M. S. Almeida and L. B. Almeida, Blind and Semi-Blind Deblurring of Natural Images, IEEE Transactions on Image Processing, vol.19, issue.1, pp.36-52, 2010.
DOI : 10.1109/TIP.2009.2031231

L. Bar, N. Sochen, and N. Kiryati, Variational Pairing of Image Segmentation and Blind Restoration, Part II, ser. Lecture Notes in Computer Science, vol.3022, pp.166-177, 2004.
DOI : 10.1007/978-3-540-24671-8_13

T. F. Chan and C. K. Wong, Total variation blind deconvolution, IEEE Transactions on Image Processing, vol.7, issue.3, pp.370-375, 1998.
DOI : 10.1109/83.661187

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. F. Chan, A. M. Yip, and F. E. Park, Simultaneous total variation image inpainting and blind deconvolution, International Journal of Imaging Systems and Technology, vol.8, issue.1, pp.92-102, 2005.
DOI : 10.1007/978-1-4615-3980-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, Removing camera shake from a single photograph, Proc. SIGGRAPH, pp.787-794, 2006.
DOI : 10.1145/1141911.1141956

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Katkovnik, D. Paliy, K. Egiazarian, and J. Astola, Frequency domain blind deconvolution in multiframe imaging using anisotropic spatially-adaptive denoising, 14th European Signal Processing Conference, 2006.
DOI : 10.1201/9781420007299.ch3

R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and S. Harmeling, Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database, Computer Vision ? ECCV 2012, Part VII, ser. Lecture Notes in Computer Science, pp.27-40, 2012.
DOI : 10.1007/978-3-642-33786-4_3

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, Understanding and evaluating blind deconvolution algorithms, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.1964-1971, 2009.
DOI : 10.1109/CVPR.2009.5206815

D. Li, R. M. Mersereau, and S. Simske, Blind Image Deconvolution Through Support Vector Regression, IEEE Transactions on Neural Networks, vol.18, issue.3, pp.931-935, 2007.
DOI : 10.1109/TNN.2007.891622

G. Liu, S. Chang, and Y. Ma, Blind Image Deblurring Using Spectral Properties of Convolution Operators, IEEE Transactions on Image Processing, vol.23, issue.12, pp.5047-5056, 2014.
DOI : 10.1109/TIP.2014.2362055

P. Moser and M. Welk, Robust blind deconvolution using convolution spectra of images, " in 1st OAGM-ARW Joint Workshop: Vision Meets, Wels, Austria: ¨ Osterreichische Computer-Gesellschaft, pp.69-78, 2016.

R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand, A Haar wavelet-based perceptual similarity index, 2016.

K. Schelten, S. Nowozin, J. Jancsary, C. Rother, and S. Roth, Interleaved Regression Tree Field Cascades for Blind Image Deconvolution, 2015 IEEE Winter Conference on Applications of Computer Vision, pp.494-501, 2015.
DOI : 10.1109/WACV.2015.72

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Tian and K. Ma, A survey on super-resolution imaging, Signal, Image and Video Processing, pp.329-342, 2011.
DOI : 10.1109/TIP.2009.2039055

C. R. Vogel and M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Transactions on Image Processing, vol.7, issue.6, pp.813-824, 1998.
DOI : 10.1109/83.679423

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/TIP.2003.819861

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Welk, A robust variational model for positive image deconvolution, Signal, Image and Video Processing, pp.369-378, 2016.
DOI : 10.1007/s11760-012-0381-6

URL : http://arxiv.org/pdf/1310.2085

M. Welk, J. Weickert, and G. Steidl, PDE-Based Deconvolution with Forward-Backward Diffusivities and Diffusion Tensors, Lecture Notes in Computer Science, vol.3459, pp.585-597, 2005.
DOI : 10.1007/11408031_50

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Xu, S. Zheng, and J. Jia, Unnatural L0 Sparse Representation for Natural Image Deblurring, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.1107-1114, 2013.
DOI : 10.1109/CVPR.2013.147

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. You and M. Kaveh, Anisotropic blind image restoration, Proc. 1996 IEEE International Conference on Image Processing, pp.461-464, 1996.