Y. J. Wang, S. M. Hussain, and G. P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging, European Radiology, vol.11, issue.11, pp.2319-2331, 2001.
DOI : 10.1007/s003300100908

URL : https://repub.eur.nl/pub/73414/art-3A10.1007-2Fs003300100908.pdf

A. Jordan, R. Scholz, P. Wust, H. Fähling, and R. Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic Materials, vol.201, issue.1-3, pp.413-419, 1999.
DOI : 10.1016/S0304-8853(99)00088-8

C. G. Hadjipanayis, M. J. Bonder, S. Balakrishnan, X. Wang, H. Mao et al., Metallic Iron Nanoparticles for MRI Contrast Enhancement and Local Hyperthermia, Small, vol.252, issue.11, pp.1925-1929, 2008.
DOI : 10.1148/radiology.214.2.r00fe19568

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709953

R. A. Crane and T. B. Scott, Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology, Journal of Hazardous Materials, vol.211, issue.212, pp.211-212, 2012.
DOI : 10.1016/j.jhazmat.2011.11.073

X. Li, D. W. Elliott, and W. Zhang, Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects, Critical Reviews in Solid State and Materials Sciences, vol.80, issue.4, pp.31-111, 2006.
DOI : 10.1021/cm0218108

D. L. Huber, Synthesis, Properties, and Applications of Iron Nanoparticles, Small, vol.350, issue.5, pp.482-501, 2005.
DOI : 10.1627/jpi1958.41.182

W. Yan, H. L. Lien, B. E. Koel, and W. Zhang, Iron nanoparticles for environmental clean-up: recent developments and future outlook, Environ. Sci.: Processes Impacts, vol.65, issue.1, 2013.
DOI : 10.1016/j.chemosphere.2006.04.012

J. E. Muñoz, J. Cervantes, R. Esparza, and G. Rosas, Iron nanoparticles produced by high-energy ball milling, Journal of Nanoparticle Research, vol.257, issue.5, pp.945-950, 2007.
DOI : 10.1007/s11051-007-9226-6

L. B. Hoch, E. J. Mack, B. W. Hydutsky, J. M. Hershman, J. M. Skluzacek et al., Carbothermal Synthesis of Carbon-supported Nanoscale Zero-valent Iron Particles for the Remediation of Hexavalent Chromium, Environmental Science & Technology, vol.42, issue.7, pp.42-2600, 2008.
DOI : 10.1021/es702589u

M. Bystrzejewski, Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles, Journal of Solid State Chemistry, vol.184, issue.6, pp.1492-1498, 2011.
DOI : 10.1016/j.jssc.2011.04.018

C. Wang and W. Zhang, Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs, Environmental Science & Technology, vol.31, issue.7, pp.31-2154, 1997.
DOI : 10.1021/es970039c

F. He and D. Zhao, Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers, Environmental Science & Technology, vol.41, issue.17, pp.41-6216, 2007.
DOI : 10.1021/es0705543

T. Wang, X. Jin, Z. Chen, M. Megharaj, and R. Naidu, Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater, Science of The Total Environment, vol.466, issue.467, pp.466-467, 2014.
DOI : 10.1016/j.scitotenv.2013.07.022

A. Khachatryan, R. Sarkissyan, L. Hassratyan, and V. Khachatryan, Influence of ultrasound on nanostructural iron formed by electrochemical reduction, Ultrasonics Sonochemistry, vol.11, pp.405-408, 2004.
DOI : 10.1016/j.ultsonch.2003.10.003

V. Zin, B. G. Pollet, and M. Dabalà, Sonoelectrochemical (20kHz) production of platinum nanoparticles from aqueous solutions, Electrochimica Acta, vol.54, issue.28, pp.7201-7206, 2009.
DOI : 10.1016/j.electacta.2009.07.001

C. Léger, J. Elezgaray, and F. , Internal structure of dense electrodeposits, Physical Review E, vol.59, issue.235, pp.61-5452, 2000.
DOI : 10.1103/PhysRevE.59.3135

Y. Sawada, A. Dougherty, and J. P. Gollub, Dendritic and Fractal Patterns in Electrolytic Metal Deposits, Physical Review Letters, vol.56, issue.12, pp.1260-1263, 1986.
DOI : 10.1103/PhysRevLett.56.1264

URL : http://scholarship.haverford.edu/cgi/viewcontent.cgi?article=1069&context=physics_facpubs

D. Grier, E. Ben-jacob, R. Clarke, and L. M. Sander, Morphology and Microstructure in Electrochemical Deposition of Zinc, Physical Review Letters, vol.56, issue.12, pp.56-1264, 1986.
DOI : 10.1103/PhysRevLett.56.1260

V. Fleury, Branched fractal patterns in non-equilibrium electrochemical deposition from oscillatory nucleation and growth, Nature, vol.390, issue.6656, pp.145-148, 1997.
DOI : 10.1038/36522

]. A. Iranzo, F. Chauvet, and T. Tzedakis, Influence of electrode material and roughness on iron electrodeposits dispersion by ultrasonification, Electrochimica Acta, vol.184, pp.436-451, 2015.
DOI : 10.1016/j.electacta.2015.10.052

URL : https://hal.archives-ouvertes.fr/hal-01278898

D. Grujicic and B. Pesic, Iron nucleation mechanisms on vitreous carbon during electrodeposition from sulfate and chloride solutions, Electrochimica Acta, vol.50, issue.22, pp.4405-4418, 2005.
DOI : 10.1016/j.electacta.2005.02.013

S. Bodea, L. Vignon, R. Ballou, P. Molho, L. L. Néel et al., Electrochemical Growth of Iron Arborescences under In-Plane Magnetic Field: Morphology Symmetry Breaking, Physical Review Letters, vol.52, issue.13, pp.83-2612, 1999.
DOI : 10.1103/RevModPhys.52.1

URL : https://hal.archives-ouvertes.fr/hal-00082671

R. H. Liu, J. Yang, M. Z. Pindera, M. Athavale, and P. Grodzinski, Bubble-induced acoustic micromixing, Lab on a Chip, vol.2, issue.3, pp.151-157, 2002.
DOI : 10.1039/b201952c

S. S. Wang, Z. J. Jiao, X. Y. Huang, C. Yang, and N. T. Nguyen, Acoustically induced bubbles in a microfluidic channel for mixing enhancement, Microfluidics and Nanofluidics, vol.93, issue.6, pp.847-852, 2009.
DOI : 10.1007/s10404-008-0357-6

D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, A millisecond micromixer via single-bubble-based acoustic streaming, Lab on a Chip, vol.79, issue.11, pp.2738-2741, 2009.
DOI : 10.1039/B822982A

W. L. Nyborg, Acoustic Streaming, Physical acoustics, 1965.
DOI : 10.1016/B978-0-12-395662-0.50015-1

K. Nishikawa, Y. Fukunaka, E. Chassaing, and M. Rosso, Electrodeposition of metals in microgravity conditions, Electrochimica Acta, vol.100, pp.15-21, 2013.
DOI : 10.1016/j.electacta.2013.01.108

G. Marshall, E. Mocskos, G. González, S. Dengra, F. V. Molina et al., Stable, quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell electrodeposition, Electrochimica Acta, vol.51, issue.15, pp.51-3058, 2006.
DOI : 10.1016/j.electacta.2005.08.040

V. Heresanu, Electrodéposition sous champ magétique de zinc et de fer, Propriétés magnétiques des arborescences de fer, p.1, 2003.

C. Léger, L'électrodéposition en cellule mince sous l'oeil d'un interférometre: une étude expérimentale et théorique de processus limités par la diffusion, 1999.

J. M. Huth, H. L. Swinney, W. D. Mccormick, A. Kuhn, and F. , Role of convection in thin-layer electrodeposition, Physical Review E, vol.38, issue.4, pp.51-3444, 1995.
DOI : 10.1103/PhysRevA.38.1036

URL : https://hal.archives-ouvertes.fr/hal-01556984

I. B. Hibbert and J. R. Melrose, Copper electrodeposits in paper support, Physical Review A, vol.59, issue.2, pp.1036-1048, 1987.
DOI : 10.1103/PhysRevLett.59.2315

V. Fleury, J. H. Kaufman, and D. B. Hibbert, Mechanism of a morphology transition in ramified electrochemical growth, Nature, vol.367, issue.6462, pp.435-438, 1994.
DOI : 10.1038/367435a0

J. K. Lin and D. G. Grier, Stability of densely branched growth in dissipative diffusion-controlled systems, Physical Review E, vol.20, issue.3, pp.2690-2695, 1996.
DOI : 10.1063/1.1698258

R. H. Zhao and P. J. Pan, A spectrophotometric study of Fe(II)-Chloride complexes in aqueous solutions from 10 to 100 C, Can, J. Chem. Can. Chim, pp.79-131, 2001.

Y. Li and S. Gregory, Diffusion of ions in sea water and in deep sea sediments, Geochim. Cosmochim. Acta, vol.38, pp.703-714, 1973.

E. Samson, J. Marchand, and K. A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures, vol.11, issue.3, pp.156-165, 2003.
DOI : 10.6028/jres.105.040

Y. Liu, S. A. Majetich, D. S. Sholl, and G. V. Lowry, TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties, Environmental Science & Technology, vol.39, issue.5, pp.39-1338, 2005.
DOI : 10.1021/es049195r

G. Zhang, Y. Liao, and I. Baker, Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia, Materials Science and Engineering: C, vol.30, issue.1, pp.92-97, 2010.
DOI : 10.1016/j.msec.2009.09.003