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CNRS et Université Paris 7, France
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Abstract

We prove that the Büchi topology and the automatic topology are Polish. We also show that
this cannot be fully extended to the case of the space of infinite labelled binary trees; in particular
the Büchi and the Muller topologies are not Polish in this case.

1 Introduction

This paper is a contribution to the study of the interactions between descriptive set theory and
theoretical computer science. These interactions have already been the subject of many studies, see
for instance [21, 45, 24, 42, 36, 33, 34, 39, 8, 38, 9, 13, 31, 11, 7, 41, 4, 28].
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In particular, the theory of automata reading infinite words, which is closely related to infinite
games, is now a rich theory which is used for the specification and the verification of non-terminating
systems, see [15, 34]. The space ΣN of infinite words over a finite alphabet Σ, equipped with the
usual Cantor topology τC , is a natural place to study the topological complexity of the ω-languages
accepted by various kinds of automata. In particular, it is interesting to locate them with respect to
the Borel and the projective hierarchies.

However, as noticed in [35] by Schwarz and Staiger and in [18] by Hoffmann and Staiger, it
turns out that for several purposes some other topologies on the space ΣN are useful, for instance for
studying fragments of the first-order logic over infinite words, or for a topological characterization of
the random infinite words (see also [17]). In particular, Schwarz and Staiger studied four topologies
on the space ΣN of infinite words over a finite alphabet Σ, which are all related to automata, and refine
the Cantor topology on ΣN: the Büchi topology, the automatic topology, the alphabetic topology, and
the strong alphabetic topology.

Recall that a topological space is Polish if and only if it is separable, i.e., contains a countable
dense subset, and its topology is induced by a complete metric. Classical descriptive set theory is
about the topological complexity of the definable subsets of the Polish topological spaces, as well
as the study of some hierarchies of topological complexity (see [19, 34] for the basic notions). The
analytic sets, which are the projections of the Borel sets, are of particular importance. Similar hier-
archies of complexity are studied in effective descriptive set theory, which is based on the theory of
recursive functions (see [30] for the basic notions). The effective analytic subsets of the Cantor space
(2N, τC) are highly related to theoretical computer science, in the sense that they coincide with the
sets recognized by some special kind of Turing machine (see [43]).

We now give details about some topologies that we investigate in this paper. Let Σ be a finite
alphabet with at least two symbols. We consider the following topologies on ΣN.

• the Büchi topology τB , generated by the set BB of ω-regular languages,

• the automatic topology τA, generated by the set BA of τC-closed ω-regular languages (this
topology is remarkable because any τC-closed (or even τC-Π0

2) ω-regular language is accepted
by some deterministic Büchi automaton, [34]),

• the topology τδ, generated by the set Bδ of languages accepted by some unambiguous Büchi
Turing machine,

• the Gandy-Harrington topology τGH , generated by the set BGH of languages accepted by some
Büchi Turing machine.

In [35], Schwarz and Staiger prove that τB and τA are metrizable. The topology τB is separable,
by definition, because there are only countably many regular ω-languages. It remains to see that it is
completely metrizable to see that it is Polish. This is one of the main results proved in this paper.

Theorem 1 Let z ∈ {C,B,A, δ}. Then τz is Polish and zero-dimensional.

From this result, it is already possible to infer many properties of the space ΣN, equipped with the
Büchi topology (see [3] for an extended list). In particular, we get some results about the σ-algebra
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generated by the ω-regular languages. It is stratified in a hierarchy of length ω1 (the first uncountable
ordinal) and there are universal sets at each level of this hierarchy. Notice that this σ-algebra coincides
with the σ-algebra of Borel sets for the Cantor topology. However, the levels of the Borel hierarchy
differ for the two topologies. For instance, an ω-regular set which is non-Π0

2 for the Cantor topology
is clopen (i.e., ∆0

1) for the Büchi topology. Therefore the results about the existence of universal sets
at each level of the σ-algebra generated by the ω-regular languages are really new and interesting.

We also investigate, following a suggestion of H. Michalewski, whether it is possible to extend
these results to the case of a space TωΣ of infinite binary trees labelled with letters of the alphabet Σ.
On the one hand, the automatic topology can be proved to be Polish in a similar way. On the other
hand, we show that the Büchi topology (generated by the set of regular tree languages accepted by
some Büchi tree automaton) and the Muller topology (generated by the set of regular tree languages
accepted by some Muller tree automaton) are both non-Polish. However we prove that these two
topologies have quite different properties: the first one is strong Choquet but not metrizable while the
second one is metrizable but not strong Choquet.

2 Background

We first recall the notions required to understand fully the introduction and the sequel (see for
example [34, 42, 19, 30]).

2.1 Theoretical computer science

A Büchi automaton is a tuple A = (Σ, Q,Qi, Qf , δ), where Σ is the input alphabet, Q is the
finite set of states, Qi and Qf are the sets of initial and final states, and δ is the transition relation.
The transition relation δ is a subset of Q× Σ×Q.

A run on some sequence σ ∈ ΣN is a sequence (qn)i∈N ∈ QN of states such that q0 is initial
(q0 ∈ Qi) and

(
qi, σ(i), qi+1

)
is a transition in δ for each i ≥ 0. It is accepting if it visits infinitely

often final states, i.e., qi ∈ Qf for infinitely many i’s. An input sequence σ is accepted if there exists
an accepting run on α. The set of accepted inputs is denoted L(A). A set of infinite words is called
ω-regular if it is equal to L(A) for some automaton A (see [34] for the basic notions about regular
ω-languages, which are the ω-languages accepted by some Büchi or Muller automaton).

A Büchi automaton is actually similar to a classical finite automaton. A finite word w of length n
is accepted by some automaton A if there is sequence (qi)i≤n of n + 1 states such that q0 is initial
(q0 ∈ Qi), qn is final (qn ∈ Qf ) and (qi, σ(i), qi+1) is a transition in δ for each 0 ≤ i < n. The set
of accepted finite words is denoted by U(A). A set of finite words is called regular if it is equal to
U(A) for some automaton A.

Let U be a set of finite words, and V be a set of finite or infinite words. We recall that

U · V = {u · v | u ∈ U ∧ v ∈ V }.

An infinite word is ultimately periodic if it is of the form u · vω, where u, v are finite words. The
ω-power of a set U of finite words is defined by

Uω = {σ ∈ ΣN | ∃ (wi)i∈N ∈ UN such that σ = w0 · w1 · w2 · · · }.

The ω-powers play a crucial role in the characterization of ω-regular languages (see [2]).
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Theorem 2.1 (Büchi) Let Σ be a finite alphabet, and L ⊆ ΣN. The following are equivalent:

1. L is ω-regular,

2. there are 2n regular languages (Ui)i<n and (Vi)i<n such that L =
⋃
i<n Ui · V ω

i .

In particular, each singleton {uvω} formed by an ultimately periodic ω-word is an ω-regular
language. We now recall some important properties of the class of ω-regular languages (see [34]
and [35]). Let Σ be a set, and Σ∗ be the set of finite sequences of elements of Σ. If w ∈ Σ∗, then w
defines the usual basic clopen (i.e., closed and open) set Nw := {σ ∈ ΣN | w is a prefix of σ} of the
Cantor topology τC (so BC := {∅} ∪ {Nw | w ∈ Σ∗} is a basis for τC).

Theorem 2.2 (Büchi) The class of ω-regular languages contains the usual basic clopen sets and is
closed under finite unions and intersections, taking complements, and projections (from a product
alphabet onto one of its coordinates).

We now turn to the study of Turing machines (see [6, 42]). A Büchi Turing machine is a tuple
M = (Σ,Γ, Q, q0, Qf , δ), where Σ and Γ are the input and tape alphabets satisfying Σ ⊆ Γ, Q is the
finite set of states, q0 is the initial state, Qf is the set of final states, and δ is the transition relation.
The relation δ is a subset of (Q× Γ)× (Q× Γ× {−1, 0, 1}).

A configuration ofM is a triple (q, γ, j) where q ∈ Q is the current state, γ ∈ ΓN is the content
of the tape and the non-negative integer j ∈ N is the position of the head on the tape.

Two configurations (q, γ, j) and (q′, γ′, j′) of M are consecutive if there exists a transition
(q, a, q′, b, d) ∈ δ such that the following conditions are met.

1. γ(j) = a, γ′(j) = b and γ(i) = γ′(i) for each i 6= j. This means that the symbol a is replaced
by the symbol b at the position j and that all the other symbols on the tape remain unchanged.

2. the two positions j and j′ satisfy the equality j′ = j + d.

A run of the machine M on some input σ ∈ ΣN is a sequence (pi, γi, ji)i∈N of consecutive
configurations such that p0 = q0, γ0 = σ and j0 = 0. The run is accepting if it visits infinitely often
the final states, i.e., pi ∈ Qf for infinitely many i’s. The ω-language accepted by M is the set of
inputs σ such that there exists an accepting run on σ.

Notice that some other accepting conditions have been considered for the acceptance of infinite
words by Turing machines, like the 1’ or Muller ones (the latter one was firstly called 3-acceptance),
see [6, 42]. Moreover, several types of required behaviour on the input tape have been considered in
the literature, see [43, 12, 10].

A Büchi automaton A is in fact a Büchi Turing machine whose head only moves forwards. This
means that each of its transitions has the form (p, a, q, b, d) where d = 1. Note that the written
symbol b is never read.

2.2 Descriptive set theory

Classical descriptive set theory takes place in Polish topological spaces. We first recall that if d
is a distance on a set X , and (xn)n∈N is a sequence of elements of X , then the sequence (xn)n∈N is
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called a Cauchy sequence if

∀k ∈ N ∃N ∈ N ∀p, p′ ≥ N d(xp, xp′) <
1

2k
.

In a topological space X whose topology is induced by a distance d, the distance d and the metric
space (X, d) are said to be complete if every Cauchy sequence in X is convergent.

Definition 2.3 A topological space X is a Polish space if it is

1. separable (there is a countable dense sequence (xn)n∈N in X),

2. completely metrizable (there is a complete distance d on X which is compatible with the topol-
ogy of X).

The most classical hierarchy of topological complexity in descriptive set theory is the one given
by the Borel classes. If Γ is a class of sets in metrizable spaces, then Γ̌ := {¬S | S ∈Γ} is the class
of complements of elements of Γ. Recall that the Borel hierarchy is the inclusion from left to right in
the following picture.

Σ0
1 =open Σ0

2 =(Π0
1)σ Σ0

ξ =(
⋃
η<ξ Π0

η)σ

∆0
1 =clopen ∆0

2 =Σ0
2 ∩Π0

2 · · · ∆0
ξ =Σ0

ξ ∩Π0
ξ · · ·

Π0
1 =closed Π0

2 =Σ̌0
2 Π0

ξ =Σ̌0
ξ

Above the Borel hierarchy sits the projective hierarchy, which the inclusion from left to right in the
following picture.

Σ1
1 =analytic Σ1

2 =Projections of Π1
1 sets Σ1

n+1 =Projections of Π1
n sets

Π1
1 =Σ̌1

1 Π1
2 =Σ̌1

2 Π1
n+1 =Σ̌1

n+1

Effective descriptive set theory is based on the notion of a recursive function. A function from Nk to
Nl is said to be recursive if it is total and computable. By extension, a relation is called recursive if
its characteristic function is recursive.

Definition 2.4 A recursive presentation of a Polish space X is a pair
(
(xn)n∈N, d

)
such that

1. (xn)n∈N is dense in X ,

2. d is a compatible complete distance on X such that the following relations P and Q are recur-
sive:

P (i, j,m, k) ⇐⇒ d(xi, xj) ≤
m

k + 1
,

Q(i, j,m, k) ⇐⇒ d(xi, xj) <
m

k + 1
.
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A Polish space X is recursively presented if there is a recursive presentation of it. Note that the
formula (p, q) 7→ 2p(2q + 1) − 1 defines a recursive bijection N2 → N. One can check that the
coordinates of the inverse map are also recursive. They will be denoted n 7→ (n)0 and n 7→ (n)1 in
the sequel. These maps will help us to define some of the basic effective classes.

Definition 2.5 Let
(
(xn)n∈N, d

)
be a recursive presentation of a Polish space X .

1. We fix a countable basis of X: B(X,n) is the open ball Bd(x(n)0
, ((n)1)0

((n)1)1+1).

2. A subset S of X is semirecursive, or effectively open (denoted S ∈ Σ 0
1) if

S =
⋃
n∈N

B
(
X, f(n)

)
,

for some recursive function f .

3. A subset S of X is effectively closed (denoted S ∈ Π 0
1 ) if its complement ¬S is semirecursive.

4. One can check that a product of two recursively presented Polish spaces has a recursive presen-
tation, and that the Baire space NN has a recursive presentation. A subset S of X is effectively
analytic (denoted S ∈ Σ 1

1 ) if there is a Π 0
1 subset C of X × NN such that

S = π0[C] := {x ∈ X | ∃α ∈ NN (x, α) ∈ C}.

5. A subset S of X is effectively co-analytic (denoted S ∈ Π 1
1 ) if its complement ¬S is effectively

analytic, and effectively Borel if it is in Σ 1
1 and Π 1

1 (denoted S ∈ ∆1
1).

6. We will also use the following relativized classes: if X , Y are recursively presented Polish
spaces and y ∈ Y , then we say that A ⊆ X is in Σ 1

1 (y) if there is S ∈ Σ 1
1 (Y × X) such

that A = Sy := {x ∈ X | (y, x) ∈ S}. The class Π 1
1 (y) is defined similarly. We also set

∆1
1(y) := Σ 1

1 (y) ∩Π 1
1 (y).

The crucial link between the effective classes and the classical corresponding classes is as fol-
lows: the class of analytic (resp., co-analytic, Borel) subsets of Y is equal to

⋃
α∈NN Σ 1

1 (α) (resp.,⋃
α∈NN Π 1

1 (α),
⋃
α∈NN ∆1

1(α)). This allows to use effective descriptive set theory to prove results of
classical type. In the sequel, when we consider an effective class in some ΣN with Σ finite, we will
always use a fixed recursive presentation associated with the Cantor topology. The following result is
proved in [43], see also [10].

Theorem 2.6 Let Σ be a finite alphabet, and L ⊆ ΣN. The following statements are equivalent:

1. L = L(M) for some Büchi Turing machineM,

2. L ∈ Σ 1
1 .

We now recall the strong Choquet game played by two players on a topological space X . Players
1 and 2 play alternatively. At each turn i, Player 1 plays by choosing an open subset Ui and a
point xi ∈ Ui such that Ui ⊆ Vi−1, where Vi−1 has been chosen by Player 2 at the previous turn.
Player 2, plays by choosing an open subset Vi such that xi ∈ Vi and Vi ⊆ Ui. Player 2 wins the game
if
⋂
i∈N Vi 6= ∅. We now recall some classical notions of topology.

6



Definition 2.7 A topological space X is said to be

• T1 if every singleton of X is closed,

• regular if for every point of X and every open neighborhood U of x, there is an open neighbor-
hood V of x such that the closure of V is contained in U ,

• second countable if its topology has a countable basis,

• zero-dimensional if there is a basis made of clopen sets,

• strong Choquet if X is not empty and Player 2 has a winning strategy in the strong Choquet
game.

Note that every zero-dimensional space is regular. The following result is Theorem 8.18 in [19].

Theorem 2.8 (Choquet) A nonempty, second countable topological space is Polish if and only if it
is T1, regular, and strong Choquet.

Let X be a nonempty recursively presented Polish space. The Gandy-Harrington topology on X
is generated by the Σ 1

1 subsets of X , and denoted τXGH . By Theorem 2.6, this topology is also related
to automata and Turing machines. As there are some effectively analytic sets whose complement is
not analytic, the Gandy-Harrington topology is not metrizable (in fact not regular) in general (see
3E.9 in [30]). In particular, it is not Polish.

Let Γ be a class of sets in Polish spaces. If Y is a Polish space, then we say that A ∈ Γ(Y ) is
Γ-complete if, for each zero-dimensional Polish space X and each B ∈ Γ(X), there is f :X→ Y
continuous such that B= f−1(A). By Section 22.B in [19], if Γ is of the form Σ or Π in the Borel
or the projective hierarchy, and if A is Γ-complete, then A is not in Γ̌. Theorem 22.10 in [19] gives a
converse in the Borel hierarchy.

3 Proof of Theorem 1

The proof of Theorem 1 is organized as follows. We provide below four properties which en-
sure that a given topological space is strong Choquet. Then we use Theorem 2.8 to prove that the
considered spaces are indeed Polish.

Let Σ be a countable alphabet. The set ΣN is equipped with the product topology of the discrete
topology on Σ, unless another topology is specified. This topology is induced by a natural metric,
called the prefix metric which is defined as follows. For σ 6= σ′ ∈ ΣN, the distance d is given by

d(σ, σ′) =
1

2r
, where r = min{n ∈ N | σ(n) 6= σ′(n)}.

When Σ is finite this topology is the classical Cantor topology. When Σ is countably infinite the
topological space is homeomorphic to the Baire space NN.

Let Σ and Γ be two alphabets. The function which maps each pair (σ, γ) ∈ ΣN × ΓN to the
element

(
σ(0), γ(0)

)
,
(
σ(1), γ(1)

)
, . . . of (Σ × Γ)N is a homeomorphism between ΣN × ΓN and

(Σ× Γ)N allowing us to identify these two spaces.

7



If Σ is a set, σ ∈ ΣN and l ∈ N, then σ|l is the prefix of σ of length l.
We set 2 := {0, 1} and P∞ := {α ∈ 2N | ∀k ∈ N ∃i ≥ k α(i) = 1}. This latter set is simply

the set of infinite words over the alphabet 2 having infinitely many 1’s.
We will work in the spaces of the form ΣN, where Σ is a finite set with at least two elements. We

consider a topology τΣ on ΣN, and a basis BΣ for τΣ. We consider the following properties of the
family (τΣ,BΣ)Σ, using the previous identification of ΣN × ΓN and (Σ× Γ)N:

(P1) BΣ contains the usual basic clopen sets Nw,

(P2) BΣ is closed under finite unions and intersections,

(P3) BΣ is closed under projections, in the sense that if Γ is a finite set with at least two elements
and L ∈ BΣ×Γ, then π0[L] ∈ BΣ,

(P4) for each L ∈ BΣ there is a closed subset C of ΣN × P∞ (i.e., C is the intersection of a
τC-closed subset of the Cantor space ΣN× 2N with ΣN×P∞), which is in BΣ×2, and such that
L = π0[C].

Theorem 3.1 Assume that a family (τΣ,BΣ)Σ satisfies Properties (P1)-(P4). Then the topologies τΣ

are strong Choquet.

Proof. We first describe a strategy τ for Player 2. Player 1 first plays σ0 ∈ ΣN and a τΣ-open
neighborhood U0 of σ0. Let L0 in BΣ with σ0 ∈ L0 ⊆ U0. Property (P4) gives C0 with L0 = π0[C0].
This gives α0 ∈ P∞ such that (σ0, α0) ∈ C0. We choose l00 ∈ N big enough to ensure that if

s0
0 := α0|l00,

then s0
0 has at least a coordinate equal to 1. We set w0 := σ0|1 and V0 := π0[C0 ∩ (Nw0 ×Ns00

)]. By
Properties (P1)-(P3), V0 is in BΣ and thus τΣ-open. Moreover, σ0 ∈ V0 ⊆ L0 ⊆ U0, so that Player 2
respects the rules of the game if he plays V0.

Now Player 1 plays σ1 ∈ V0 and a τΣ-open neighborhood U1 of σ1 contained in V0. Let L1 in
BΣ with σ1 ∈ L1 ⊆ U1. Property (P4) gives C1 with L1 = π0[C1]. This gives α1 ∈ P∞ such that
(σ1, α1) ∈ C1. We choose l10 ∈ N big enough to ensure that if s1

0 := α1|l10, then s1
0 has at least one

coordinate equal to 1. As σ1 ∈ V0, there is α′0 ∈ P∞ such that (σ1, α
′
0) ∈ C0 ∩ (Nw0 × Ns00

). We
choose l01 > l00 big enough to ensure that if s0

1 := α′0|l01, then s0
1 has at least two coordinates equal to

1. We set w1 := σ1|2 and V1 := π0[C0 ∩ (Nw1 ×Ns01
)] ∩ π0[C1 ∩ (Nw0 ×Ns10

)]. Here again, V1 is
τΣ-open. Moreover, σ1 ∈ V1 ⊆ U1 and Player 2 can play V1.

Next, Player 1 plays σ2 ∈ V1 and a τΣ-open neighborhood U2 of σ2 contained in V1. Let L2 in
BΣ with σ2 ∈ L2 ⊆ U2. Property (P4) gives C2 with L2 = π0[C2]. This gives α2 ∈ P∞ such that
(σ2, α2) ∈ C2. We choose l20 ∈ N big enough to ensure that if s2

0 := α2|l20, then s2
0 has at least one

coordinate equal to 1. As σ2 ∈ V1, there is α′1 ∈ P∞ such that (σ2, α
′
1) ∈ C1 ∩ (Nw0 × Ns10

). We
choose l11 > l10 big enough to ensure that if s1

1 := α′1|l11, then s1
1 has at least two coordinates equal

to 1. As σ2 ∈ V1, there is α′′0 ∈ P∞ such that (σ2, α
′′
0) ∈ C0 ∩ (Nw1 × Ns01

). We choose l02 > l01
big enough to ensure that if s0

2 := α′′0|l02, then s0
2 has at least three coordinates equal to 1. We set
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w2 := σ2|3 and V2 := π0[C0∩ (Nw2 ×Ns02
)]∩π0[C1∩ (Nw1 ×Ns11

)]∩π0[C2∩ (Nw0 ×Ns20
)]. Here

again, V2 is τΣ-open. Moreover, σ2 ∈ V2 ⊆ U2 and Player 2 can play V2.
If we go on like this, we build wl ∈ Σl+1 and snl ∈ 2∗ such that w0 ⊆ w1 ⊆ ... and sn0 $sn1 $ ...

This allows us to define σ := liml→∞ wl ∈ ΣN and, for each n ∈ N, αn := liml→∞ snl ∈ 2N. Note
that αn ∈ P∞ since snl has at least l+ 1 coordinates equal to 1. As (σ, αn) is the limit of (wl, s

n
l ) as l

goes to infinity and Nwl
×Nsnl

meets Cn (which is closed in ΣN×P∞ in the sense of Property (P4)),
(σ, αn) ∈ Cn. Thus

σ ∈
⋂
n∈N

π0[Cn] =
⋂
n∈N

Ln ⊆
⋂
n∈N

Un ⊆
⋂
n∈N

Vn,

so that τ is winning for Player 2. �

3.1 The Gandy-Harrington topology

We have already mentioned the fact that the Gandy-Harrington topology is not Polish in general.
However, it is almost Polish since it fulfills Properties (P1)-(P4).

Let Σ be a finite alphabet with at least two elements and X be the space ΣN equipped with the
topology τΣ := τXGH generated by the family BΣ of Σ 1

1 subsets of X . Note that the assumption of
Theorem 3.1 are satisfied. Indeed, (P1)-(P3) come from 3E.2 in [30]. For (P4), let F be a Π 0

1 subset
of X × NN such that L = π0[F ]. Let ϕ be the function from NN to 2N defined by

ϕ(β) = 0β(0)10β(1)1 . . .

Note that ϕ is a homeomorphism from NN onto P∞, and recursive (which means that the relation
ϕ(β) ∈ N(2N, n) is semirecursive in β and n). This implies that C := (Id×ϕ)[F ] is suitable (see
3E.2 in [30]).

Note that τΣ is second countable since there are only countably many Σ 1
1 subsets of X (see 3F.6

in [30]), T1 since it is finer than the usual topology by the property (P1), and strong Choquet by
Theorem 3.1.

One can show that there is a dense basic open subset ΩX of (X, τΣ) such that S ∩ΩX is a clopen
subset of (ΩX , τΣ) for each Σ 1

1 subset S of X (see [22]). In particular, (ΩX , τΣ) is zero-dimensional,
and regular. As it is, just like (X, τΣ), second countable, T1 and strong Choquet, (ΩX , τΣ) is a Polish
space, by Theorem 2.8.

3.2 The Büchi topology

Let Σ be a finite alphabet with at least two symbols, and X be the space ΣN equipped with the
Büchi topology τB generated by the family BB of ω-regular languages in X . Theorem 29 in [35]
shows that τB is metrizable. We now give a distance which is compatible with τB . This metric was
used in [17] (Theorem 2 and Lemma 21 and several corollaries following Lemma 21). A similar
argument for subword metrics is in Section 4 in [18]. If A is a Büchi automaton, then we denote |A|
the number of states of A. We say that a Büchi automaton separates x and y if and only if(

x ∈ L(A) ∧ y /∈L(A)
)
∨
(
y ∈ L(A) ∧ x /∈L(A)

)
.
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The distance δ on ΣN is then defined as follows: for x, y ∈ ΣN, δ(x, y) =

{
0 if x = y,
1

2n if x 6= y,
where

n := min{|A| | A is a Büchi automaton which separates x and y}. We now describe some properties
of the map δ. This is the occasion to illustrate the notion of a complete metric.

Proposition 3.2 The following properties of δ hold:

1. the map δ defines a distance on ΣN,

2. the distance δ is compatible with τB ,

3. the distance δ is not complete.

Proof. 1. If x, y ∈ ΣN, then δ(x, y) = δ(y, x), by definition of δ. Let x, y, z ∈ ΣN, and assume that
δ(x, y) + δ(y, z) < δ(x, z) = 1

2n . Then δ(x, y) < 1
2n and δ(y, z) < 1

2n hold. In particular, if A is a
Büchi automaton with n states then it does not separate x and y and similarly it does not separate y
and z. Thus either x, y, z ∈ L(A) or x, y, z /∈ L(A). This implies that the Büchi automaton A does
not separate x and z. As this holds for every Büchi automaton with n states, δ(x, z) < 1

2n . This leads
to a contradiction and thus δ(x, z) ≤ δ(x, y) + δ(y, z) for all x, y, z ∈ ΣN. This shows that δ is a
distance on ΣN.

2. Recall that an open set for this topology is a union of ω-languages accepted by some Büchi
automaton. Let then L(A) be an ω-language accepted by some Büchi automaton A having n states,
and x ∈ L(A). We now show that the open ball B(x, 1

2n+1 ) with center x and δ-radius 1
2n+1 is a

subset of L(A). Indeed, if δ(x, y) < 1
2n+1 < 1

2n , then x and y cannot be separated by any Büchi
automaton with n states, and thus y ∈ L(A). This shows that L(A) (and therefore any open set for
τB) is open for the topology induced by the distance δ. Conversely, let B(x, r) be an open ball for the
distance δ, where r > 0 is a positive real. It is clear from the definition of the distance δ that we may
only consider the case r = 1

2n for some natural number n. Then y ∈ B(x, 1
2n ) if and only if x and y

cannot be separated by any Büchi automaton with p ≤ n states. Therefore the open ball B(x, 1
2n ) is

the intersection of the regular ω-languages L(Ai) for some Büchi automata Ai having p ≤ n states
and such that x ∈ L(Ai), and of the regular ω-languages ΣN \L(Bi) for some Büchi automata Bi
having p ≤ n states and such that x /∈ L(Bi). The class of regular ω-languages being closed under
taking complements and finite intersections, the open ball B(x, 1

2n ) is actually a regular ω-language
and thus an open set for τB .

3. Without loss of generality, we set Σ = 2 and we consider, for a natural number n ≥ 1, the
ω-word Xn = 0n! · 1 · 0ω over the alphabet 2 having only one symbol 1 after n! symbols 0, where
n! := n × (n − 1) × · · · × 2 × 1. Let now m > n > k and A be a Büchi automaton with k states.
Using a classical pumping argument, we can see that the automaton A cannot separate Xn and Xm.
Indeed, assume first that Xn ∈ L(A). Then, when reading the first k symbols 0 of Xn, the automaton
enters at least twice in a same state q. This implies that: (∃p ≤ k) (∀l ≥ 1) 0n!+lp · 1 · 0ω ∈ L(A).
In particularm! = n!×(n+1)×· · ·×m = n!+n!×

((
(n+1)×· · ·×m

)
−1
)

is of this form and thus
Xm ∈ L(A). A very similar pumping argument shows that if Xm ∈ L(A), then Xn ∈ L(A). This
shows that δ(Xn, Xm) < 1

2k
and finally that the sequence (Xn) is a Cauchy sequence for the distance

δ. On the other hand if this sequence was converging to an ω-word x then x should be the word 0ω

because τB is finer than τC . But 0ω is an ultimately periodic word and thus it is an isolated point for
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τB . This leads to a contradiction, and thus the distance δ is not complete because the sequence (Xn)
is a Cauchy sequence which is not convergent. �

Proposition 3.2 gives a motivation for deriving Theorem 1 from Theorem 3.1. Note that the
assumption of Theorem 3.1 are satisfied. Indeed, (P1)-(P3) come from Theorem 2.2. We now check
(P4).

Lemma 3.3 Let Σ be a finite set with at least two elements, and L ⊆ ΣN be an ω-regular language.
Then there is a closed subset C of ΣN × P∞, which is ω-regular as a subset of (Σ × 2)N identified
with ΣN × 2N, and such that L = π0[C].

Proof. Let A = (Σ, Q, δ,Qi, Qf ) be a Büchi automaton and let L = L(A) be its set of accepted
words. Let χf be the characteristic function of Qf . It maps the state q to 1 if q ∈ Qf , and to 0
otherwise. The function χf is extended to QN by setting α = χf ((qn)n∈N) where α(n) = χf (qn).
Note that a run ρ of A is accepting if and only if χf (ρ) ∈ P∞. Let C be the subset of ΣN × P∞
defined by

C :=
{

(σ, α) ∈ ΣN × P∞ | ∃ρ run of A on σ such that α = χf (ρ)
}
.

By the definition of C, L = π0[C]. Let K be the subset of ΣN × 2N ×QN defined by

K :=
{

(σ, α, ρ) ∈ ΣN × 2N ×QN | ρ is a run of A on σ such that α = χf (ρ)
}
.

As K is compact as a closed subset of a compact space and C = πΣN×2N [K] ∩ (ΣN × P∞), C is a
closed subset of ΣN × P∞. It remains to show that C is indeed ω-regular. Let ∆ be defined by

∆ :=
{(
p, (a, ε), q

)
∈ Q× (Σ× 2)×Q | (p, a, q) ∈ δ ∧ (ε = 1 ⇐⇒ p ∈ Qf )

}
.

This allows us to define a Büchi automaton by A′ := (Σ× 2, Q,∆, Qi, Qf ). Note that

(σ, α) ∈ L(A′)⇔ ∃(si)i∈N ∈ QN (s0 ∈ Qi ∧ ∀i ∈ N (si,
(
σ(i), α(i)

)
, si+1) ∈ ∆

)
∧

∀k ∈ N ∃i ≥ k si ∈ Qf
⇔ α ∈ P∞ ∧ ∃(si)i∈N ∈ QN (s0 ∈ Qi ∧ ∀i ∈ N (si, σ(i), si+1) ∈ δ ∧

(α(i) = 1⇔ si ∈ Qf )
)

⇔ (σ, α) ∈ C.

Thus C = L(A′) is ω-regular. �

Corollary 3.4 Let Σ be a finite set with at least two elements. Then the Büchi topology τB is zero-
dimensional and Polish.

Proof. As there are only countably many possible automata (up to identifications), BB is countable.
This shows that τB is second countable. It is T1 since it is finer than the usual topology by Prop-
erty (P1), and strong Choquet by Theorem 3.1. Moreover, it is zero-dimensional since the class of
ω-regular languages is closed under taking complements (see Theorem 2.2). It remains to apply
Theorem 2.8. �

11



3.3 The other topologies

Lemma 3.5 Let (X, τ) be a Polish space, and (Cn)n∈N be a sequence of closed subsets of (X, τ).
Then the topology generated by τ ∪ {Cn | n ∈ N} is Polish.

Proof. By Lemma 13.2 in [19], the topology τn generated by τ ∪ {Cn} is Polish. By Lemma 13.3 in
[19], the topology τ∞ generated by

⋃
n∈N τn is Polish. Thus the topology generated by τ ∪ {Cn |

n ∈ N}, which is τ∞, is Polish. �

Proof of Theorem 1. It is well known that (ΣN, τC) is metrizable and compact, and thus Polish, and
zero-dimensional.

- By Theorem 3.4 in [26], the implication (iii) ⇒ (i), ∆1
1(ΣN) is a basis for a zero-dimensional

Polish topology on ΣN. Recall that a Büchi Turing machine is unambiguous if every ω-word σ ∈ ΣN

has at most one accepting run. By Theorem 3.6 in [10], a subset of ΣN is ∆1
1 if and only if it is

accepted by some unambiguous Büchi Turing machine. Therefore Bδ = ∆1
1(ΣN) is a basis for the

zero-dimensional Polish topology τδ.
- Corollary 3.4 gives the result for the Büchi topology.
- Lemma 3.5 shows that the automatic topology is Polish since it refines the usual product topol-

ogy on ΣN. For this reason also, it is zero-dimensional. �

4 The Büchi and Muller topologies on a space of trees

The notion of a Büchi automaton has been extended to the case of a Büchi tree automaton reading
infinite binary trees whose nodes are labelled by letters of a finite alphabet. We now recall this notion
and some related ones.

A node of an infinite binary tree is represented by a finite word over the alphabet {l, r} where l
means “left” and r means “right”. An infinite binary tree whose nodes are labelled in Σ is identified
with a function t : {l, r}? → Σ. The set of infinite binary trees labelled in Σ will be denoted TωΣ .

A finite binary tree is like an “initial finite subtree” of an infinite binary tree. Thus it can be
represented by a function s : S ⊆ {l, r}? → Σ, where S is a finite subset of {l, r}? which is closed
under prefix. If t ∈ TωΣ is an infinite binary tree, and n ≥ 0 is an integer, then we denote by t|n the
initial finite subtree of t whose domain is equal to {l, r}≤n, where {l, r}≤n is the set of finite words
over the alphabet {l, r} of length smaller than or equal to n.

Let t be an infinite binary tree. A branchB of t is a subset of the set of nodes of twhich is linearly
ordered by the tree partial order v and which is closed under prefix relation (i.e., if x and y are nodes
of t such that y ∈ B and x v y, then x ∈ B). A branch B of a tree is said to be maximal if and only
if there is no other branch of t which strictly contains B. Let t be an infinite binary tree in TωΣ . If
B is a maximal branch of t, then this branch is infinite. Let (ui)i≥0 be the enumeration of the nodes
in B which is strictly increasing for the prefix order. The infinite sequence of the labels of the nodes
of such a maximal branch B, i.e., t(u0)t(u1) · · · t(un) · · · , is called a path. It is an ω-word over the
alphabet Σ.

Let then L ⊆ Σω be an ω-language over Σ. We denote ∃Path(L) the set of infinite trees t in TωΣ
such that t has (at least) one path in L.

We now define the tree automata and the recognizable tree languages.
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Definition 4.1 A (non deterministic) tree automaton is a quadruple A = (Σ, Q, q0,∆), where Σ is
the finite input alphabet,Q is the finite set of states, q0 ∈ Q is the initial state and ∆ ⊆ Q×Σ×Q×Q
is the transition relation. The tree automaton A is said to be deterministic if the relation ∆ is a
functional one, i.e., if for each (q, a) ∈ Q × Σ there is at most one pair of states (q′, q′′) such that
(q, a, q′, q′′) ∈ ∆.

A run of the tree automaton A on an infinite binary tree t ∈ TωΣ is a infinite binary tree ρ ∈ TωQ
such that

(a) ρ(λ) = q0,
(b) for each u ∈ {l, r}?,

(
ρ(u), t(u), ρ(u.l), ρ(u.r)

)
∈ ∆.

Definition 4.2 A Büchi (non deterministic) tree automaton is a tuple

A = (Σ, Q, q0, Qf ,∆),

where (Σ, Q, q0,∆) is a tree automaton and Qf ⊆ Q is the set of accepting states.
A run ρ of the Büchi tree automaton A on an infinite binary tree t ∈ TωΣ is said to be accepting if

for each path of ρ there is some accepting state appearing infinitely often on this path.
The tree language L(A) accepted by the Büchi tree automatonA is the set of infinite binary trees

t ∈ TωΣ such that there is (at least) one accepting run of A on t.

Definition 4.3 A Muller (non deterministic) tree automaton is a tuple

A = (Σ, Q, q0, Qf ,∆),

where (Σ, Q, q0,∆) is a tree automaton and F ⊆ 2Q is the collection of designated state sets.
A run ρ of the Muller tree automaton A on an infinite binary tree t ∈ TωΣ is said to be accepting

if for each path p of ρ, the set of states appearing infinitely often on this path is in F .
The tree language L(A) accepted by the Muller tree automatonA is the set of infinite binary trees

t ∈ TωΣ such that there is (at least) one accepting run of A on t.
The classREG of regular, or recognizable, tree languages is the class of tree languages accepted

by some Muller automaton.

Remark 4.4 Each tree language accepted by some (deterministic) Büchi automaton is also accepted
by some (deterministic) Muller automaton. A tree language is accepted by some Muller tree automa-
ton if and only if it is accepted by some Rabin tree automaton. We refer for instance to [44, 34] for
the definition of a Rabin tree automaton.

Example 4.5 Let L ⊆ Σω be a regular ω-language. Then the set ∃Path(L) ⊆ TωΣ is accepted by
some Büchi tree automaton, hence also by some Muller tree automaton.

The set of infinite binary trees t ∈ TωΣ having all their paths in L, denoted ∀Path(L), is accepted
by some deterministic Muller tree automaton. It is in fact the complement of the set ∃Path(Σω − L).

There is a natural topology on the set TωΣ [29, 24, 19]. It is defined by the following distance. Let
t and s be two distinct infinite trees in TωΣ . Then the distance between t and s is 1

2n , where n is the
smallest integer such that t(x) 6= s(x) for some word x ∈ {l, r}? of length n.
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Let T0 be a set of finite labelled trees, and T0 · TωΣ be the set of infinite binary trees which extend
some finite labelled binary tree t0 ∈ T0. Here, t0 is here a sort of prefix, an “initial subtree” of a tree
in t0 · TωΣ . The open sets are then of the form T0 · TωΣ .

It is well known that the set TωΣ , equipped with this topology, is homeomorphic to the Cantor set
2ω, hence also to the topological spaces Σω, where Σ is a finite alphabet having at least two letters.

We are going to use some notation similar to the one used in the case of the space Σω. First, if t is
a finite binary tree labelled in Σ, we shall denote by Nt the clopen set t · TωΣ . Notice that it is easy to
see that one can take, as a restricted basis for the Cantor topology on TωΣ , the clopen sets of the form
t0 · TωΣ , where t0 is a finite labelled binary tree whose domain is of the special form {l, r}≤n.

The Borel hierarchy and the projective hierarchy on TωΣ are defined in the same manner as in the
case of the topological space Σω.

The ω-language P∞ = (0? · 1)ω is a well known example of Π0
2-complete subset of 2ω (see

Exercise 23.1 in [19]). It is the set of ω-words over 2 having infinitely many occurrences of the letter
1. Its complement 2ω − (0? · 1)ω is a Σ0

2-complete subset of 2ω.
It follows from the definition of the Büchi acceptance condition for infinite trees that each tree

language recognized by some (non deterministic) Büchi tree automaton is an analytic set.
Niwinski showed that some Büchi recognized tree languages are actually Σ1

1-complete sets, [32].
An example is any tree language T ⊆ TωΣ of the form ∃Path(L), where L ⊆ Σω is a regular
ω-language which is a Π0

2-complete subset of Σω. In particular, for Σ = 2, the tree language
L = ∃Path(P∞) is Σ1

1-complete and hence non Borel [32, 34, 40].
Notice that its complement L− = ∀Path(2ω − (0? · 1)ω) is a Π1

1-complete set. It cannot be
accepted by some Büchi tree automaton because it is not a Σ1

1 set. On the other hand, it can be easily
seen that it is accepted by some deterministic Muller tree automaton.

We now consider the topology on the space TωΣ generated by the regular languages of trees ac-
cepted by some Büchi tree automaton.

We prove a version of Theorem 3.1 as a first step towards the proof that the Büchi topology on a
space TωΣ is strong Choquet. We set

T∞ := {t ∈ Tω2 | for every path p of t ∀k ≥ 0 ∃i ≥ k p(i) = 1}.

This set is simply the set of infinite trees over the alphabet 2 having infinitely many letters 1 on every
(infinite) path. We will work in the spaces of the form TωΣ , where Σ is a finite alphabet with at least
two elements. We consider a topology τΣ on TωΣ , and a basis BΣ for τΣ. We consider the following
properties of the family (τΣ,BΣ)Σ, using the previous identification:

(P1) BΣ contains the usual basic clopen sets Nt,

(P2) BΣ is closed under finite unions and intersections,

(P3) BΣ is closed under projections, in the sense that if Γ is a finite set with at least two elements
and L ∈ BΣ×Γ, then π0[L] ∈ BΣ,

(P4) for each L ∈ BΣ there is a closed subset C of TωΣ × T∞ (i.e., C is the intersection of a
closed subset of the Cantor space TωΣ × Tω2 with TωΣ × T∞), which is in BΣ×2, and such that
L = π0[C].
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Consider now the set of trees T∞. It is easy to see that T∞ is accepted by some deterministic
Büchi tree automaton. On the other hand it is well known that the tree languages accepted by some
deterministic Büchi tree automaton are Π0

2 sets, see [1]. Thus the set T∞ is actually a Π0
2 set, i.e.,

it is the intersection of a countable sequence (Oi)i∈N of open sets. We may assume, without loss of
generality, that the sequence (Oi)i∈N is decreasing with respect to the inclusion relation. Moreover,
each open set Oi is a countable union of basic clopen sets Nti,j , j ≥ 0, and we may also assume,
without loss of generality, that for all integers i ≥ 0, and all j ≥ 0, the finite tree ti,j ⊆ {l, r}? has
a domain of the form {l, r}≤n for some integer n greater than i. We now state the following result,
which is a version of Theorem 3.1 in the case of trees.

Theorem 4.6 Assume that the family (τΣ,BΣ)Σ satisfies Properties (P1)-(P4). Then the topologies
τΣ are strong Choquet.

Proof. We first describe a strategy τ for Player 2. Player 1 first plays t0 ∈ TωΣ and a τΣ-open
neighborhood U0 of t0. Let L0 in BΣ with t0 ∈ L0 ⊆ U0. Property (P4) gives C0 with L0 = π0[C0].
This gives α0 ∈ T∞ such that (t0, α0) ∈ C0. We choose l00 ∈ N big enough to ensure that if

s0
0 := α0|l00,

then Ns00
is included in the open set O1. We set w0 := t0|1 and V0 := π0[C0 ∩ (Nw0 × Ns00

)]. By
Properties (P1)-(P3), V0 is in BΣ and thus τΣ-open. Moreover, t0 ∈ V0 ⊆ L0 ⊆ U0, so that Player 2
respects the rules of the game if he plays V0.

Now Player 1 plays t1 ∈ V0 and a τΣ-open neighborhood U1 of t1 contained in V0. Let L1 in
BΣ with t1 ∈ L1 ⊆ U1. Property (P4) gives C1 with L1 = π0[C1]. This gives α1 ∈ T∞ such that
(t1, α1) ∈ C1. We choose l10 ∈ N big enough to ensure that if s1

0 := α1|l10, then Ns10
is included in

the open set O1. As t1 ∈ V0, there is α′0 ∈ T∞ such that (t1, α
′
0) ∈ C0 ∩ (Nw0 ×Ns00

). We choose
l01 > l00 big enough to ensure that if s0

1 := α′0|l01, then s0
1 is such that Ns01

is included in the open set
O2. We set w1 := t1|2 and V1 := π0[C0 ∩ (Nw1 ×Ns01

)] ∩ π0[C1 ∩ (Nw0 ×Ns10
)]. Here again, V1 is

τΣ-open. Moreover, t1 ∈ V1 ⊆ U1 and Player 2 can play V1.
Next, Player 1 plays t2 ∈ V1 and a τΣ-open neighborhood U2 of t2 contained in V1. Let L2 in

BΣ with t2 ∈ L2 ⊆ U2. Property (P4) gives C2 with L2 = π0[C2]. This gives α2 ∈ T∞ such that
(t2, α2) ∈ C2. We choose l20 ∈ N big enough to ensure that if s2

0 := α2|l20, then the basic open setNs20
is included in the open set O1. As t2 ∈ V1, there is α′1 ∈ T∞ such that (t2, α

′
1) ∈ C1 ∩ (Nw0 ×Ns10

).
We choose l11 > l10 big enough to ensure that if s1

1 := α′1|l11, then the basic open set Ns11
is included in

the open set O2. As t2 ∈ V1, there is α′′0 ∈ P∞ such that (σ2, α
′′
0) ∈ C0 ∩ (Nw1 ×Ns01

). We choose
l02 > l01 big enough to ensure that if s0

2 := α′′0|l02, then the basic open setNs02
is included in the open set

O3. We setw2 := t2|3 and V2 := π0[C0∩(Nw2×Ns02
)]∩π0[C1∩(Nw1×Ns11

)]∩π0[C2∩(Nw0×Ns20
)].

Here again, V2 is τΣ-open. Moreover, t2 ∈ V2 ⊆ U2 and Player 2 can play V2.
If we go on like this, we build wk ∈ Σ{l,r}

≤k+1
and snl ∈ 2{l,r}

?
such that w0 ⊆ w1 ⊆ ... and

sn0 $sn1 $ ...

This allows us to define σ := liml→∞ wl ∈ TωΣ and, for each n ∈ N, βn := liml→∞ snl ∈ Tω2 . Note
that βn ∈ T∞ since the basic open set Nsnl

is included in the open set Ol+1. (σ, βn) is the limit of
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(wl, s
n
l ) as l goes to infinity and Nwl

×Nsnl
meets Cn (which is closed in TωΣ × T∞), (σ, βn) ∈ Cn.

Thus
σ ∈

⋂
n∈N

π0[Cn] =
⋂
n∈N

Ln ⊆
⋂
n∈N

Un ⊆
⋂
n∈N

Vn,

so that τ is winning for Player 2. �

We now check that the Büchi topology on a space TωΣ satisfies Properties (P1)-(P4).

(P1) It is very easy to see that for each finite tree t labelled in Σ, there exists a Büchi tree
automaton accepting the usual basic clopen set Nt.

(P2) BΣ is closed under finite unions, because any basic open set in the Büchi topology is
accepted by some non-deterministic Büchi tree automaton. Moreover one can easily show,
using a classical product construction, that the class of tree languages accepted by some Büchi
tree automaton is closed under finite intersections. Thus BΣ is closed under finite intersections.

(P3) It follows easily, from the fact that any basic open set in the Büchi topology is accepted by
some non-deterministic Büchi tree automaton, that BΣ is closed under projections.

(P4) This property follows from the following lemma, which is very similar to Lemma 3.3
above.

Lemma 4.7 Let Σ be a finite set with at least two elements, and L ⊆ TωΣ be a regular tree language
accepted by some Büchi tree automaton. Then there is a closed subset C of TωΣ × T∞, which is
accepted by some Büchi tree automaton as a subset of Tω(Σ×2) identified with TωΣ × Tω2 , and such that
L = π0[C].

Proof. Let A = (Σ, Q, q0, Qf ,∆) be a Büchi tree automaton, and L = L(A) be its set of accepted
trees. We call χf the characteristic function of Qf . It maps the state q to 1 if q ∈ Qf , and to 0
otherwise. The function χf is extended to TωQ by setting t′ = χf (t) and t′(s) = χf

(
t(s)

)
. Note that

a run ρ of A is accepting if and only if χf (ρ) ∈ T∞. Let C be the subset of TωΣ × T∞ defined by

C :=
{

(t, t′) ∈ TωΣ × T∞ | ∃ρ run of A on t such that t′ = χF (ρ)
}
.

By definition of C, L = π0[C]. Let K be the subset of TωΣ × Tω2 × TωQ defined by

K :=
{

(t, t′, ρ) ∈ TωΣ × Tω2 × TωQ | ρ is a run of A on t such that t′ = χF (ρ)
}
.

As K is compact as a closed subset of the compact space TωΣ × Tω2 × TωQ and

C = πTω
Σ×T

ω
2

[K] ∩ (TωΣ × T∞),

the subset C is a closed subset of TωΣ × T∞. Moreover, it is easy to construct a Büchi tree automaton
accepting the tree language C. �

Corollary 4.8 Let Σ be a finite set with at least two elements. Then the Büchi topology on TωΣ is
strong Choquet.
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Proof. This follows from the fact that the Büchi topology on TωΣ satisfies Properties (P1)-(P4), and
from Theorem 4.6. �

On the other hand, as in the case of the Büchi topology on Σω, the Büchi topology on TωΣ is second
countable since there are only countably many possible Büchi tree automata (up to identifications),
and it is T1 since it is finer than the usual Cantor topology by Property (P1). However, the Büchi
topology on TωΣ is not Polish, by the following result.

Theorem 4.9 Let Σ be a finite set with at least two elements. Then the Büchi topology on TωΣ is not
metrizable and thus not Polish.

Proof. Recall that in a metrizable topological space, every closed set is a countable intersection of
open sets. We now show that the Büchi topology on TωΣ does not satisfy this property. We have
already recalled that the set L = ∃Path(P∞) is Σ1

1-complete for the usual topology, and it is open
for the Büchi topology since it is accepted by some Büchi tree automaton. Its complement L− is the
set of trees in TωΣ having all their paths in 2ω \ (0? · 1)ω; it is Π1

1-complete for the usual topology and
closed for the Büchi topology.

On the other hand every tree language accepted by some Büchi tree automaton is an effective
analytic set, i.e., a Σ1

1 set, and thus also a (boldface) Σ1
1 set (for the usual Cantor topology). Moreover,

every open set for the Büchi topology on TωΣ is a countable union of basic open sets, and thus a
countable union of Σ1

1 sets. But the class Σ1
1 is closed under countable unions (see [19]). Therefore,

every open set for the Büchi topology is a Σ1
1 set for the usual topology.

Towards a contradiction, assume now that the set L− is a countable intersection of open sets for
the Büchi topology. Then it is a countable intersection of Σ1

1 sets for the usual topology. But the class
Σ1

1 is closed under countable intersections and thus L− would be also a Σ1
1 set for the usual topology.

But L− is Π1
1-complete and thus in Π1

1 \Σ1
1 (see [19]), which is absurd. �

Remark 4.10 One can infer, from the previous results on the Büchi topology on the space TωΣ and
from Theorem 2.8, that the Büchi topology on the space TωΣ is not regular.

Remark 4.11 The automatic topology on the space TωΣ , which can be defined as in the case of the
space Σω, is Polish, and the proof of this fact is very similar to the one in the case of the space Σω

(see Lemma 3.5).

We now consider the topology on the space TωΣ generated by the class of all regular languages of
trees accepted by some Muller tree automaton. We shall call this topology the Muller topology on
TωΣ . This topology is clearly T1 since it is finer than the usual topology on TωΣ . It is second countable
since there are only countably many Muller automata. It is zero-dimensional, and thus also regular,
because the class of regular tree languages over the alphabet Σ is closed under taking complements.
We now recall the following Urysohn metrization theorem (see [19]).

Theorem 4.12 Let X be a second-countable topological space. Then X is metrizable if and only if
its topology is T1 and regular.
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This implies that the Muller topology is metrizable. Notice that one can define a distance com-
patible with this topology in a way very similar to the way we defined a distance compatible with the
Büchi topology on Σω. On the other hand we recall the following Becker theorem (see Theorem 4.2.6
in [14]).

Theorem 4.13 Let τ be a Polish topology on X and τ ′ be a second-countable strong Choquet topol-
ogy on X finer than τ . Then every τ ′-open set is Σ1

1 in τ .

This implies that the Muller topology is not strong Choquet because there exist some Π1
1-complete

(for the usual topology), and hence non-Σ1
1 (for the usual topology), regular set of trees. Such a

regular set of trees is open for the Muller topology, which is finer than the usual topology, but is not
Σ1

1 for the usual topology. We now summarize the results in this section.

Theorem 4.14 Let Σ be a finite alphabet having at least two letters.

1. The Büchi topology on the space TωΣ is strong Choquet, but it is not regular (and hence not
zero-dimensional) and not metrizable.

2. The Muller topology on the space TωΣ is zero-dimensional, regular and metrizable, but it is not
strong Choquet.

In particular, the Büchi topology and the Muller topology on TωΣ are not Polish.

If we are just interested in the non-polishness of these topologies, we can argue in a more direct
way as follows. We first prove the following proposition.

Proposition 4.15 Let (X, τ) be a Polish topological space, and let τ ′ be another Polish topology on
X finer than τ . Then the two topologies τ and τ ′ have the same Borel sets.

Proof. Let Id : (X, τ ′) → (X, τ) be the identity function on X , where the domain X is equipped
with the topology τ ′ and the range X is equipped with the topology τ . This function is continuous
since the topology τ ′ is finer than the topology τ . Notice that this implies, by an easy induction on
the rank of a Borel set, that the preimage of any Borel set of (X, τ) is a Borel set of (X, τ ′), i.e. that
every Borel set of (X, τ) is a Borel set of (X, τ ′). On the other hand, it follows from Lusin-Suslin’s
Theorem, see [19, Theorem 15.1], that the (injective) image by the function Id of any Borel set of
(X, τ ′) is a Borel set of (X, τ), i.e. that every Borel set of (X, τ ′) is a Borel set of (X, τ). �

Corollary 4.16 Let Σ be a finite set with at least two elements. Then the Büchi topology and the
Muller topology on TωΣ are not Polish.

Proof. The Büchi topology and the Muller topology on TωΣ are finer than the usual Cantor topology
on TωΣ . On the other hand both the Büchi topology and the Muller topology on TωΣ contain some open
sets which are Σ1

1-complete and hence non Borel (for the usual topology), like, in the case Σ = 2, the
set L = ∃Path(P∞) of infinite trees in TωΣ having at least one path in the ω-language P∞ = (0? ·1)ω.
The conclusion now follows from Proposition 4.15. �
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5 Consequences for our topologies

5.1 Consequences not directly related to the polishness, concerning isolated points

5.1.1 The case of a space of infinite words

Notation. If z ∈ {C,B,A, δ}, then the space (ΣN, τz) is denoted Sz . The set of ultimately periodic
ω-words on Σ is denoted Ult :=

{
u · vω | u, v ∈ Σ∗\{∅}

}
, and P := ΣN\Ult.

(1) As noted in [35], Ult is the set of isolated points of SB and SA (recall that a point σ ∈ ΣN is
isolated if {σ} is an open set). Indeed, each singleton {u · vω} formed by an ultimately periodic
ω-word is an ω-regular language, and thus each ultimately periodic ω-word is an isolated point of
SA. Conversely, if {σ} is τB-open, then it is ω-regular and then the ω-word σ is ultimately periodic
(because any countable ω-regular language contains only ultimately periodic ω-words, see [2, 34,
42]).
(2) Every nonempty ω-regular set contains an ultimately periodic ω-word, [2, 34, 42]. In particular,
the set Ult of isolated points of SB and SA is dense, and a subset of SB or SA is dense if and only if
it contains Ult.

5.1.2 The case of a space of infinite trees

Recall that a tree t ∈ TωΣ is regular if and only if for each a ∈ Σ the set {u ∈ {l, r}? | t(u) = a}
is a regular set of finite words over the alphabet {l, r}. For each regular tree t ∈ TωΣ , the singleton {t}
is a (closed) regular tree language accepted by some Büchi tree automaton. Moreover, a regular tree
language accepted by some Muller or Rabin tree automaton is non-empty if and only if it contains a
regular tree, see [44].

Therefore we can state properties similar to those stated in the case of a space of words in Section
5.1.1. For the automatic, the Büchi or the Muller topologies on a space TωΣ , the set of isolated points
is the set Reg-trees of regular trees, and this set is dense. It is left here to the reader to see how
Properties (1)-(2) of the preceding section are extended to the case of a space of trees (in a very
similar way).

5.2 Consequences of the polishness

Here we concentrate on the case of a space of infinite words. We consider our topologies on ΣN,
where Σ is a finite set with at least two elements. We refer to [19] when classical descriptive set
theory is involved.
(a) The union P ∪ Ult is the Cantor-Bendixson decomposition of SB and SA (see Theorem 6.4 in
[19]). This means that P is perfect (i.e., closed without isolated points) and Ult is countable open.
Let us check that P is perfect. We argue by contradiction, so that we can find σ ∈ P and an ω-regular
language L such that {σ} = L\Ult. Note that L ⊆ {σ} ∪ Ult is countable. But a countable regular
ω-language contains only ultimately periodic words (see [34]), and thus L ⊆ Ult, which is absurd.
(b) The closed subspace (P, τB) of SB is homeomorphic to the Baire space NN. Indeed, it is not
empty since Ult is countable and ΣN is not, zero-dimensional and Polish as a closed subspace of the
zero-dimensional Polish space SB . By Theorem 7.7 in [19], it is enough to prove that every compact
subset of (P, τB) has empty interior. We argue by contradiction, which gives a compact set K. Note
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that there is an ω-regular language L such that P ∩L is a nonempty compact subset of K, so that we
may assume that K = P ∩ L. Theorem 2.1 gives (Ui)i<n and (Vi)i<n with L =

⋃
i<n Ui · V ω

i . On
the other hand, L is not countable since every countable regular ω-language contains only ultimately
periodic words and K = P ∩L is non-empty. Thus n > 0 and, for example, U0 ·V ω

0 is not countable.
This implies that we can find v0, v1 ∈ V0 which are not powers of the same word (which means

that we cannot find a finite word u and integers m,n with v0 = um and v1 = un). Indeed, we argue
by contradiction. Let v0 ∈ V0 \ {∅}, and v ∈ Σ∗ of minimal length such that v0 is a power of v. We
can find w0, w1, ... ∈ V0\{∅} such that σ := w0 ·w1... 6= vω. Fix a natural number i. Then wi and v0

are powers of the same word w. By Corollary 6.2.5 in [25], v and w are powers of the same word u,
and v0 too. By minimality, u = v, and wi is a power of v. Thus σ = vω, which is absurd.

Let u0 ∈ U0, and L′ := {u0} · {v0, v1}ω. Note that P ∩ L′ is a τB-closed subset of K, so that it
is τB-compact. As the identity map from (P ∩L′, τB) onto (P ∩L′, τC) is continuous, P ∩L′ is also
τC-compact. But the map α 7→u0 · vα(0) · vα(1) . . . is a homeomorphism from the Cantor space onto
L′, by Corollaries 6.2.5 and 6.2.6 in [25]. Thus P ∩L′ = L′\Ult is a dense closed subset of L′. Thus
P ∩ L′ = L′, which is absurd since u0 · vω0 ∈ L′\P .

6 Concluding remarks

We obtained in this paper new links and interactions between descriptive set theory and theoretical
computer science, showing that two topologies considered in [35] are Polish.

Notice that this paper is also motivated by the fact that the Gandy-Harrington topology, generated
by the effective analytic subsets of a recursively presented Polish space, is an extremely powerful tool
in descriptive set theory. In particular, this topology is used to prove some results of classical type
(without reference to effective descriptive set theory in their statement). Among these results, let us
mention the dichotomy theorems in [16, 20, 22, 23]. Sometimes, no other proof is known. Part of the
power of this technique comes from the nice closure properties of the class Σ 1

1 of effective analytic
sets (in particular the closure under projections).

The class of ω-regular languages has even stronger closure properties. So our hope is that the
study of the Büchi topology, generated by the ω-regular languages, will help to prove some automatic
versions of known descriptive results in the context of theoretical computer science. For instance,
more precisely, let Σ,Γ be finite sets with at least two elements, and L be a subset of ΣN×ΓN which
is ω-regular and also a countable union of Borel rectangles. It would be very interesting to know
whether L is open for the product topology τB×τB . Indeed, this would give a version of the G0-
dichotomy for ω-regular languages, and thus a very serious hope to get versions of many difficult
dichotomy results of descriptive set theory for ω-regular languages (see [27]).

From Theorem 1, we know that there is a complete distance which is compatible with τz . It
would be interesting to have a natural complete distance compatible with τB . We leave this as an
open question for further study.
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