥ ‖y‖ holds we get that d(y, γx) > d(x, y), hence
d(x, γ−1y) > d(x, y) which implies the proposition.

Using the definition of the hyperbolic metric and the monotonicity of cosh on
positive numbers, it suffices to show

‖x−Aky‖2 > k‖x− y‖2.
In other words, we need to show that the largest real zero of the quadratic function

f(t) = t2‖y‖2 − t(‖x‖2 + ‖y‖2 + 2〈x,Ay − y〉) + ‖x‖2

is smaller than exp(arcosh(1 + rγ)) = 1 + rγ +
√
r2
γ + 2rγ . We may divide by ‖y‖2

and we can thus assume ‖y‖ = 1 and 0 < ‖x‖ ≤ 1. The large root of f(t) is

t0 =
‖x‖2 + 1

2
+ 〈x,Ay − y〉+

1

2

√
(‖x‖2 + 1 + 2〈x,Ay − y〉)2 − 4‖x‖2.

Note that if rγ = 0, then k > 1 = t0.
Suppose that rγ > 0. Indeed, by Cauchy-Schwarz |〈x,Ay − y〉| < rγ‖x‖ and the

inequality is strict since xn > 0. As a consequence t0 < t(‖x‖) where

t(s) =
s2 + 1

2
+ rγs+

1

2

√
(s2 + 1 + 2rγs)2 − 4s2.

Finally, we determine the maximum of the function t(s) for s ∈ [0, 1]. A simple
calculation shows that there is no local maximum in the interval [0, 1]. We conclude
that the maximal value is attained at s = 1 and is precisely

t(1) = 1 + rγ +
√
r2
γ + 2rγ .

Conversely, assume that (♣) does not hold. In this case we have 1 < k <

1 + rγ +
√
r2
γ + 2rγ and thus rγ 6= 0. Choose some vector y ∈ Rn with yn = 0 and

‖y‖ = 1 so that ‖Ay−y‖ = rγ (this is possible since rγ is the operator norm of A−1).
We define x = r−1

γ (Ay− y) and we observe that x 6= y since the orthogonal matrix
A has no eigenvalues of absolute value exceeding one. The following inequalities
hold:

‖x− k−1A−1y‖2

k−1
≤ ‖x− kAy‖

2

k
< ‖x− y‖2.
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The first follows from 〈x,A−1y〉 ≤ 〈x, y〉 + rγ = 〈x,Ay〉. The second inequality

follows from the assumption k < 1 + rγ +
√
r2
γ + 2rγ . Since the last inequality is

strict, we can use continuity to find distinct x′ and y′ in the upper half-space (close
to x and y), so that still

max

{
‖x′ − k−1A−1y′‖2

k−1
,
‖x′ − kAy′‖2

k

}
< ‖x′ − y′‖2.

Interpreting x′ and y′ as points in the hyperbolic space, the assertion follows from
the definition of the hyperbolic metric. �

4.4. Geometric finiteness. There are numerous equivalent definitions of geomet-
ric finiteness for discrete subgroups of isometries of rank one spaces, see for example
[49, Section 3.1] or [56, Section 12.4] for real hyperbolic spaces. We shall use the
equivalent definitions given by B. Bowditch in [9] for general negatively-curved
manifolds.

The only facts from the theory of geometrically finite groups we will need in this
section are the following two lemmas which are quite immediate consequences of
the equivalent definitions.

In the rest of this section we will always use the following notation: whenever P
is a parabolic subgroup in a rank-one Lie group and we write

P = MAN

this means that A is a split torus, M is compact and N is the unipotent radical
of P (such a decomposition is essentially—up to conjugation of A and M by an
element of N—unique).

Lemma 4.6. Let G be a rank-one Lie group and Γ ≤ G be a geometrically finite
subgroup, all of whose parabolic elements have finite-order eigenvalues. Then there
is a subgroup Γ′ ≤ Γ of finite index such that all parabolic isometries contained in
Γ′ are unipotent elements of G.

Proof. From [9, Corollary 6.5] we know that Γ has only finitely many conjugacy
classes of maximal parabolic subgroups; by residual finiteness of Γ we will be finished
if we can show that for any parabolic subgroup P of G such that the fixed point of
P in ∂HnR is a cusp point, the group Λ = Γ∩P is virtually unipotent. Writing P =
MAN we see that it suffices to verify that the projection of Λ on A is trivial (Indeed,
since then Λ is contained in MN , and its projection to M is finite because it has only
finite-order elements by the hypothesis on eigenvalues, and it is finitely generated
by [9, Proposition 4.1]). This follows from discreteness of Γ: if it contained an
element λ with a non-trivial projection on A, then for any non-trivial n ∈ N we
have that either λknλ−k or λ−knλk goes to the identity of G; but since the fixed
point of P is a cusp point for Γ the intersection Γ ∩ N must be nontrivial, hence
there cannot exist such a λ. �

Lemma 4.7. Let G be a rank-one Lie group, Γ a torsion-free geometrically finite
subgroup of G and MΓ = Γ\X. Then for any `0 there are only finitely many closed
geodesics of length less than `0 in MΓ.

Proof. See also [56, Theorem 12.7.8]. One of Bowditch’s characterizations of ge-
ometrical finiteness is the following: let LΓ ⊂ ∂X be the limit set of Γ, i.e. the
closure of the set of points fixed by some nontrivial element of Γ, and let YΓ ⊂ X
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be the convex hull in X of LΓ. Let CΓ = Γ\YΓ (the ‘convex core’ of MΓ), and let
M[ε,+∞[ be the ε-thick part of MΓ. Then Γ is geometrically finite if and only if
CΓ ∩M[ε,+∞[ is compact (for some or any ε): see [9, Section 5.3].

It is a well-known consequence of Margulis’ lemma that there is an ε0 > 0 such
that all geodesics in MΓ of length less than `0 are contained in the ε0-thick part.
On the other hand it is clear that any closed geodesic of MΓ is contained in CΓ

(since the endpoints of any lift are in LΓ) and hence all closed geodesics of MΓ with
length ≤ `0 are contained in the compact set CΓ ∩M[ε0,+∞[, which implies that
there are only finitely many such. �

4.5. Main results.

4.5.1. Action on the space.

Theorem 4.8. Let G be one of the Lie groups SO(n, 1), SU(n, 1) or Sp(n, 1), X
the associated symmetric space and let Γ be a geometrically finite subgroup of G.
Suppose that all eigenvalues of parabolic elements of Γ are roots of unity. Then
there exists a finite-index subgroup Γ′ ⊂ Γ such that Γ′ acts diffusely on X.

Proof. Let Γ′ be a finite-index subgroup of Γ such that all semisimple elements
γ ∈ Γ′ have min(γ) > C(δX , 1) (where δX is a hyperbolicity constant for X, which
is Gromov-hyperbolic since it is a negatively-curved, simply connected Riemannian
manifold, and C(δX , 1) is the constant from Lemma 4.4)—such a subgroup exists
by Lemma 4.7 and the residual finiteness of Γ. By Lemma 4.6 we may also suppose
that the parabolic isometries in Γ′ are exclusively unipotent.

Now we can check that the hypothesis (∗) in Lemma 2.1 holds for the action of
Γ on X: for axial isometries we only have to apply Lemma 4.4, and for unipotent
elements Proposition 4.2. �

The hypothesis on eigenvalues of parabolic elements is equivalent to asking that
every parabolic subgroup of Γ contains a finite-index subgroup which consists of
unipotent elements. It is necessary for an application of Lemma 2.1, as shown by
the following construction.

Lemma 4.9. For n ≥ 4 there exists a discrete, two-generated free subgroup Γ of
SO(n, 1) such that for all x ∈ HnR there is a y ∈ HnR and a g ∈ Γ \ {1} such that

d(x, y) ≥ d(gx, y), d(g−1x, y).

Proof. It suffices to prove this lemma for SO(4, 1). Let ω be an infinite-order
rotation of R2 and let φ be the isometry of R3 = R×R2 given by (t, x) 7→ (t+1, ω·x).
Then it is easy to see that for any k and any x not on the axis R×0 of φ the bisectors

between x and φ±kx intersect. Let φ̃ be the isometry of H4
R obtained by taking the

Poincaré extension of φ (i.e. we fix a point on ∂H4
R and define φ̃ by identifying the

horospheres at this point with the Euclidean three–space on which φ acts), which
will also not satisfy (∗) for all points outside of a two dimensional totally geodesic
submanifold Yφ.

Now take φ1, φ2 as above. There exists a g ∈ Isom(H4
R) such that gYφ2

g−1∩Yφ2
=

∅, and then for any k1, k2 > 0 the group 〈φ̃k11 , φ̃
k2
2 〉 satisfies the second conclusion of

the lemma. It remains to prove that for k1, k2 large enough it is a discrete (and free)
group. This is done by a very standard argument which goes as follows: There are

disjoint open neighbourhoods Ui of Fix(φ̃i) in ∂H4
R (not containing Fix(φ̃j), j 6= i)
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and positive integers k1, k2 such that for all k ∈ Z, |k| ≥ ki we have φ̃ki (H4
R\Ui) ⊂ Ui.

Now we can apply the ping-pong lemma of Klein to obtain freeness and discreteness

of 〈φ̃k11 , φ̃
k2
2 〉: fix a ξ ∈ ∂H4

R \ (U1 ∪U2), then any non-trivial reduced word in φ̃1, φ̃2

sends ξ inside one of U1 or U2, hence the orbit of ξ is discrete in ∂H4
R ( proving

discreteness of 〈φ̃k11 , φ̃
k2
2 〉) and any such word is nontrivial in SO(4, 1) (proving

freeness). �

On the other hand this phenomenon cannot happen in H2
R,H3

R, which yields the
following corollary of Theorem 4.8.

Corollary 1. If Γ is a finitely generated discrete subgroup of SL2(C) then Γ is
virtually diffuse.

Proof. Since in dimension three all Kleinian groups are isomorphic to geometrically
finite ones (this is a consequence of Thurston’s hyperbolization theorem for Haken
manifolds, as explained in [49, Theorem 4.10]) the result would follow if we can
prove diffuseness for the latter class. But parabolic isometries of H3 are necessarily
unipotent (since if an element of SL2(C) has two equal eigenvalues, they must be
equal to ±1, and hence it is unipotent in the adjoint representation), and thus
we can apply Theorem 4.8 to deduce that a geometrically finite Kleinian group in
dimension three has a finite-index subgroup which acts diffusely on H3.

We could also deduce Corollary 1 from the veracity of the Tameness conjecture
[1], [17] and the virtual diffuseness of three–manifolds groups, Theorem D from the
introduction. �

Also, when parabolic subgroups of Γ are large enough3 the hypothesis should be
satisfied. We will be content with the following application of this principle.

Corollary 2. If Γ is a lattice in one of the Lie groups SO(n, 1), SU(n, 1) or Sp(n, 1)
then Γ is virtually diffuse.

Proof. A lattice Γ in a rank one Lie group G is a geometrically finite group (cf.
5.4.2 in [9]), hence we need to prove that the parabolic isometries contained in Γ
have only roots of unity as eigenvalues. In the case that Γ is arithmetic there is a
quick argument: for any γ ∈ Γ, the eigenvalues of γ are algebraic numbers. If in
addition γ is parabolic, then all its eigenvalues are of absolute value one as well as
their conjugates (because the group defining Γ is compact at other infinite places).
A theorem of Kronecker [27, Theorem 1.31] shows that any algebraic integer in C
whose Galois conjugates are all of absolute value one must be a root of unity, and
it follows that the eigenvalues of γ are roots of unity.

One can also use a more direct geometric argument to prove this in full generality.
Let P = MAN be a parabolic subgroup of G which contains a parabolic element
of Γ; then it is well-known that Γ∩P is contained in MN (see the proof of Lemma
4.6 above). Also Λ = Γ ∩ N is a lattice in N , in particular Λ\N is compact
(this follows from the Margulis Lemma [9, Proposition 3.5.1], which implies that
horosphere quotients inject into Γ\X, and the finiteness of the volume of Γ\X).
Corollary 2 will then follow from the next lemma.

Lemma 4.10. Let N be a simply connected nilpotent Lie group containing a lattice
Λ, and Q ≤ Aut(N) a subgroup which preserves Λ, all of whose elements have only

3For example, in the real hyperbolic case, when their span in the Lie algebra is of codimension
smaller than one.
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eigenvalues of absolute value one (in the representation on the Lie algebra n). Then
these eigenvalues are in fact roots of unity.

Proof. The exponential map exp : n → N is a diffeomorphism. By [55, Theorem
2.12], there is a lattice L in the vector space n such that 〈exp(L)〉 = Λ. It follows
that the adjoint action of Q preserves L, hence for any q ∈ Q the characteristic
polynomial of Ad(q) has integer coefficients, hence its eigenvalues are the conjugates
of some finite set of algebraic integers. Since they are also all of absolute value one
it follows from Kronecker’s theorem that they must be roots of unity. �

It follows that, in the above setting, the image of Γ ∩ P in M has a finite-order
image in Aut(N) where M acts by conjugation. This action is faithful (because an
element of M cannot act trivially of an horosphere associated to N , otherwise it
would act trivially on the whole of X since it preserves these horospheres) and it
follows that the hypothesis on eigenvalues in Theorem 4.8 is satisfied by Γ. �

4.5.2. Action on the boundary.

Theorem 4.11. Let Γ, G be as in the statement of Theorem 4.8. Then there is
a finite-index Γ′ ⊂ Γ such that for any parabolic fixed point ξ ∈ ∂X for Γ′ with
stabilizer Λξ in Γ′ the action of Γ′ on Γ′/Λξ is diffuse.

Proof. We take a finite-index subgroup Γ′ ≤ Γ as in the proof of Theorem 4.8
above. The key point is the following lemma.

Lemma 4.12. There is a dense subset SΓ′ ⊂ X such that for any x0 ∈ SΓ′ and
any parabolic fixed point ξ of Γ′, if bξ is a Busemann function at ξ we have

(3) ∀g ∈ Γ′, g 6∈ Λξ : max
(
bξ(gx0), bξ(g

−1x0)
)
> bξ(x0).

Proof. Fix ξ and bξ as in the statement. By definition of a Busemann function
there is a unit speed geodesic ray σ : [0,∞[→ X running to ξ in X ∪ ∂X, such that
for all x ∈ X we have

bξ(x) = lim
t→+∞

(d(x, σ(t))− t) .

On the other hand, by construction of Γ′ (using Lemma 4.4) we know that for all
axial isometries g ∈ Γ′ \ {1} we have

∀t ≥ 0 max
(
d(gx0, σ(t)), d(g−1x0, σ(t))

)
≥ d(x0, σ(t)) + 1;

passing to the limit we obtain (3) for all such g and for any choice of x0.
Now we show that for certain generic x0 the same is true for unipotent isometries.

In any case, for any unipotent isometry g of X, it follows from Proposition 4.2 and
the same argument as above that

(4) max(bξ(g
−1x0), bξ(gx0)) ≥ bξ(x0)

for all x0. We want to choose x0 in order to be able to rule out equality if g ∈ Γ′−Λξ.
For a given unipotent isometry η and a ζ ∈ ∂X with ηζ 6= ζ define

Eζ,η = {x ∈ X | bζ(ηx) = bζ(x)}
(note that this does not depend on the choice of the Busemann function bζ). This
is an embedded hyperplane in X, and hence (by Baire’s theorem) the subset

SΓ′ = X −
⋃
ζ,η

Eζ,η
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where the union runs over all parabolic elements η of Γ′ and all parabolic fixed
points ζ of Γ′, is dense in X. Moreover, by the definition of SΓ′ , for x0 ∈ SΓ′ we
never have bξ(gx0) = bξ(x0) for any unipotent g ∈ Γ′ with gξ 6= ξ. Thus (4) has to
be a strict inequality. �

Let ξ0 ∈ ∂X be a parabolic fixed point of Γ′ and bξ0 a Busemann function at ξ0.
We write Λ = Λξ0 . The function bξ0 is Λ-invariant and if we choose some x0 ∈ X
we may define a function f = fx0

on Γ′/Λ by

(5) f(γΛ) = bξ0(γ−1x0) = bγξ0(x0).

By the lemma this function satisfies

(6) ∀γΛ ∈ Γ′/Λ, ∀g ∈ Γ′, g 6∈ γΛγ−1 : max
(
f(gγΛ), f(g−1γΛ)

)
> f(γΛ),

whenever x0 ∈ SΓ′ . Indeed, we have

max
(
f(gγΛ), f(g−1γΛ)

)
= max

(
bγξ0(gx0), bγξ0(g−1x0)

)
and according to (3) the right-hand side is strictly larger than bγξ0(x0) = f(γΛ).

The existence of a function f satisfying (6) implies that the action Γ′ on Γ′/Λ
is weakly diffuse, i.e. every non-empty finite subset A ⊂ Γ′/Λ has at least one
extremal point. Indeed, any a ∈ A such that f(a) realizes the maximum of f on A
is extremal in A.

Using an additional trick we can actually deduce diffuseness. Let A ⊂ Γ′/Λ be
finite with |A| ≥ 2, and let a be an extremal point. By shifting A we can assume
that a = Λ. Now let ξ0 be the fixed point of Λ and bξ0 a Busemann function.
Choose x0 ∈ SΓ′ such that x0 is (up to Λ) the only point realizing the minimum of
bξ0 on Γ′x0 (this is possible by taking x0 in a sufficiently small horoball at ξ0, since
SΓ′ is dense) and define f on Γ′/Λ as in (5). By construction f takes it’s minimal
value at a. So let b ∈ A be a point where f takes a maximal value. By the given
argument b is extremal in A. On the other hand f(b) > f(a) and so b 6= a. We
conclude that A has at least two extremal points. �

5. Fundamental groups of three–manifolds

In this section we prove Theorem D, whose statement we recall now :

Theorem. Let M be a compact three–manifold and Γ = π1(M) its fundamental
group. Then there is a finite-index subgroup Γ′ ≤ Γ which is diffuse.

The proof is a rather typical application of Geometrization. We begin with an
algebraic result on graph products, afterwards we use it to construct a suitable
covering (cf. [37]).

5.1. Algebraic preliminaries: a gluing lemma. Bowditch [10] showed that if
Γ is the fundamental group of a graph of groups such that for any vertex group Γi
and adjacent edge group Λi, both the group Λi and the action of Γi on Γi/Λi are
diffuse, then Γ is diffuse. In order to glue manifolds it is necessary to understand
graph products of virtually diffuse groups. For free products there is a very simple
argument.

Lemma 5.1. The free product G = G1 ∗G2 of two virtually diffuse groups G1 and
G2 is again virtually diffuse.
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Proof. Let Hi ≤f Gi be a finite index diffuse subgroup. Consider the homomor-
phism φ : G→ G1 ×G2. The kernel K of φ is a free group (cf. I. Prop. 4 in [60]).
Let H denote the inverse image of H1 × H2 under φ. The subgroup H has finite
index in G and H ∩K is a free group. We get a short exact sequence

1 −→ K ∩H −→ H → H1 ×H2 −→ 1.

From Theorem 1.2 in [10] we see that H is diffuse. �

Note that the same argument shows that the free product of diffuse groups is
diffuse. In order to understand amalgamated products and HNN extensions of
virtually diffuse groups one needs to argue more carefully.

We will use the Bass-Serre theory of graph products of groups. We shall use
the notation of [60]. Recall that a graph of groups (G, Y ) is a finite graph Y with
vertices V (Y ) and edges E(Y ). Every edge e has an origin o(e) ∈ V (Y ) and a
terminus t(e) ∈ V (Y ). Moreover for every edge there is an opposite edge ē. To
every vertex P ∈ V (Y ) and every edge e ∈ E(Y ) there are attached groups GP
and Ge = Gē. Moreover, for every edge e there is a monomorphism ie : Ge → Gt(e)
usually denoted by a 7→ ae. To a graph of groups one attaches a fundamental group
π1(G, Y ) – the graph product.

Let (G, Y ) be a graph of groups. A normal subcollection (N,Y ) consists of two
families (NP E GP )P∈V (Y ) and (Ne E Ge)e∈E(Y ) of normal subgroups in the vertex
and edge groups which are compatible in the sense that

ie(Ne) = ie(Ge) ∩Nt(e) and Ne = Nē

for every edge e ∈ E(Y ). We say that (N,Y ) is of finite index, if for every vertex
P the index of NP in GP is finite.

Lemma 5.2. Let (G, Y ) be a graph of finite groups. The fundamental group Γ =
π1(G, Y ) is residually finite and virtually free.

Proof. The residual finiteness follows from Theorem 3.1 of Hempel [37]. To apply
his result we need to specify sufficiently small normal subcollections (H,Y ) in (G, Y )
such for every P ∈ V (Y ) the group HP has finite index in GP . Since we are dealing
with finite groups it is easy to check that we can simply choose HP = {1} and
He = {1} for every vertex P and edge e.

Using that Γ is residually finite, we can find a finite index subgroup N E Γ
which intersects the embedded vertex group GP trivially for any of the finitely
many vertices P ∈ V (Y ). Therefore, the subgroup N acts freely (without edge
inversion) on the Bass-Serre tree associated with the graph (G, Y ). We deduce that
N is a free group [60, I. Thm. 4]. �

Let (G, Y ) be a graph of groups and let (N,Y ) be a normal subcollection. To such
a data we can associate a quotient graph of groups (H,Y ) where HP = GP /NP
and He = Ge/Ne for all vertices P and edges e. There is a natural surjective
quotient morphism q : π1(G, Y ) → π1(H,Y ). We are now able to state and prove
the (algebraic) gluing Lemma.

Lemma 5.3 (Gluing Lemma). Let (G, Y ) be a graph of groups such that

(i) every edge group Ge is diffuse
(ii) there is a normal subcollection (N,Y ) of finite index such that for every edge

e ∈ E(Y ) the group Nt(e) acts diffusely on Gt(e)/ie(Ge).
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In this case the fundamental group Γ = π1(G, Y ) is virtually diffuse.

Proof. Consider the associated quotient morphism q : Γ→ π1(H,Y ). The kernel N
of q is the normal subgroup generated by the groups (NP )P∈V (Y ). Let Γ and N act
on the Bass-Serre tree T associated with (G, Y ). The stabilizer in Γ (resp. N) of a
vertex v ∈ V (T ) above P ∈ V (Y ) is isomorphic to GP (resp. NP ). It acts on the
set of adjacent edges E(v) ⊂ E(T ). Pick an edge e ∈ E(Y ) with t(e) = P . As a set
with GP action E(v) is isomorphic to GP /ie(Ge). By assumption (ii) the action
of NP on GP /ie(Ge) is diffuse. By a result of Bowditch [10, Prop. 2.2] we deduce
that E(T ) is a diffuse N set. Since the edge groups are assumed to be diffuse, we
see that N is diffuse.

The quotient (H,Y ) is a graph of finite groups, we know from Lemma 5.2 that
it is virtually free. Since free groups are diffuse, the short exact sequence

1 −→ N −→ Γ −→ π1(H,Y ) −→ 1

implies the assertion by Thm. 1.2 (2) of [10]. �

5.2. Geometrization and the proof of Theorem D.

5.2.1. Definitions. We recall here the definitions which allow to state the Ge-
ometrization Theorem which was conjectured by W. Thurston ([64], see also [59])
and proven by G. Perelman [51, 52] (see also [44] for a complete account of Perel-
man’s proof).

In the following we consider (without loss of generality) only orientable man-
ifolds. A three–manifold M is called irreducible if all embedded 2-spheres in M
bound a ball. A manifold is prime if it is irreducible or homeomorphic to S1 × S2.
According to the Kneser–Milnor decomposition every closed three–manifold is a
finite connected sum of prime manifolds. A closed irreducible manifold M has
a further topological decomposition, called the Jaco–Shalen–Johansson decomposi-
tion, which consists in a canonical collection of embedded, essentially disjoint 2-tori
in M (see [41]). The Geometrization Theorem states that every connected com-
ponent of the complement in M of this collection of tori is either a finite volume
hyperbolic manifold or Seifert fibered.

5.2.2. Virtual diffuseness. The following lemma treats the pieces of the Geometriza-
tion Theorem. It is the key ingredient for Theorem D.

Lemma 5.4. Let M be a compact three–manifold with incompressible toric bound-
ary. If M is either hyperbolic of finite volume or Seifert fibered, then Γ = π1(M)
contains a diffuse subgroup Γ′ of finite index. Moreover, if M has non-empty bound-
ary, then for almost all primes p the group Γ′ can be chosen so that for any periph-
eral subgroup Λ of Γ

(a) the Γ′-action on Γ/Λ is diffuse and
(b) Γ′ ∩ Λ is the characteristic subgroup of index p2.

Proof. Assume first that M is closed. If M is Seifert fibered, then π1(M) is a an
extension of a group which is virtually a surface group by a cyclic group C (cf.
Lemma 3.2 in [59]). If C is infinite, such a group is virtually diffuse by the results
of Bowditch [10]. Otherwise M is covered by S3 and the fundamental group is
finite. If M is hyperbolic, then the virtual diffuseness follows from Theorem B.

Now we turn to the case where M has non-empty boundary. Assume first that M
is hyperbolic. In π1(M) there are only finitely many, say m, hyperbolic conjugacy
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classes represented by elements h1, . . . , hm with translation length less than 2 log(1+√
2) (cf. Lemma 4.7). By Lemma 4.1 of [37] we can find, for almost all primes p, a

normal subgroup of finite index Γ′p ≤ π1(M) which does not contain h1, . . . , hm and

which intersects each peripheral subgroup in its characteristic subgroup of index p2.
Using Theorem 4.11 such a group Γ′p is diffuse and acts diffusely on Γ/Λ for any
peripheral Λ when p is large enough.

Finally assume that M is Seifert fibered. There is a short exact sequence

1 −→ Z −→ π1(M)
q−→ G −→ 1

where Z is generated by the regular fibers and G is the fundamental group of a
two dimensional orbifold B with non-empty boundary. Taking the finite index sub-
group of elements commuting with the regular fibres (which contains the peripheral
subgroups), we can assume that the extension is central. Since the boundary of M
is incompressible, the simple closed boundary curves d1, . . . dk of B have infinite
order in G. For almost all primes p there is a free normal subgroup Gp ⊂ G of
finite index such that Gp ∩ 〈di〉 = 〈dpi 〉. One way to see this is to argue using the
presentation of G as given in [36, 12.1]. Geometrically this can be seen as follows:
Glue a disc with a p-cone point into every boundary curve of B. For almost all p

the resulting orbifold Bp is good and has hence a finite sheeted regular cover B̃p
which is a manifold. Removing the inverse images of the glued discs we obtain
a finite covering space Sp of B which is a compact surface so that the boundary
components are p-fold covers of the boundary components of B. Since a compact
surface with non-empty boundary has a free fundamental group the claim follows.

The finite sheeted cover M̃p corresponding to q−1(Gp) has fundamental group
isomorphic to Z × Gp. Finally the group Γ′p = pZ × Gp is diffuse and intersects

the peripheral subgroups in their characteristic subgroups of index p2. It remains
to verify that the action of Γ′p on Γ/Λ is diffuse. This action factors through the
group Gp and so the assertion follows, for p large enough, from Theorem 4.11 if we
embed Gp as a discrete subgroup into SL2(R).

There is another argument for the diffuseness of this action: We can assume
that the surface Sp has more than one boundary component, and so the boundary
curves can be chosen to be part of a free generating set. Let F be a free group and
f ∈ F an element of a free generating set, then by Prop. 2.2 in [10] the action of F
on F/〈f〉 is diffuse. �

5.2.3. Proof of Theorem D. Let M be a compact three–manifold; by doubling it
(and since virtual diffuseness passes to subgroups) we may assume that it is in
fact closed. By Lemma 5.1 and the Kneser–Milnor decomposition we may assume
that M is irreducible. An irreducible manifold admits a geometric decomposition
(see 5.2.1), which yields a decomposition of π1(M) as a graph of groups whose
vertex groups are fundamental groups of Seifert fibered or hyperbolic manifolds
and the edge groups are peripheral subgroups. Choosing a prime number p which
is admissible for all the occurring pieces, it follows from Lemma 5.4 that this graph
of groups has a normal subcollection which satisfies the hypotheses of Lemma 5.3.

5.3. Three–dimensional infra-solvmanifolds. A three–dimensional solvmani-
fold is a (left) quotient of the solvable Lie group

Sol = R2 oR; t · x =

(
et

e−t

)
· x
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by a discrete subgroup; an infra-solvmanifold is a quotient of such by a finite group
acting freely. Any left-invariant Riemannian metric on Sol induces a complete
Riemannian metric on an infra-solvmanifold. A compact solvmanifold is finitely
covered by a torus bundle (see for example [59, Theorem 5.3 (i)]), hence its funda-
mental group contains a subgroup of finite index which is an extension of Z2 by Z.
More precisely, this group will be isomorphic to some

ΓA = 〈Z2, t | ∀v ∈ Z2, tvt−1 = Av〉
where A ∈ SL2(Z) is not unipotent. Such a group is diffuse by [10, Thm 1.2]. On
the other hand we will now explain how to construct infra-solvmanifolds (so-called
‘torus semi-bundles’) of dimension three with zero first Betti number (by gluing
I-bundles over Klein bottles, see [35]), which are then not locally indicable and
hence not diffuse.

The following result is a special case of Proposition 3.11. We shall give another
geometric argument (see also [33, Corollary 8.3] for a complete description of the
groups of isometries acting properly discontinuously, freely and cocompactly on Sol
from which it follows easily).

Proposition 5.5. In every commensurability class of compact three–dimensional
infra-solvmanifolds there is a manifold with non-diffuse fundamental group.

Proof. In this proof we will first describe a topological construction from [35] of
sol-manifolds with b1 = 0, and then show that any sol-manifold is commensurable
to one of these.

Let N be the non-trivial I-bundle over the Klein bottle, so that ∂N = T2. Then
for any mapping class B ∈ SL2(Z) of T2 the gluing M = N ∪φN has b1(M) = 0 or
is Seifert; in the former case it is a sol-manifold and is doubly covered by the torus
bundle with holonomy A0 = SB−1SB where S is the symmetry (x, y) 7→ (−x, y).
In this way we get all A0s of the form

(7) A0 =

(
b 2a
2c b

)
where a, b, c ∈ Z: this follows from a direct computation.

On the other hand we will see that for any hyperbolic A ∈ SL2(Z) there is an
integer n > 0 such that An is conjugated to a matrix of the form above. This implies
the proposition since then the mapping torus of An (which covers that of A) has
a quotient with b1 = 0. Let us prove this claim: take L to be the geodesic line (in
the Poincaré upper half-plane) orthogonal to the axis of A ending at ∞; then we
can find h ∈ SL2(Q) such that hL = (0,∞). Since h commensurates SL2(Z) the
group hAZh−1 ∩SL2(Z) is non-trivial ; take any A′ 6= Id in there, then A′ has both
diagonal coefficients equal (this also follows from a simple computation). Taking
A0 to be the cube or square of A′ we get a matrix of the form (7) above. �

Appendix A. Computational aspects

A.1. Finding ravels. Given a group Γ it is a substantial problem to decide whether
or not the group is diffuse. To a certain degree this problem is vulnerable to a com-
putational approach which will be explained in this section.

For all the following algorithms we suppose that we have a way of solving the
word problem in a given group Γ; in practice we used computations with matrices
to do this. We will not make reference to the group Γ in the algorithms.
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The first algorithm determines, given a finite subset A of Γ and an element a ∈ A,
whether a is extremal in A or not.

Algorithm 1 Given a ∈ A ⊂ Γ, determines if a is extremal in A

1: function IsExtremal(a,A)
2: B = A \ {a}
3: for all b ∈ B do
4: if ab−1a ∈ A then return False . If b = ga and g−1a = ab−1a ∈ A

then a is not extremal.
5: return True

The following algorithm returns the largest ravel contained in A by successively
removing extremal points. If A contains no ravel, then it returns the empty set. Of
course, the algorithm is not able to decide if a ravel exists at all (hence is of no use
to prove that a group is diffuse).

Algorithm 2 Given A ⊂ Γ, finds the largest ravel contained in A

1: function FindRavel(A)
2: for all a ∈ A do
3: if IsExtremal(a,A) = True then return FindRavel(A \ {a})
4: return A . No extremal point was found in A, so A is a ravel or empty

Finally, it may be of interest to determine minimal ravels; the following algo-
rithm, starting from a ravel A, finds a minimal one contained in A (note that the
result may depend on the order on which the elements of A are looped over).

Algorithm 3 Given a ravel A ⊂ Γ, finds a minimal ravel contained in A

1: function MinRavel(A)
2: for all a ∈ A do
3: B = FindRavel(A \ {a})
4: if B 6= ∅ then return MinRavel(B)

5: return A

To prove Proposition 2.3 we ran (with two different implementations in Magma
[8] and in Sage/Python [62]) the algorithms to test diffuseness on the group with
presentation

〈a, b|a2b2a2b−1ab−1, a2b2a−1ba−1b2〉,
which is the fundamental group of the Weeks manifold, the hyperbolic three–
manifold of smallest volume. We actually used the representation to SL2(C) given
in the proof of Proposition 3.2 in [20]:

a =

(
x 1
0 x−1

)
, b =

(
x 0

2− (x+ x−1) x−1

)
where

x6 + 2x4 − x3 + 2x2 + 1 = 0.

It turns out that the word metric ball of radius four in the generators a, b contains
a ravel of cardinality 141 (further computation showed that the latter contains a
minimal ravel of cardinality 23).
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A.2. Implementation.

A.2.1. SAGE. The Sage implementation of the algorithm (for linear groups) can
be found in [26]. It has to be run in a Sage environment, and the main function
is max_diff, which takes as input a pair (S,M) where M is a Sage MatrixSpace
object, and S a collection of invertible matrices in M. Its output is the (possibly
empty) maximal ravel contained in S. The file also contains the function ball,
which inputs a triple (r, gens,M) which computes the ball of radius r in the group
generated by the set gens of invertible matrices in M (in the word metric associated
to gens). Another file in [26] can be run directly in a Sage environment and outputs
a ravel of cardinality 141 in the Weeks manifold group.

A.2.2. MAGMA. An implementation for the MAGMA computer algebra system
can be found in [26]. It includes functions findRavel, findMinRavel and a pro-
cedure BallWeeks to generate a ball of given radius in the Weeks manifold group.
To compute a ravel in the Weeks manifold group run the following lines

|> B := BallWeeks(4);

|> findRavel(B);

Appendix B. A diffuse group which is not left-orderable
by Nathan M. Dunfield

This appendix is devoted to the proof of

Theorem B.1. Let N be the closed orientable hyperbolic 3-manifold defined below.
Then π1(N) is diffuse but not left-orderable.

This example was found by searching through the towers of finite covers of hyper-
bolic 3-manifolds studied in [18, §6]. There, each manifold has b1 = 0 (which is
necessary for π1 to be non–left-orderable) and the length of the systole goes to infin-
ity (so that we can apply Bowditch’s criterion for diffuseness). We begin by giving
two descriptions of N , one purely arithmetic and the other purely topological.

B.1. Arithmetic description. Throughout this section, a good reference for arith-
metic hyperbolic 3-manifolds is [48]. Let K = Q(α) be the number field where
α3 + α − 1 = 0; this is the unique cubic field with discriminant −31. It has one
real embedding and one pair of complex embeddings; our convention is that the
complex place corresponds to α ≈ −0.3411639 + 1.1615414i. Its integer ring OK
has unique factorization, so we will not distinguish between prime elements and
prime ideals of OK . The unique prime of norm 3 in OK is π = α + 1, and let D
be the quaternion algebra over K ramified at exactly π and the real place of K.
Concretely, we can take D to be generated by i and j where i2 = −1, j2 = −3
and k = ij = −ji. The manifold N will be the congruence arithmetic hyperbolic
3-manifold associated to D and the level π3, whose detailed construction we now
give.

Let OD be a maximal order in D; this is unique up to conjugation by [48,
Example 6.7.9(3)]. Let O1

D denote the elements of OD of (reduced) norm 1. At the
complex place of K, the algebra C⊗KD is just the matrix algebra M2(C). Let Λ be
the subgroup of PSL2(C) ∼= Isom+ H3 which is the image of O1

D under the induced
map D1 → SL2(C) → PSL2(C). Since D is a division algebra, Λ is a cocompact
lattice. Let Kπ be the π-adic completion of K, which is isomorphic to Q3. Let
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Dπ = Kπ⊗KD, which is the unique quaternion division algebra over Kπ [48, §2.6].
Define w : Dπ → Z by w = ν ◦ n where ν : Kπ → Z is the (logarithmic) valuation
and n : Dπ → Kπ is the norm function. Then Oπ = {u ∈ Dπ | w(u) ≥ 0} is the
valuation ring of Dπ and Q = {u ∈ Dπ | w(u) ≥ 1} is the maximal two-sided ideal
in Oπ (compare [48, §6.4]). Define Γ to be the image of O1

D ∩
(
1 +Q3

)
in PSL2(C),

and let N be the associated hyperbolic orbifold Γ
∖
H3.

We claim that Γ is torsion-free and hence N is a manifold. First note that
Qn = {u ∈ Dπ | w(u) ≥ n}. Now for γ ∈ Γ, we have γ = 1 + q for q ∈ Q3; from
n(γ) = 1 we get that tr(γ)−2 = −n(q) and thus tr(γ)−2 ∈ π3 since w(q) ≥ 3. If γ
has finite order, then tr(γ) = ξ + ξ−1 where ξ is a root of unity. Since tr(γ) ∈ OK ,
it would have to be one of {−1, 0, 1} and none of those are 2 mod π3. So N is a
manifold.

B.2. Topological description. Let M be the hyperbolic 3-manifold m007(3, 2)
from the Hodgson-Weeks census [39]; alternatively, M is the (−9/2,−3/2) Dehn
surgery on the Whitehead link L, where +1 surgery on L yields the figure-8 knot
rather than the trefoil. Then vol(M) ≈ 1.58316666 and H1(M ;Z) = Z/3Z⊕Z/9Z.
Let N ′ be the regular cover of M corresponding to any epimorphism π1(M) →
(Z/3Z)2; thus vol(N ′) ≈ 14.24849994. We will show:

Proposition B.2. The hyperbolic manifolds N and N ′ are isometric.

Proof. We give a detailed outline, but many steps are best checked by rigorous
computation; complete Sage [62] source code for this is available at [26]. From a
triangulation for the alternate topological description of M as m036(3,−1), Snap
[29, 22] gives the group presentation

(8) π1(M) =
〈
a, b

∣∣ aaBaabbAbb = 1, abbAbAAbAbb = 1
〉

where A = a−1 and B = b−1. Moreover, Snap rigorously checks that M is hyper-
bolic and that the holonomy representation π1(M)→ PSL2(C) lifts to ρ : π1(M)→
SL2(C) which is characterized (up to conjugacy) by tr (ρ(a)) = tr (ρ(b)) = α2 + 1
and tr (ρ(ab)) = α.

An OK basis for OD can be taken to be {1, i, x, y} where x = (i + j)/2 and
y = (3π + 3π2i+ π2j + πk)/6. If we define

(9) a = 1 + αi+ αx+ (α− 1)y and b = −i · a · i

then computing the norms and traces of
{
a, b, a · b

}
and evaluating the relations

in (8) shows that a 7→ a and b 7→ b gives a homomorphism π1(M)→ O1
D ≤ SL2(C)

which is a conjugate of ρ. Henceforth, we identify π1(M) with the subgroup of O1
D

generated by
{
a, b
}

.
Now, GAP or Magma [28, 8] easily checks that π1 (N ′) is generated by{

c = a3 , d = b3 , e = baBA, f = bABa
}

with defining relators:

DefDeceFdFcFe DeceDecDCEfCEfCfDf

ECEdFcDfDeceDeccFec fCfDecdcFecfDeceDec

To see that π1 (N ′) ≤ Γ, one just checks that w(g − 1) = 3 for g in {c, d, e, f} to
confirm that each is in 1+Q3. By the volume formula [48, Thm 11.1.3], vol(Λ

∖
H3) ≈

0.26386111 and hence [Λ : π1 (N ′)] = 54. On the other hand, one can calculate
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[Λ : Γ] exactly as in the proof of Theorem 1.4 of [18]; while the number field in that
example is Q(

√
−2), in both examples Kπ

∼= Q3 and hence have isomorphic Dπ.
Since it turns out that [Λ : Γ] is also 54, we have π1 (N ′) = Γ as claimed. �

Theorem B.1 follows immediately from the following two lemmas, whose proofs
are independent of one another.

Lemma B.3. Let N be the closed hyperbolic 3-manifold defined above. Then N
has systole ≈ 1.80203613 > 2 log

(
1 +
√

2
)
. In particular, π1(N) is diffuse.

Lemma B.4. Let N be the closed hyperbolic 3-manifold defined above. Then π1(N)
is not left-orderable.

Proof of Lemma B.3. We will show that the shortest geodesics in N correspond to
elements γ ∈ Γ = π1(N) with tr(γ) = α2 − α; one such element is ec = baBaa.
Since the translation length of γ is given by

(10) min(γ) = T (tr(γ)) where T (z) = Re
(
2 arcosh(z/2)

)
the systole will thus have length ≈ 1.8020361. The conclusion that Γ is diffuse
follows immediately from Bowditch’s criterion (iv) quoted above in Section 2.1.

We will use the Minkowski geometry of numbers picture (see e.g. [50, §I.5])
to determine the possible traces of elements of Γ with short translation lengths.
Let τC : K → C be the preferred complex embedding and τR : K → R be the
real embedding. We have the usual embedding from K into the Minkowski space
KR = R×C given by ι = τR× τC, and the key fact is that ι(OK) is a lattice in KR.
Thus the following set is finite:

T =
{
t ∈ OK

∣∣ |τR(t)| ≤ 2, |τC(t)| ≤ 4, and t− 2 ≡ 0 mod π3
}

We next show that T contains tr(γ) for any γ ∈ Γ with min(γ) ≤ 2.5. That
|τR(tr γ)| ≤ 2 follows since Γ is arithmetic: the quaternion algebra D ramifies at
the real place and so D1 becomes SU2 there. To see that min(γ) ≤ 2.5 implies
|τC(t)| ≤ 4, note that T (z) is minimized for fixed |z| on the real axis and that
T (4) < 2.6339.

To complete the proof of the lemma, we will show that T = {2, α2 −α, −2α2 +
α − 1}, which suffices since T (−2α2 + α − 1) ≈ 2.33248166. The natural inner

product on KR is such that |ι(k)|2 = |τR(k)|2 + 2|τC(k)|2 for all k ∈ K. Hence
any element of T has norm ≤ 6, and our strategy is to enumerate all elements of
ι(OK) to that norm and check which are in T . A Z-basis for OK is {1, α, α2}, and
the Gram matrix in that basis for the inner product on KR has smallest eigenvalue
≈ 1.534033. Regarding Z3 as having the standard norm from R3, this says that
the natural map Z3 → ι(OK) is distance nondecreasing. Hence every element of T
has the form c0 + c1α + c2a

2 where ci ∈ Z with c21 + c22 + c23 ≤ 36. Computing T
is now a simple enumeration of the 925 such triples (c1, c2, c3). See [26] for a short
program which does this. �

Turning to the proof of Lemma B.4, you will quickly see that it was discovered
by computer, using the method of [16, §8]. Verifying its correctness is a matter of
checking that 23 different elements in Γ are the identity, which can be easily done
using the explicit quaternions given in (9); sample code for this is provided with
[26].
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Proof of Lemma B.4. Assume Γ is left-orderable and consider the positive cone
P = {γ ∈ Γ | γ > 1}. We define some additional elements of Γ by

g = aBABB h = abbAb n = aBBAB m = aBaab v = ABAAb

By symmetry, we can assume g ∈ P . We now try all the possibilities for whether the
elements {g, h, n, d, c,m, v} are in P or not, in each case leading to the contradiction
that 1 ∈ P .
Case h ∈ P :

Case n ∈ P :
Case d ∈ P :

Case c ∈ P :
Case m ∈ P : Then P contains the following, which is 1 in Γ:

cgndhmgmcmdhmchm
Case M ∈ P : Then P contains the following, which is 1 in Γ:

MgndhdMgndhdMgnMhdMndMdMgndhdMgnMhdMgn
Case C ∈ P : Then P contains the following, which is 1 in Γ:

hCggnhCgChCgd
Case D ∈ P :

Case c ∈ P :
Case m ∈ P : Then P contains the following, which is 1 in Γ:

mcDnDmcDnDmcmnDmhDmDmcDnDmcmnDmc
Case M ∈ P : Then P contains the following, which is 1 in Γ:

gnMDnMgnnMgncDnMg
Case C ∈ P : Then P contains the following, which is 1 in Γ:

ChDnhCgDnhCggnnhCggnhCg
Case N ∈ P :

Case d ∈ P : Then P contains the following, which is 1 in Γ:
NdhNgdNdhhNgdNdhdNdhNgdNgdNdhdNdhNgdN

Case D ∈ P :
Case c ∈ P :

Case m ∈ P : Then P contains the following, which is 1 in Γ:
DmchNgmgmDNm

Case M ∈ P :
Case f ∈ P : Then P contains the following, which is 1 in Γ:

hNcNfhMhNcNfhNhNfDf
Case F ∈ P : Then P contains the following, which is 1 in Γ:

NhNcFMhNhNcFMhNcMhNcFcF
Case C ∈ P :

Case v ∈ P :
Case f ∈ P : Then P contains the following, which is 1 in Γ:

ChCgChNfhf
Case F ∈ P : Then P contains the following, which is 1 in Γ:

CvFhCgvhCgvFhCgCh
Case V ∈ P : Then P contains the following, which is 1 in Γ:

ChCgChNhCgChVChChNhCgChhChNhCgChVChVhhChNhCgChVChV
Case H ∈ P :

Case n ∈ P :
Case d ∈ P : Then P contains the following, which is 1 in Γ:

nHggdHnHgnnHggnnHggdHnHgndgnnHggnnHggdHnHgnn
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Case D ∈ P :
Case c ∈ P : Then P contains the following, which is 1 in Γ:

DnHcHDHgnnHcHDHDnnHcHDHDnDH
Case C ∈ P : Then P contains the following, which is 1 in Γ:

DHCnHgnnHggnnHgnHCnHgnnCnHCnHgnn
Case N ∈ P :

Case d ∈ P :
Case c ∈ P : Then P contains the following, which is 1 in Γ:

NNgdHcNgdHggdHgdNNgdHcNgdHggNgdHcNgdNNgdHcd
Case C ∈ P : Then P contains the following, which is 1 in Γ:

NgdHggdCgdNNgdCgNgdHggdCgdHggdCgdNd
Case D ∈ P :

Case c ∈ P :
Case m ∈ P : Then P contains the following, which is 1 in Γ:

NcHcHDNmDHDcHcHDNmHcHDNcHccHD
Case M ∈ P :

Case v ∈ P : Then P contains the following, which is 1 in Γ:
HcHDMvHcHDNcHHcHDNcHcv

Case V ∈ P : Then P contains the following, which is 1 in Γ:
DcVcHDNcHcHDcVcHDHVcHDH

Case C ∈ P :
Case m ∈ P : Then P contains the following, which is 1 in Γ:

DmgmDNmDNgmgmDNmDHDDmgmDNmDHHgmDNm
Case M ∈ P : Then P contains the following, which is 1 in Γ:

HDHCMHCMHDMCDHCMHDMHDMCMHCMHDM
�
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