C. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, vol.10, issue.2, pp.252-271, 1972.
DOI : 10.1016/0021-9991(72)90065-4

X. Wang and W. Liu, Extended immersed boundary method using FEM and RKPM, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.12-14, pp.1305-1321, 2004.
DOI : 10.1016/j.cma.2003.12.024

L. Zhang, A. Gerstenberger, X. Wang, and W. Liu, Immersed finite element method, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.21-22, pp.2051-2067, 2004.
DOI : 10.1016/j.cma.2003.12.044

W. Liu, Y. Liu, D. Farrell, L. Zhang, X. Wang et al., Immersed finite element method and its applications to biological systems, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.13-16, pp.1722-1749, 2006.
DOI : 10.1016/j.cma.2005.05.049

R. Beyer and R. Leveque, Analysis of a One-Dimensional Model for the Immersed Boundary Method, SIAM Journal on Numerical Analysis, vol.29, issue.2, pp.332-364, 1992.
DOI : 10.1137/0729022

D. Goldstein, R. Handler, and L. S. , Modeling a No-Slip Flow Boundary with an External Force Field, Journal of Computational Physics, vol.105, issue.2, pp.354-366, 1993.
DOI : 10.1006/jcph.1993.1081

E. Saiki and S. Biringen, Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method, Journal of Computational Physics, vol.123, issue.2, pp.450-465, 1996.
DOI : 10.1006/jcph.1996.0036

E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-yusof, Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, Journal of Computational Physics, vol.161, issue.1, pp.35-60, 2000.
DOI : 10.1006/jcph.2000.6484

J. Mohd-yosuf, Combined immersed Boundary/B-spline methods for simulation of flow in complex geometries, Annu. res. briefs, Center for Turbulence Research, 1997.

M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics, vol.209, issue.2, pp.448-476, 2005.
DOI : 10.1016/j.jcp.2005.03.017

Y. Tseng and J. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, Journal of Computational Physics, vol.192, issue.2, pp.593-623, 2003.
DOI : 10.1016/j.jcp.2003.07.024

K. Wang, A. Rallu, J. Gerbeau, and C. Farhat, Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid-structure interaction problems, International Journal for Numerical Methods in Fluids, vol.41, issue.1, pp.1175-1206, 2011.
DOI : 10.2514/2.1975

URL : https://hal.archives-ouvertes.fr/hal-00651118

V. Lakshminarayan, C. Farhat, and A. Main, An embedded boundary framework for compressible turbulent flow and fluid-structure computations on structured and unstructured grids, International Journal for Numerical Methods in Fluids, vol.285, issue.6, pp.366-395, 2014.
DOI : 10.1017/S0022112095000462

T. Kempe and J. Fröhlich, An improved immersed boundary method with direct forcing for the simulation of particle laden flows, Journal of Computational Physics, vol.231, issue.9, pp.3663-3684, 2012.
DOI : 10.1016/j.jcp.2012.01.021

K. Luo, Z. Wang, J. Fan, and K. Cen, Full-scale solutions to particle-laden flows: Multidirect forcing and immersed boundary method, Physical Review E, vol.209, issue.6, pp.66-709, 2007.
DOI : 10.1016/0377-0257(94)80015-4

W. Breugem, A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows, Journal of Computational Physics, vol.231, issue.13, pp.4469-4498, 2012.
DOI : 10.1016/j.jcp.2012.02.026

K. Taira and T. Colonius, The immersed boundary method: A projection approach, Journal of Computational Physics, vol.225, issue.2, pp.2118-2137, 2007.
DOI : 10.1016/j.jcp.2007.03.005

C. Ji, A. Munjiza, and J. Williams, A novel iterative direct-forcing immersed boundary method and its finite volume applications, Journal of Computational Physics, vol.231, issue.4, pp.1797-1821, 2012.
DOI : 10.1016/j.jcp.2011.11.010

S. Cai, A. Ouahsine, J. Favier, and Y. Hoarau, Improved implicit immersed boundary method via operator splitting. Computational Methods for Solids and Fluids, pp.49-66, 2016.
DOI : 10.1007/978-3-319-27996-1_3

URL : https://hal.archives-ouvertes.fr/hal-01462069

S. Cai, A. Ouahsine, J. Favier, and Y. Hoarau, Implicit immersed boundary method for fluid-structure interaction, La Houille Blanche, vol.231, issue.5, pp.33-36, 2017.
DOI : 10.1016/j.jcp.2012.04.012

URL : https://hal.archives-ouvertes.fr/hal-01592851

S. Cai, Computational fluid-structure interaction with the moving immersed boundary method, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01461619

A. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, vol.22, issue.104, pp.745-762, 1968.
DOI : 10.1090/S0025-5718-1968-0242392-2

R. Témam, Sur l'approximation de la solution deséquationsdes´deséquations de Navier-Stokes par la méthode des pas fractionnaires (II), Arch. Rational Mech. Anal, vol.33, issue.5, pp.377-385, 1969.

J. Perot, An Analysis of the Fractional Step Method, Journal of Computational Physics, vol.108, issue.1, pp.51-58, 1993.
DOI : 10.1006/jcph.1993.1162

E. W. Liu and J. , Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal, vol.32, issue.4, pp.1017-1057, 1995.

J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-476011, 2006.
DOI : 10.1016/j.cma.2005.10.010

J. Guermond and L. Quartapelle, On stability and convergence of projection methods based on pressure Poisson equation, International Journal for Numerical Methods in Fluids, vol.95, issue.9, pp.1039-1053, 1998.
DOI : 10.1016/0045-7825(92)90141-6

K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, Journal of Computational Physics, vol.30, issue.1, pp.76-95, 1979.
DOI : 10.1016/0021-9991(79)90088-3

M. Braza, P. Chassaing, and H. Minh, Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, Journal of Fluid Mechanics, vol.49, issue.-1, pp.79-130, 1986.
DOI : 10.1063/1.1692470

J. Van-kan, A Second-Order Accurate Pressure-Correction Scheme for Viscous Incompressible Flow, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.870-891, 1986.
DOI : 10.1137/0907059

S. Armfield and R. Street, An analysis and comparison of the time accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids, International Journal for Numerical Methods in Fluids, vol.9, issue.3, pp.255-282, 2002.
DOI : 10.1002/fld.1650090308

L. Timmermans, P. Minev, and F. Vosse, AN APPROXIMATE PROJECTION SCHEME FOR INCOMPRESSIBLE FLOW USING SPECTRAL ELEMENTS, International Journal for Numerical Methods in Fluids, vol.17, issue.7, pp.673-688, 1996.
DOI : 10.1002/fld.1650170605

E. Chow and Y. Saad, Approximate Inverse Preconditioners via Sparse-Sparse Iterations, SIAM Journal on Scientific Computing, vol.19, issue.3, pp.995-1023, 1998.
DOI : 10.1137/S1064827594270415

URL : http://www-users.cs.umn.edu/~chow/papers/newapinv.ps

S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune et al., PETSc users manual, 2015.

S. Dalton, N. Bell, L. Olson, and M. Garland, Cusp: Generic parallel algorithms for sparse matrix and graph computations, 2014.

C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H. Matthies, Nonlinear fluid???structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples, Computational Mechanics, vol.77, issue.1, pp.305-323, 2011.
DOI : 10.1002/nme.2396

URL : https://hal.archives-ouvertes.fr/hal-00601366

J. Kim, D. Kim, and H. Choi, An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries, Journal of Computational Physics, vol.171, issue.1, pp.132-150, 2001.
DOI : 10.1006/jcph.2001.6778

M. Vanella and E. Balaras, A moving-least-squares reconstruction for embedded-boundary formulations, Journal of Computational Physics, vol.228, issue.18, pp.6617-6628, 2009.
DOI : 10.1016/j.jcp.2009.06.003

A. Pinelli, I. Naqavi, U. Piomelli, and J. Favier, Immersed-boundary methods for general finite-difference and finite-volume Navier???Stokes solvers, Journal of Computational Physics, vol.229, issue.24, pp.9073-9091, 2010.
DOI : 10.1016/j.jcp.2010.08.021

URL : https://hal.archives-ouvertes.fr/hal-00951516

?. Copyright-c, &. Wiley, . Sons, and . Ltd, Fluids () Prepared using fldauth.cls S, Int. J. Numer. Meth

J. Favier, A. Revell, and A. Pinelli, A Lattice Boltzmann???Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects, Journal of Computational Physics, vol.261, issue.0, pp.145-161, 2014.
DOI : 10.1016/j.jcp.2013.12.052

URL : https://hal.archives-ouvertes.fr/hal-00822044

F. Toja-silva, J. Favier, and A. Pinelli, Radial basis function (RBF)-based interpolation and spreading for the immersed boundary method, Computers & Fluids, vol.105, pp.66-75, 2014.
DOI : 10.1016/j.compfluid.2014.09.026

URL : https://hal.archives-ouvertes.fr/hal-01069809

C. Peskin, The immersed boundary method, Acta Numer, vol.11, pp.479-517, 2002.

A. Roma, C. Peskin, and M. Berger, An Adaptive Version of the Immersed Boundary Method, Journal of Computational Physics, vol.153, issue.2, pp.509-534, 1999.
DOI : 10.1006/jcph.1999.6293

M. Coutanceau and R. Bouard, Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, Journal of Fluid Mechanics, vol.274, issue.02, pp.231-256, 1977.
DOI : 10.1143/JPSJ.19.1024

D. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, Journal of Fluid Mechanics, vol.13, issue.04, pp.547-567, 1959.
DOI : 10.1143/JPSJ.13.418

S. Wang and W. Zhang, An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows, Journal of Computational Physics, vol.230, issue.9, pp.3479-3499, 2011.
DOI : 10.1016/j.jcp.2011.01.045

M. Lai and C. Peskin, An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity, Journal of Computational Physics, vol.160, issue.2, pp.705-719, 2000.
DOI : 10.1006/jcph.2000.6483

C. Williamson, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, Journal of Fluid Mechanics, vol.199, issue.-1, pp.579-627, 1989.
DOI : 10.1063/1.1694554

C. Liu, X. Zheng, and C. Sung, Preconditioned Multigrid Methods for Unsteady Incompressible Flows, Journal of Computational Physics, vol.139, issue.1, pp.35-57, 1998.
DOI : 10.1006/jcph.1997.5859

C. Mimeau, F. Gallizio, G. Cottet, and I. Mortazavi, Vortex penalization method for bluff body flows, International Journal for Numerical Methods in Fluids, vol.6, issue.3, pp.55-83, 2015.
DOI : 10.1260/1756-8250.6.1.43

URL : https://hal.archives-ouvertes.fr/hal-01192684

S. Xu and Z. Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries, Journal of Computational Physics, vol.216, issue.2, pp.454-493, 2006.
DOI : 10.1016/j.jcp.2005.12.016

R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas et al., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, Journal of Computational Physics, vol.227, issue.10, pp.4825-4852, 2008.
DOI : 10.1016/j.jcp.2008.01.028

S. Apte, M. Martin, and N. Patankar, A numerical method for fully resolved simulation (FRS) of rigid particle???flow interactions in complex flows, Journal of Computational Physics, vol.228, issue.8, pp.2712-2738, 2009.
DOI : 10.1016/j.jcp.2008.11.034

S. Mittal and V. Kumar, Flow-induced vibrations of a light circular cylinder at reynolds numbers 10 3 to 10 4, J. Sound Vibration, pp.923-946, 2001.

H. Dütsch, F. Durst, S. Becker, and H. Lienhart, Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan???Carpenter numbers, Journal of Fluid Mechanics, vol.360, pp.249-271, 1998.
DOI : 10.1017/S002211209800860X

G. Iaccarino and R. Verzicco, Immersed boundary technique for turbulent flow simulations, Applied Mechanics Reviews, vol.38, issue.3, pp.331-347, 2003.
DOI : 10.2514/2.895

Z. Wang, Two Dimensional Mechanism for Insect Hovering, Physical Review Letters, vol.80, issue.10, pp.2216-2219, 2000.
DOI : 10.1137/1.9781611970517

J. Yang and F. Stern, A simple and efficient direct forcing immersed boundary framework for fluid???structure interactions, Journal of Computational Physics, vol.231, issue.15, pp.5029-5061, 2012.
DOI : 10.1016/j.jcp.2012.04.012

P. Koumoutsakos and A. Leonard, High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, Journal of Fluid Mechanics, vol.29, issue.-1, pp.1-38, 1995.
DOI : 10.1016/0021-9991(80)90049-2

P. Ploumhans and G. Winckelmans, Vortex Methods for High-Resolution Simulations of Viscous Flow Past Bluff Bodies of General Geometry, Journal of Computational Physics, vol.165, issue.2, pp.354-406, 2000.
DOI : 10.1006/jcph.2000.6614