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Abstract. Recently a signi�cant interest in ferromagnetic curved thin �lms has
appeared. In particular, thin spherical shells are currently of great interest due to
their capability to support skyrmion solutions which can be stabilized by curvature
e�ects only, in contrast to the planar case where the Dzyaloshinskii-Moriya interac-
tion is required. This paper aims to a ¡-asymptotic analysis of the micromagnetic
energy functional, when the shell is generated, like in the case of a sphere, by a
bounded, convex and smooth surface.
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1. Introduction and Physical Motivations

1.1. The Micromagnetic model

According to the Landau-Lifshitz theory of �ne ferromagnetic particles (cf. [8, 9,
11, 12, 30, 38]), the observable states of a rigid ferromagnetic body, occupying a
region 
�R3, are described by its magnetization M , a vector �eld verifying the so-
called fundamental constraint of micromagnetism: there exists a material dependent
positive constant Ms such that jM j=Ms in 
.
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The spontaneous magnetizationMs :=Ms(T ) is highly dependent on the temper-
ature T and vanishes above a critical value Tc, characteristic of each crystal type,
known as the Curie point . Since we will assume the specimen at a �xed temperature
well below Tc, the value of Ms will be considered constant in 
. We can, therefore,
express the magnetization in the form M :=Msm where m: 
! S2 is a vector �eld
with values in the unit sphere S2 of R3.

Although the modulus of m is constant in space, in general, it is not the case for
its direction. For single crystal ferromagnets (cf. [1, 5]), the observable states of the
magnetization can then be described as the local minimizers of the micromagnetic
energy functional which, after a suitable normalization, reads as (cf. [9, p. 22] or [30,
p. 138])

G(m;
) := aex
Z


jrmj2

=:E(m)

+

Z


'an(m)

=:A(m)

¡ �0
2

Z


hd[m�
] �m
=:W(m)

¡�0
Z


ha �m:

=:Z(m)

(1)

with m2H1(
;S2) and m�
 the extension of m by zero outside 
. The variational
analysis of (1) arises as a non-convex and non-local problem.

� The �rst term, E(m), is the exchange energy and penalizes nonuniformities
in the orientation of the magnetization. The positive constant aex is the so-
called exchange sti�ness constant , a material speci�c energy parameter that
summarizes the e�ects of short-range exchange interactions among neighbor
spins.

� Themagnetocrystalline anisotropy energy, A(m), models the existence of pre-
ferred directions of the magnetization (the so-called easy axes). The energy
density 'an: S2! R+ is assumed to be a non-negative Lipschitz continuous
function that vanishes only on a �nite set of directions, the so-called easy
directions.

� The quantity W(m) represents the magnetostatic self-energy and describes
the energy due to the demagnetizing �eld (stray �eld) hd[m�
] generated by
m�
2L2(R3;R3). The operator hd:m 7!hd[m] is, for every m2L2(R3), the
unique solution in L2(R3;R3) of the Faraday-Maxwell equations of magneto-
statics [11, 32] (see section 2.2 for further mathematical details):8><>:

div b[m] = 0;

curlhd[m] = 0;
b[m] = �0(hd[m] +m);

(2)

where b[m] denotes the magnetic �ux density and �0 is the magnetic perme-
ability of the vacuum.

� Finally, the term Z(m) is the interaction energy and models the tendency of
the specimen to have its magnetization aligned with the (externally) applied
�eld ha. The applied �eld is assumed to be una�ected by variations of m.

1.2. Physical motivations and state of the art

The four terms in the energy functional (1) take into account e�ects that origi-
nate from di�erent spatial scales, such as short-range exchange forces and long-
range magnetostatic interactions. Depending on the relations among the material
and geometric parameters of the particle, various asymptotic regimes arise and their
investigation can be e�ciently carried out by the dimension reduction techniques of
calculus of variations (see, e.g., [7, 18, 19, 20, 28, 35, 31, 45]; this list is certainly far
from complete).
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In this regard, during the last two decades, considerable interest has appeared for
magnetic particles having the shape of a curved convex surface (e.g., plane �lms [19,
28], nanotubes [29, 39, 48], spherical shells [27, 36, 43]). In particular, spherical thin
�lms are currently worth of interest due to their capability to support skyrmion-type
solutions which can be stabilized by curvature e�ects only, in contrast to the planar
case where the Dzyaloshinskii-Moriya interaction is required [24, 40]. Nevertheless,
and this is the main motivation for our paper, as remarked in [37]: �It is well estab-
lished in numerous studies on rigorous micromagnetism that the e�ects of non-local
dipole-dipole interaction can be reduced to an e�ective easy-surface anisotropy for thin
shells when the thickness is much less than the size of the system [..]. Being aware
that these results were obtained for plane �lms, we assume that the same arguments
are valid for smoothly curved shells�.

R3

D1

S��D�1


�

�

f2

f1

!

Figure 1. (Left) The thin shell 
� is generated by extruding, in the normal direction
�, a surface S whose closure is globally di�eomorphic to the closed unit disk D1 of R2:

� := fx 2 R3 : x = � + ��(�); � 2 Sg. (Right) A pillow-like thin shell: 
� := f(x;
z) 2 ! � R : �f2(x) 6 z 6 �f1(x)g where ! � R2 is a planar surface and f1; f2 functions
vanishing on the boundary of !.

Indeed, Gioia and James showed in [28] that for planar thin �lms the e�ects of
the demagnetizing �eld operator come down to an e�ective easy-surface anisotropy.
A generalization of this result can be found in [14] where the asymptotic behavior
of the energy minimizers is addressed for thin shells generated by surfaces that are
di�eomorphic to the closed unit disk of R2 (see Figure 1). Finally, in [44], a ¡-con-
vergence analysis is performed on pillow-like shells, i.e., on shells of small thickness
�> 0 having the form 
� := f(x; z)2!�R : �f2(x)6 z6 �f1(x)g with !�R2 and f1;
f2 functions vanishing on the boundary of ! (see Figure 1).

However, all these investigations, being local, do not cover signi�cant physical
scenarios like the one of a magnetized thin spherical shell [37]. Nor they can be
recovered by a local-to-global gluing argument due to the presence of the non-local
demagnetizing �eld operator hd (cf. eq. (1)). To have a rigorously justi�ed micromag-
netic model of spherical thin �lms, and more generally of curved convex surfaces, the
asymptotic analysis must take into account the global geometry of the surface, and
this takes some work. In that respect, the main aim of this paper is the derivation of
a reduced model of the micromagnetic energy functional when the region occupied
by the ferromagnet is the one of a convex thin �lm. More speci�cally, let S be an
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orientable and smooth convex surface in R3 (cf. De�nition 2), �:S! S2 the normal
�eld associated with the choice of an orientation for S. For any su�ciently small
�> 0 we denote by 
� the shell having thickness � and de�ned by (cf. Figure 2)


� :=[�2S `�(�) with `�(�) := f�+ t�(�)gjtj<�: (3)

We then consider the energy functional G(�;
�) and use the method of ¡-convergence
to characterize the asymptotic behavior of the family G(�;
�) in the limit of vanishing
thickness.

R3

E2

S2

S1� I

Figure 2. Examples of thin shells generated by extruding convex surfaces in their normal
direction. (From left to right) The extrusion of a cylinder (S2�I), an ellipsoid (E2) and a
sphere (S2).

The paper is organized as follows: In Section 2 we brie�y sketch the geometric
setting under which we carry out our investigation. We then state the main result
of the paper (cf. Theorem 1) whose proof is given in four steps. The �rst two steps,
developed in Section 3, concern a reformulation of the variational problem and the
compactness of minimizing sequences. Finally, Section 4, devoted to the identi�ca-
tion of the ¡-limit, completes the proof of the main result.

2. Statement of the main result

2.1. Notation and setup

We summarize the relevant geometric and functional notions that we use throughout
the paper.

2.1.1. Geometric notions

Let S be an orientable and smooth surface in R3, �:S!S2 the normal �eld associated
with the choice of an orientation for S. For every � 2S and every � 2R+ we denote
by `�(�) :=f�+ t�(�)gjtj<� the normal segment to S having radius � and centered at
�. We say that S admits a tubular neighborhood if there exists a � 2R+ such that
the following properties hold (cf. [23, p. 112]):

TN1. For every �1; �22S one has `�(�1)\ `�(�2)= ; whenever �1=/ �2.
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TN2. The union 
� :=[�2S `�(�) is an open set of R3 containing S. We call 
� the
tubular neighborhood of S of radius �.

TN3. The map  �: (�; s)2S� I 7!�+s��(�)2
�, I := (¡1;1), is a di�eomorphism
of S� I onto 
�. In particular, the nearest point projection �:
�!S, which
maps any x2
� onto the unique � 2S such that x2 `�(�), is a smooth map.

Remark 1. Any compact and smooth surface is orientable and admits a tubular
neighborhood [23, Prop. 1, p. 113].

The existence of a tubular neighborhood of S turns out to be su�cient to inves-
tigate the ¡-limit of the family of exchange energy functionals (E�) (cf. Proposition
9). On the other hand, due to its non-locality, something more is required for the
asymptotic analysis of the family (W�) of magnetostatic self-energies. We, therefore,
introduce the following notion.

Definition 2. Let S be an orientable smooth surface. We say that S is convex if
it admits an orientation � such that the conditions TN1, TN2 and TN3, still hold
when the normal segments `�(�) are replaced by the normal half-lines

`�
+(�) := f�+ t�(�)gt2(¡�;+1): (4)

We then denote by 
�
+ the unbounded open set [�2S `�

+(�) and refer to it as a tubular
strip of S.

Remark 3. Some simple examples of convex surfaces are the sphere S2 (and more
generally the triaxial ellipsoid E2), the unit cylinder S1 � I , the in�nite cylinder
S1 � R and the plane R2 (cf. Figure 2). The name �convex� given to this class of
surfaces comes from the compact case where such surfaces are intimately related to
the convexity of the domain they bound (cf. [23, Remark 2, p. 393], see also [25, 34]).

For every � 2 S the symbols �1(�); �2(�) are used for the orthonormal basis of
T�S made by its principal directions, i.e., the orthonormal basis induced by the
eigenvectors of the shape operator of S (cf. [23]). We then write �1(�); �2(�) for the
principal curvatures at � 2S. Note that, when S is convex, the trihedron

(�1(�),�2(�); �(�)) with � := �(x); x2
�+ (5)

constitutes a moving frame of R3which depends only on S. Next, for every �2I� :=(0;
�), we introduce the di�eomorphism of M onto 
� given by

 �: (�; s)2M 7!�+ �s�(�)2
�: (6)

Also, we denote by g� the metric factor which relates the volume form on 
� to the
volume form onM, by h1;�;h2;� the metric coe�cients which link the gradient on 
�
to the gradient on M. A direct computation shows that

g�(�; s) := j1+2�sH(�)+ (�s)2G(�)j; hi;�(�; s) :=
g�(�; s)

(1+ �s�i(�))2
(i2N2); (7)

where H(�) and G(�) are, respectively, the mean and Gaussian curvature at � 2S.
Let S be a smooth and bounded convex surface. We set I :=(¡1;1) and denote by

M the product manifold S� I . We then denote by H1(M;R3) the Sobolev space of
vector-valued functions de�ned onM (see [2]) endowed with the norm kukH1(M)

2 :=
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kukL2(M)
2 + kr�ukL2(M)

2 + k@sukL2(M)
2 where r�u stands for the tangential gradient

of u on S. Finally, we write H1(M; S2) for the subset of H1(M; R3) made by
functions with values in S2.

2.1.2. The demagnetizing field operator on R3

We introduce the Beppo-Levi space

W 1(R3)= fu2S 0(R3) : u! 2L2(R3);ru2L2(R3;R3)g; !(x) :=
1

1+ jxj2
p ; (8)

which is a Hilbert space when endowed with the norm kukW 1(R3)
2 :=krukL2(R3;R3)2 (cf.

[17, Lemma 1, p. 117]. If hd[m] 2 L2(R3; R3) is a solution of the Faraday-Maxwell
equations (2) then, by Poincaré's lemma [16, Lemma 4, p. 232], there exists a unique
magnetostatic potential um2W 1(R3) such that hd[m] =rum. Hence,

¡�um = divm in S 0(R3) (9)

and it is straightforward to check, via Lax-Milgram lemma, that for everym2L2(R3;
R3) there exists a unique solution of (9) in W 1(R3). Therefore, the demagnetizing
�eld can be described as the map which to every magnetization m 2 L2(R3; R3)
associates the distributional gradient of the unique solution of (9) in W 1(R3).

Remark 4. The weight ! �x the behavior at in�nity of the magnetostatic potential.
Note that, in general, um does not belong to L2(R3) if m 2 L2(R3; R3). Indeed,
consider any v 2W 1(R3)nH1(R3) and set m=¡rv. We then have m 2 L2(R3;R3)
and divm=¡�v. Hence, um := v is the unique solution in W 1(R3) of (9) and, by
construction, um= v 2/ L2(R3).

It is easily seen that the map ¡hd:m2L2(R3;R3) 7!¡rum2L2(R3;R3) de�nes a
self-adjoint and positive-de�nite bounded linear operator from L2(R3;R3) into itself:

¡(hd[m];m)L2(R3;R3) = khd[m]kL2(R3;R3)2 6 kmkL2(R3;R3)2 (10)

for every m 2 L2(R3; R3). Also, notice that for any � 2 I�, if m 2 H1(
"; S2) then
m�
�2L2(R3;R3) and therefore hd[m�
�]2L2(R3;R3). Moreover, since hd[m] is a
gradient �eld, for any �2 I� the following two variational equations are satis�edZ

R3
(hd[m�
�] +m�
�) � r'dx = 0; (11)Z

R3
hd[m�
�] � curl'dx = 0; (12)

for every '2W 1(R3) and any '2W 1(R3;R3).

2.1.3. The anisotropy energy density and the external applied field

The anisotropy energy density 'an: S2! R+, which does not depend on � 2 I�, is
assumed to be a non-negative Lipschitz continuous function that vanishes only on
a �nite set of directions, the so-called easy directions. The hypotheses on 'an are
su�ciently general to treat the most common classes of crystal anisotropies arising
in applications (e.g., uniaxial, triaxial, cubic). Finally, the external applied �eld ha
is assumed to be Lipschitz continuous.

6 Dimension reduction for the micromagnetic energy functional on curved thin �lms



2.2. The main result

To avoid uninformative results (cf. Remark 5) we consider a rescaled version of the
energy functional (1). Precisely, let 
� :=[�2S `�(�) be a tubular neighborhood of a
smooth convex surface S. For any �2 I� := (0; �) we denote by G� the micromagnetic
energy functional de�ned on H1(
�;S2) by

G�(m) =
1
�
(E�(m)+W�(m)+A"(m)+Z�(m)) (13)

=
1
�

�Z

�

jrmj2 dx¡ 1
2

Z

�

hd[m�
�] �m dx+

Z

�

'an(m) dx¡
Z

�

ha �mdx

�
;

(14)

where m�
� is the extension of m by zero outside 
�. The existence for any �2 I� of
at least a minimizer for G� in H1(
�;S2) is an easy application of the direct method
of the calculus of variations (cf. [47]). We are interested in the asymptotic behavior
of the family of minimizers of (G�)�2I� as �! 0.

Remark 5. Let us brie�y explain why we rescaled the energy functional (1). It is
easily seen that the family (�G�)�2I� is equi-coercive for the weak topology of H1(
�)
and therefore the fundamental theorem of ¡-convergence applies [10, 15]. On the
other hand, as a simple computation shows, the ¡-lim�!0 (�G�) coincides with the null
functional. From this result no information can be retrieved about the asymptotic
behavior of the minimizing sequences because every element of H1(
�) is obviously
a minimizer of the null functional.

Next, let us introduce the following functionals de�ned on H1(M;S2), which can
be thought as the pull-back of E�;W�;A" and Z� on the product manifoldM :=S�I,
I := (¡1; 1):

� The exchange energy on M reads as EM� (u) := E��(u) + E��(u), where the
tangential and normal component of the exchange energy are respectively
given by

E��(u) :=

Z
M

X
i2N2

j@�i(�)u(�; s)j2 hi;�(�; s) d�ds; (15)

E��(u) :=
1
�2

Z
M
j@su(�; s)j2 g�(�; s) d�ds: (16)

� The magnetostatic self-energy onM is de�ned by WM
� (u) :=W�

�(u)+W�
�(u),

where the tangential and normal components of the energy are respectively
given by

W�
�(u) := ¡1

2

Z
M

X
i2N2

(h�[u](�; s) � �i(�)) (u(�; s) � �i(�)) g"(�; s) d�ds;

(17)

W�
�(u) := ¡1

2

Z
M
(h�[u](�; s) � �(�)) (u(�; s) � �(�)) g"(�; s) d�ds: (18)

Here, the symbol h�[u]2L2(M;R3) stands for the demagnetizing �led onM:

h�[u] :=hd[(u�I) �  �¡1] �  �: (19)

The family of di�eomorphisms ( �)�2I� is the one given in (6).
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� The anisotropy and interaction energies on M, respectively given by

AM� (u) :=

Z
M
'an(u(�; s)) g"(�; s) d�ds; (20)

ZM� (u) := ¡
Z
M
ha
�(�; s) �u(�; s) g"(�; s) d�ds: (21)

For every �2 I�, we have used the symbol ha� for the expression of ha on M
which, for every (�; s)2M, is de�ned by ha

�(�; s) :=ha( �(�; s)). Note that,
in the new coordinate system, the applied �eld depends upon �2 I�.

The main result of the paper is stated in the next result.

Theorem 1. For any � 2 I�, the minimization problem for G� in H1(
�; S2) is
equivalent to the minimization in H1(M;S2) of the functional F� de�ned by

F�(u) := EM� (u)+WM
� (u)+AM� (u)+ZM� (u); (22)

in the sense that a con�guration m� 2H1(
�; S2) minimizes G� if and only if u� :=
m �  �2H1(M;S2) minimizes F�.

The family (F�)�2I� is equi-coercive in the weak topology of H1(M;S2) and F0 :=
¡-lim�!0F� is given by

F0(u) := E0(u)+W0(u)+A0(u)+Z0(u) (23)

= 2

Z
S
jr�uj2 d�+

Z
S
(u0 � �)2 d�+2

Z
S
'an(u) d�¡ 2

Z
S
ha �ud�; (24)

if @su = 0 or by +1 otherwise. Therefore,

min
H1(
�;S2)

G� = min
H1(M;S2)

F� = min
H1(M;S2)

F0+O(1) (25)

and if (u�)�2I� is a minimizing family for (F�)�2I�, there exists a subsequence of
(u�)�2I� which weakly converges in H1(M;S2) to a minimum point of F0.

Remark 6. For the identi�cation of the ¡-limit of the family of exchange energies,
no convexity hypothesis on S is needed. Indeed, following an idea suggested in [14],
we only use this assumption to analyze the asymptotic behavior of the magnetostatic
self-energy.

Remark 7. Notice that the families (AM� )�2I� and (ZM� )�2I� constitute a continuous
perturbation of (EM� +WM

� )�2I�. This means that, with respect to the (topological)
product space I��H1(M;S2), the following relations hold

lim
(�;u)!(0;u0)

AM� (u) =
Z
M
'an(u(�)) d�; (26)

lim
(�;u)!(0;u0)

ZM� (u) = ¡
Z
M
ha(�) �u(�; s) d�ds: (27)

Hence, the theorem on the sum of ¡-limits holds (cf. [15, Prop. 6.20, p. 62]), namely:

¡-lim
�!0

F�0 = ¡-lim
�!0

(EM� +WM
� )+¡-lim

�!0
AM� +¡-lim

�!0
ZM� (28)

= ¡-lim
�!0

(EM� +WM
� )+A0+Z0: (29)
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For this reason, in the identi�cation of the ¡-limit we shall only focus on the family
(EM� +WM

� )�2I�.

The proof of Theorem 1 is given in four steps. In Subsection 3.1 we prove that
for any �2 I� and any m2H1(
�; S2) the equality G�(m) =F�(m �  �) holds, where
 � stands for the di�eomorphism of M onto 
� given by  �(�; s) := �+ �s�(�). In
Subsection 3.2 we show that the family (F�)�2I� is equi-coercive for the weak topology
of H1(M;S2). Finally, the complete characterization of the ¡-limit F0 is the object
of Section 4.

3. Compactness

3.1. The equivalence of G� and F�

In this section we prove the �rst part of Theorem 1, namely that once introduced,
for any � 2 I�, the di�eomorphism of M onto 
� given by  �: (�; s) 2 M 7!
� + �s�(�) 2 
�, one has G�(m) =F�(m �  �), and therefore u� minimizes G� if and
only if u�(�; s) :=m( �(�; �)) minimizes F�.

We only prove the equality E�(m)=EM� (m�  �), the other ones being easier. For
any m2H1(
�;S2), by coarea formula we infer

E�(m) :=
1
�

Z

�

jrm(x)j2dx =
Z
 �(S)�I

jrm�  �(�; s)j2 d�ds (30)

=
Z
M
jrm�  �(�; s)j2 g"(�; s) d�ds: (31)

In writing the last equality we have taken into account that for any (�; s) 2 I� � I
the volume form on  "(S) is related to the volume form on S by the metric factor
g"(�; s) := j1 + 2�sH(�) + (�s)2G(�)j. Next, we project the gradient onto the
orthonormal (moving) frame (�1(�); �2(�); �(�)) induced by S on R3 (cf. (5)). For
any x 2 
� we have jrm(x)j2 =

P
i2N2 j@�i(�)m(x)j

2 + j@�(�)m(x)j2 with � = �(x).
Moreover, the following relations hold

j@�i(�)m( �(�; s))j2 =
1

(1+ �s�i(�))2
j@�i(�)m(�; s)j2; (32)

j@�(�)m( �(�; s))j2 =
1

�2
j@sm(�; s)j2; (33)

from which the equality of E�(m) and EM� (m �  �) results. Note that the previous
computation also shows that m 2 H1(
�; S2) if and only if m �  � 2 H1(M; S2).
Finally, as the superposition operator m 2 H1(
�; S2) 7! (m �  �) 2 H1(M; S2) is
surjective, we get:

inf
m2H1(
�;S2)

G�(m) = inf
u2H1(M;S2)

EM� (u)+WM
� (u)+AM� (u)+Z�(u): (34)

This concludes the proof of the �rst part of Theorem 1.

3.2. Equi-coercivity

We now show that the family (F�)�2I� is equi-coercive in the weak topology of H1(M;
S2). This means, by de�nition (see [10]), that there exists a nonempty and weakly
compact set K � H1(M; S2) such that infH1(
�;S2) F� = infK F� for every � 2 I�.
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This is a crucial step in a ¡-convergence result as it assures the validity of the
fundamental theorem of ¡-convergence concerning the variational convergence of
minimum problems ([10, 15]).

Since AM� and ZM� are uniformly (in �2I�) bounded terms, it is su�cient to show
the equi-coercivity of the family V� := (EM� +WM

� )�2I�. To this end, we observe that
for any constant in space v 2H1(M;S2) we have

min
u2H1(M;S2)

V�(u)6 EM� (v)+WM
� (v) =WM

� (v): (35)

Taking into account (10) and that g� is bounded on M, uniformly with respect to
�2 I�, we end up with

min
u2H1(M;S2)

V�(u) 6
Z
M

g"(�; s) d�ds 6 �MjMj; (36)

for a suitable positive constant �M depending only on M. Therefore, for every
� 2 I�, the minimizers of (V�)�2I� are in K(M; S2) :=[�2I�fu2H1(M; S2) : V�(u)6
�MjMjg. On the other hand, since the principal curvatures �1; �2 are bounded in
S, whenever the radius � 2R+ of the tubular neighborhood 
� is su�ciently small,
there exists a positive constant cM, independent from �2 I�, such that for any i2N2
one has inf(�;s)2M hi;�(�; s) > cM for every � 2 I�. Therefore, since WM

� is always
nonnegative because of (10), we get

kukH1(M;S2)
2 = jMj+

X
i2N2

Z
M
j@�i(�)u(�; s)j2 d�ds+

Z
M
j@su(�; s)j2 d�ds

6 jMj+ 1
cM
V�(u); (37)

and therefore if u2K(M;S2) then kukH1(M;S2)
2 6 (1+�M/cM)jMj. In other words,

the setK(M;S2) is contained in the bounded subset Hb
1(M;S2) of H1(M;R3) given

by the intersection of H1(M;S2) with the ball of H1(M;R3) centered at the origin
and of radius 1+�M/cM. Thus, for any �2 I�

min
u2H1(M;S2)

V�(u) = min
u2Hb

1(M;S2)
V�(u): (38)

To prove that Hb
1(M; S2) is weakly compact it is su�cient to show that the set

Hb
1(M; S2) is weakly closed. To this end, we note that if (un)n2N is a sequence in

Hb
1(M; S2) such that un * u0 weakly in H1(M; R3), due to Rellich-Kondrachov

theorem, un! u0 strongly in L2(M; R3), and therefore, up to the extraction of a
subsequence, 1�junj!ju0j a.e. inM. Thus u0(�; s)2S2 for a.e. (�; s)2M and this
concludes the proof.

4. The identi�cation of the ¡-limit

In this section, we compute F0 :=¡-lim�!0F�. As pointed out at the end of Subsec-
tion 2.2, it is su�cient to focus on the ¡-convergence of the family

V�:u2H1(M;S2) 7! EM� (u)+WM
� (u): (39)

We set V0 := E0+W0 with E0 and W0 given by (23). Note that, as a consequence of
(10), V�(u)> 0 for any u2H1(M; S2).
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Let us prove the ¡-liminf inequality for (V�)�2I�, i.e., that for any family (u�)�2I�
weakly convergent to some u02H1(M; S2) we have V0(u0)6 liminf�!0V�(u�). With
no loss of generality, we can assume that liminf�!0V�(u�)<+1. We then have (see
(16))

+1 > liminf
�!0

F�(u�) > liminf
�!0

E��(u�)

= liminf
�!0

1
�2

Z
M
j@su�(�; s)j2 g"(�; s) d�ds: (40)

Moreover, for any i 2 N2, since sup�2S j�i(�)j <1, there exists a strictly positive
real-valued function : I�! R+ such that, at least in a neighborhood of 0 2 R, the
following estimate holds:

inf
(�;s)2M

hi;�(�; s) = inf
(�;s)2M

g"(�; s)

(1+ �s�i(�))2
> (�) with (�) = 1+O(1): (41)

Using (40) and (41) we �nd that lim�!0k@su0kL2(M)=0. Since @su�*@su0 in D 0(M)
we infer that

@su�! @su0(�; s) strongly in L2(M); @su0(�; s)= 0 a.e. in M: (42)

Therefore, for the identi�cation of the ¡-limit of (V�)�2I� it is su�cient to restrict the
analysis to the families of H1(M;S2) functions which weakly converge to an element
u02H1(M;S2) having the form

u0(�; s)= �I(s)u~0(�); (43)

for some u~02H1(S;S2), i.e., not depending on the s variable. In the following, with
a slight abuse of notation, we shall write u0(�) instead of u~0(�).

In computing V0, we �rst show that the ¡-limit of the families (EM� )�2I� and
(WM

� )�2I�, is respectively equal to E0 and W0 (cf. (23)), then we prove that V0 :=¡-
lim�!0V�= E0+W0.

4.1. The ¡-limit of the family (EM� )�2I�

This section provides the identi�cation of the ¡-limit of the family of exchange
energies on M. Note that, in what follows, we will not make use of the convexity
assumption on S. We start by addressing the ¡-liminf inequality for (EM� )�2I�. Taking
into account the lower semicontinuity of the norm, for any u�* u0 in H1(M; S2),
with u0 of the type (43), we get

ku0kH1(M;S2)
2 =

Z
M
ju0(�; s)j2d�ds+

X
i2N2

Z
M
j@�i(�)u0(�)j2 d�ds (44)

6 jMj+ liminf
�!0

Z
M

X
i2N2

j@�i(�)u�(�; s)j2+ j@su�(�; s)j2 d�ds (45)

= jMj+ liminf
�!0

Z
M
jr�(�)u�(�; s)j2d�ds: (46)

In deriving the last equality, we used (42) and denoted byr�(�)u�(�;s) the tangential
gradient of u� on S whose norm, with respect to an orthonormal basis (�1(�); �2(�))
of T�S, can be expressed as jr� (�)u�(�; s)j2 :=

P
i2N2 j@�i(�)u�(�; s)j

2. Thus

2kr�u0kH1(S;S2)
2 = 2

X
i2N2

Z
S
j@�i(�)u0(�)j2 d�ds 6 liminf

�!0

Z
M
jr�u�j2: (47)
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Next, by making use of the well-known properties of the liminf operator and taking
into account relation (41), we compute:

liminf
�!0

Z
M
jr�u�j2 =

�
liminf
�!0

(�)
��

liminf
�!0

Z
M
jr�(�)u�(�; s)j2d�ds

�
(48)

6 liminf
�!0

�
(�)

Z
M
jr�(�)u�(�; s)j2d�ds

�
(49)

= liminf
�!0

 X
i2N2

(�)

Z
M
j@�i(�)u�(�; s)j2d�ds

!
(50)

6 liminf
�!0

 X
i2N2

Z
M
j@�i(�)u�(�; s)j2

g"(�; s)

(1+ �s�i(�))2
d�ds

!
(51)

= liminf
�!0

E��(u�): (52)

Substituting (51) into (47) we get the following result.

Lemma 8. Suppose that u�*u0 weakly in H1(M; S2) and liminf�!0 V�(u�)<+1.
The following estimate holds

2 kr�u0kH1(S;S2)
2 6 liminf

�!0
E��(u�)6 liminf

�!0
(E��(u�)+ E��(u�)): (53)

We now address the existence of a recovery sequence. To this end, it is su�cient
to note that for every u�2H1(M;S2) having the product form u�(�; s)= �I(s)u0(�)
we have (cf. (41))

limsup
�!0

(E��(u�)+ E��(u�)) = limsup
�!0

X
i2N2

Z
M
j@�i(�)u0(�)j2

g"(�; s)

(1+ �s�i(�))2
d�ds (54)

=
X
i2N2

Z
M
j@�i(�)u0(�)j2 d�ds (55)

= 2kr�u0kL2(S;S2)2 : (56)

We so proved the following result.

Proposition 9. Let S be a smooth compact surface (convex or not) andM :=S�I.
The family (EM� )�2I� of exchange energy onM, ¡-converges, with respect to the weak
topology of H1(M; S2), to the functional

E0:u2H1(M;S2) 7!

8<: 2kr�ukL2(S;S2)2 if @su = 0;

+1 otherwise:
(57)

4.2. The ¡-limit of the family (WM
� )�2I�

This section is devoted to the identi�cation of the ¡-limit of the family (WM
� )�2I� of

magnetostatic self-energies on M.
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Note that for every u 2 L2(M; R3) the distribution (u�I) �  �¡1, with  � given
by (6), is in L2(
�; R3), and it is therefore possible to evaluate the demagnetizing
�eld hd on its extension by zero outside 
�. To simplify the notation, we still denote
by (u�I) �  �¡1 such an extension. Since S is a convex surface (cf. De�nition 2), for
every �2 I� there exists the tubular strip of S. Namely


M+

� := f�+ �s�(�)g(�;s)2M+
(58)

withM+ :=S� (¡1;+1). We consider the restriction of (11) and (12) to 
M+

� and
pull-back them via the di�eomorphism  �: (�; s)2M+ 7!�+ �s�(�)2
M+. We so
obtain the following relations:

�

Z
M+

(h�[u](�; s)+ u(�; s)�I(s)) � (r' �  � ) g�(�; s) d�ds = 0 (59)

�

Z
M+

h�[u](�; s) � (curl' �  �) g�(�; s) d�ds = 0 (60)

for any '2D(
M+

� ), '2D(
M+

� ;R3). Here, h�[u](�; s) :=hd[(u�I) �  �¡1] �  �.
Next, let (u�)�2I� be a family of H1(M;S2) functions weakly converging to some

u0 2H1(M; S2) and such that liminf�!0 F�(u�)< +1. By relations (10) and (19),
we deduce that for any m��
� := (u��I) �  �¡1

1
2

Z
M+

jh�[u�](�; s)j2 g�(�; s) d�ds =
1
2�

Z

M+
�
jhd[m��
�]j2 d� (61)

6 1
2�

Z
R3
jhd[m��
�]j2d� (62)

= ¡ 1
2�

Z

�

hd[m��
�] �m��
�d� (63)

= W�
�(u�)+W�

�(u�); (64)

with W�
� and W�

� respectively given by (17) and (18). Hence, there exist a subse-
quence extracted from (h�[u��I])�2I�, still denoted by (h�[u��I])�2I�, and an element
h02L2(M+;R3), such that h�[u��I]*h0 weakly in L2(M+;R3).

Let us consider the energy term W�, i.e., the normal part of the family of mag-
netostatic self-energy functionals de�ned by (18). Decomposing (59) into its normal
and tangential part, and evaluating it on the weakly convergent sequence (u�)�2I� we
get thatZ
M+

[(h�[u�](�; s)+u�(�; s)�I(s)) � �(�)]@s'(�; s) g�(�; s) d�ds

= ¡ �
X
i2N2

Z
M+

(h�[u�](�; s)+ u�(�; s)�I(s)) � �i(�)@�i'(�; s) hi;�(�; s) d�ds:
(65)

for any ' 2D(M+). Taking into account (41) and passing to the limit for �! 0 in
(65) we get, up to the extraction of a subsequence,Z

M+

[(h0(�; s)+u0(�)�I(s)) � �(�)]@s' (�; s) d�ds = 0 (66)

for any '2D(M+). Thus the quantity (h0(�;s)+u0(�)�I(s)) ��(�) is constant with
respect to the s-variable, and since it belongs to L2(M+) we infer that

h0(�; s) � �(�) = ¡u0(�)�I(s) � �(�) (67)
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for a.e. (�; s) 2M+. In particular, the normal component of the weak limit h0 2
L2(M+; R3) does not depend on the extracted subsequence so that the full subse-
quence h�[u��I](�; s) � �(�) weakly converges to ¡u0(�)�I(s) � �(�) in L2(M+;R3).
By Rellich�Kondrachov theorem, the weak convergence of (u�)�2I� to u0(�)2H1(M;

S2) implies that u�(�; s) ! u0(�) strongly in L2(M; R3). By taking the limit for
�!0 of both members of (65), taking into account (67), we �nish with the following
relation:

lim
�!0

W�
�(u�) =

1
2

Z
M
(u0(�) � �(�))2 d�ds: (68)

Note that the right-hand side of (68) coincides with W0 because, as we are going to
show, the demagnetizing �eld h0 has no tangential component.

We now address the tangential energy term W�
� de�ned by (17). We start by

decomposing the integrand along its tangent and normal directions. For any ' 2
D(
M+

� ;R3) one has (let us temporarily set �3(�) := �(�) to shorten notation)

h�[u] � (curl'�  �); =
1
2

X
i2N3

(h�[u]� �i) � (curl'�  �� �i): (69)

We then denote byrskw the skew-symmetric part of the gradient de�ned byrskw' :=
(rT'¡r')/2. From (69) we obtain

h�[u] � (curl' �  �) =
X
i;j2N3

(h�[u]� �i) � ((rskw'�  �)�i � �j)�j (70)

= 2
X

i<j2N3

((h�[u]� �i) � �j)((rskw'�  �)�i � �j): (71)

Next, we compute the relation between rskw' �  � and rM(' �  �). To this end,
let us �rst note that for any ' 2 D(M+; R3), the function '� := ' �  �¡1 is in
D(
M+

� ;R3), and moreover

(rskw'��  �)�1 � �2 = (d'��  �)�1 � �2¡ (d'��  �)�2 � �1

=
1

1+ �s�1
@�1('�  �) � �2¡

1
1+ �s�2

@�2('�  �) � �1 : (72)

Similarly, we compute the normal component of the tangential image of rskw. For
any i2N2 we get

(rskw'� �  �)�i � � = (d'��  �)�i � � ¡ (d'� �  �)� � �i

=
1

1+ �s�i
@�2' � � ¡

1
�
@s' � �i : (73)

By taking the limit for �! 0, of both members of (72) and (73), we get

lim
�!0

[� (rskw'� �  �)�1 � �2 ] = 0;

lim
�!0

[�(rskw'� �  �)�i � � ] = ¡@s' � �i;
(74)

for any i 2N2. As (h�[u�])�2I� satis�es (60), taking into account (71), we have that
for every '2D(M+;R3) (here we set as before '� :=' �  �)

0 = �

Z
M+

h�[u�] � (curl'� �  �) g� d�ds (75)

= 2
X

i<j2N3

Z
M+

[(h�[u�]� �i) � �j] [�(rskw'� �  �)�i � �j] g� d�ds: (76)
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Since h�[u�]*h0 weakly in L2(R3;R3), taking into account (41) and (74) and passing
to the limit for �! 0 in the previous expression, we �nish with the relationZ

M+

(h0(�; s)� �(�)) � @s'(�; s) d�ds = 0 8'2D(M+;R3); (77)

from which we deduce that the quantity h0� � does not depend on the s-variable.
Since h0� � 2L2(M+) one necessarily has h0� � = 0. Hence, the weak limit h0 has
no tangential component and that means (cf. (18)) that lim�!0W�

�(u�)=0. We have
so proved the following result.

Lemma 10. If u� * u0 weakly in H1(M; S2) and liminf�!0 V�(u�) < +1, then
lim�!0W�

�(u�)= 0 and

W0 = lim
�!0

WM
� (u�) = lim

�!0
W�

�(u�) =
Z
S
(u0(�) � �(�))2 d�: (78)

4.3. The ¡-limit of the family (F�)�2I�

We complete the proof of Theorem 1 by showing that F0 is given by (24). As pointed
out in Remark 7, it is su�cient to show that ¡-lim V� = E0 +W0. We note that if
u�* u in H1(M; S2) and @su =/ 0 then liminf�!0 V�(u�) = +1 and therefore the
¡-liminf inequality is trivially satis�ed. On the other hand, if @su = 0, then from
Lemma 8 and Lemma 10 we get

liminf
�!0

V�(u�) = liminf
�!0

(E��(u�)+ E��(u�))+ lim
�!0

(W�
�(u�)+W�

�(u�)) (79)

> E0(u0)+W0(u0) (80)

= V0(u0):

Finally, for any u02H1(M;S2) such that @su0 = 0, the constant (with respect to the
index �) family (u�)�2I�=(u0)�2I� is a recovery sequence. Indeed we have

limsup
�!0

V�(u0) = limsup
�!0

(E��(u0)+ E��(u0))+ lim
�!0

(W�
�(u�)+W�

�(u�)) = V0(u0); (81)

and this completes the proof of Theorem 1.

5. Conclusion and Acknowledgment

We have computed the ¡-limit of the micromagnetic energy functional when the shell
is generated by a bounded and smooth convex surface. Our result provides a solid
ground to most of the studies on nanomagnets with curved shape which are currently
under investigation by the theoretical physics community (e.g., [27, 29, 37, 36, 39,
42, 43, 48]; this list is certainly far from complete).

In particular, our result validates the variational model widely used in the analysis
of magnetic thin spherical shells which are currently worth of interest due to their
capability to support skyrmion solutions (see e.g. [37]). Indeed, for a magnetic
spherical �lm with perpendicular magnetocrystalline anisotropy, the ¡-limit (after
a suitable rescaling and in the absence of an external applied �eld) reads as

F0:u2H1(S2; S2) 7!
Z
S2
jr�uj2+�2(u � �)2 d� (82)
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with �2 summarizing the contributions of both the crystal and shape anisotropy.
The investigation of the metastable states of (82) turns out to be a challenging
problem with far-reaching consequences in the modern magnetic storage technology.
Indeed, as some formal asymptotics shows, F0 exhibits two topologically protected
metastable states, known as the vortex and the onion state, depending on the value of
�2 (�onion2 <�vortex

2 , cf. Figure 3). These states are characterized by distinct skyrmion
numbers [46] and therefore appropriate for the design of future racetrack memory
devices [26].

R3

S2

�vortex
2 �onion

2

Figure 3. Magnetic spherical �lms are currently worth of interest due to their capability to
support skyrmion solutions. (From left to right) The vortex and the onion state (�onion2 <
�vortex
2 ).

The formation of these two states can be heuristically explained as follows. Let us
recall that a ferromagnetic particle occupying a spherical region can support constant
in space magnetizations. In other words, if the ferromagnet occupies the spherical
region Br (of radius r) and m is constant in Br, then the induced demagnetizing
�eld hd[m] is also constant in Br (see [21, 33, 41]). Moreover, according to Brown's
fundamental theorem of the theory of �ne ferromagnetic particles (cf. [3, 4, 6, 13, 22]),
there exists a critical radius rc below which both the global and the local minimizers
of the micromagnetic energy functional G(�; Br) are constant in space. Also, there
exists a critical radius Rc>rc such that when r>Rc the global minimizers of G(�;Br)
are no more constant in space and vortex type solutions start to be energetically
preferable (cf. [13]).

Now, for a spherical shell 
�;r :=BrnB�r, with �< 1, one has

G(�;
�;r)= G(�; Br)¡G(�; B�r); (83)

and the relations r<rc and r>Rc translate, in the framework of the limiting energy
functional (82), as �2 < �c

2 and �2 > Kc
2 for some suitable constants �c2 and Kc

2.
Therefore, when r < rc, i.e., when �2 is su�ciently small, the ground states are the
result of an energetic competition among constant in space magnetizations, which
tend to minimize G(�; Br), and normal (to the sphere) con�gurations which tend to
maximize G(�; B�r). This leads to onion type con�gurations. On the other hand,
when r > Rc, i.e., when �2 is su�ciently large, the minimizers are the result of an
energetic competition among vortex type con�gurations, which tend to minimize
G(�; Br), and the normal ones which tend to maximize G(�; B�r). This leads to the
vortex type con�gurations. This and many other aspects of the question will be the
object of forthcoming works.
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