Stator Design and Performance of Superconducting Motors for Aerospace Electric Propulsion Systems - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Applied Superconductivity Année : 2018

Stator Design and Performance of Superconducting Motors for Aerospace Electric Propulsion Systems

Résumé

Hybrid electric propulsion has been identified as a potential solu-tion to the ambitious environmental emissions and noise targets of the aerospace industry. Superconducting machines may be the key component of that topology enabling the high power densities and efficiencies needed in aerospace. Fully superconducting ma-chines, however, are not a mature technology. This paper looks at the different machine design configurations focusing on the stator magnetic circuit of a fully superconducting motor. The motor has been designed for an aerospace distributed fan propulsion motor with an aerospace benchmark specification of 1 MW. The AC ful-ly superconducting machine includes superconducting bulk magnets mounted on a conventional rotor core and an MgB2 su-perconducting wire wound stator. The AC losses in the stator winding are particularly sensitive to exposure to the main rotor field so different screening solutions were used to shield the su-perconducting windings from the rotor field. The effectiveness of the screening techniques for the stator coils and the impact on the machine performance and weight were evaluated for different stator designs, such as full stator core and air core with and without flux diverters. Various combinations of pole numbers, diverter geometries and magnetic materials have been checked. Results show that there is a trade-off between stator iron losses and superconducting losses.
Fichier principal
Vignette du fichier
Stator Design and Performance of Superconducting Motors for Aerospace Electric Propulsion Systems_final.pdf (1009.26 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01592386 , version 1 (23-09-2017)
hal-01592386 , version 2 (03-03-2018)

Identifiants

Citer

Charalampos D. Manolopoulos, Matteo Iacchetti, Alexander C. Smith, Kévin Berger, Mark Husband, et al.. Stator Design and Performance of Superconducting Motors for Aerospace Electric Propulsion Systems. IEEE Transactions on Applied Superconductivity, 2018, 28 (4), pp.5207005. ⟨10.1109/TASC.2018.2814742⟩. ⟨hal-01592386v2⟩
131 Consultations
1492 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More