T. Nam and T. A. Pardo, Conceptualizing smart city with dimensions of technology, people, and institutions, Proceedings of the 12th Annual International Digital Government Research Conference on Digital Government Innovation in Challenging Times, dg.o '11, pp.12-15, 2011.
DOI : 10.1145/2037556.2037602

R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, N. Pichler-milanovic et al., Smart Cities-Ranking of European Medium-Sized Cities, 2007.

F. Mcloughlin, A. Duffy, and M. Conlon, Characterising domestic electricity consumption patterns by dwelling and occupant socio-economic variables: An Irish case study, Energy and Buildings, vol.48, pp.240-248, 2012.
DOI : 10.1016/j.enbuild.2012.01.037

J. Z. Kolter, J. Ferreira, and . Jr, A large-scale study on predicting and contextualizing building energy usage, Proceedings of the 25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference, pp.7-11, 2011.

A. Kavousian, R. Rajagopal, and M. Fischer, Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior, Energy, vol.55, pp.184-194, 2013.
DOI : 10.1016/j.energy.2013.03.086

E. Devijver, Y. Goude, and J. M. Poggi, Clustering electricity consumers using high-dimensional regression mixture models, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01169324

C. Beckel, L. Sadamori, T. Staake, and S. Santini, Revealing household characteristics from smart meter data, Energy, vol.78, pp.397-410, 2014.
DOI : 10.1016/j.energy.2014.10.025

C. Beckel, L. Sadamori, S. Santini, and T. Staake, Automated customer segmentation based on smart meter data with temperature and daylight sensitivity, 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp.2-5, 2015.
DOI : 10.1109/SmartGridComm.2015.7436375

Z. Yu, B. Fung, F. Haghighat, H. Yoshino, and E. Morofsky, A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy Build, pp.1409-1417, 2011.

A. Nizar, Z. Y. Dong, and J. Zhao, Load profiling and data mining techniques in electricity deregulated market, 2006 IEEE Power Engineering Society General Meeting, pp.18-22, 2006.
DOI : 10.1109/PES.2006.1709335

F. N. Melzi, M. H. Zayani, A. Ben-hamida, A. Samé, and L. Oukhellou, Identifying Daily Electric Consumption Patterns from Smart Meter Data by Means of Clustering Algorithms, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp.9-11, 2015.
DOI : 10.1109/ICMLA.2015.18

URL : https://hal.archives-ouvertes.fr/hal-01215017

V. Figueiredo, F. Rodrigues, Z. Vale, and J. B. Gouveia, An Electric Energy Consumer Characterization Framework Based on Data Mining Techniques, IEEE Transactions on Power Systems, vol.20, issue.2, pp.596-602, 2005.
DOI : 10.1109/TPWRS.2005.846234

S. V. Verdú, M. O. Garcia, C. Senabre, A. G. Marin, and F. J. Franco, Classification, Filtering, and Identification of Electrical Customer Load Patterns Through the Use of Self-Organizing Maps, IEEE Transactions on Power Systems, vol.21, issue.4, pp.1672-1682, 2006.
DOI : 10.1109/TPWRS.2006.881133

I. Dent, U. Aickelin, and T. Rodden, The Application of a Data Mining Framework to Energy Usage Profiling in Domestic Residences Using UK Data, SSRN Electronic Journal, 2013.
DOI : 10.2139/ssrn.2829282

I. Khan, A. Capozzoli, S. P. Corgnati, and T. Cerquitelli, Fault Detection Analysis of Building Energy Consumption Using Data Mining Techniques, Energy Procedia 2013, pp.557-566
DOI : 10.1016/j.egypro.2013.11.057

F. Aqlan, A. Ahmed, K. Srihari, and M. T. Khasawneh, Integrating Artificial Neural Networks and Cluster Analysis to Assess Energy Efficiency of Buildings, Proceedings of the 2014 Industrial and Systems Engineering Research Conference, pp.31-35, 2014.

G. Chicco, Overview and performance assessment of the clustering methods for electrical load pattern grouping, Energy, vol.42, issue.1, pp.68-80, 2012.
DOI : 10.1016/j.energy.2011.12.031

B. J. Birt, G. R. Newsham, I. Beausoleil-morrison, M. M. Armstrong, and N. Saldanha, Rowlands, I.H. Disaggregating categories of electrical energy end-use from whole-house hourly data. Energy Build, pp.93-102, 2012.

H. Â. Cao, C. Beckel, and T. Staake, Are domestic load profiles stable over time? An attempt to identify target households for demand side management campaigns, IECON 2013, 39th Annual Conference of the IEEE Industrial Electronics Society, pp.10-13, 2013.
DOI : 10.1109/IECON.2013.6699900

J. Kwac, C. W. Tan, N. Sintov, J. A. Flora, and R. Rajagopal, Utility customer segmentation based on smart meter data: Empirical study, 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp.21-24, 2013.
DOI : 10.1109/SmartGridComm.2013.6688044

F. Mcloughlin, A. Duffy, and M. Conlon, A clustering approach to domestic electricity load profile characterisation using smart metering data, Applied Energy, vol.141, pp.190-199, 2015.
DOI : 10.1016/j.apenergy.2014.12.039

S. Haben, C. Singleton, and P. Grindrod, Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data, IEEE Transactions on Smart Grid, vol.7, issue.1, pp.136-144, 2016.
DOI : 10.1109/TSG.2015.2409786

X. Tong, R. Li, F. Li, and C. Kang, Cross-domain feature selection and coding for household energy behavior, Energy, vol.107, pp.9-16, 2016.
DOI : 10.1016/j.energy.2016.03.135

Y. Wang, Q. Chen, C. Kang, and Q. Xia, Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications, IEEE Transactions on Smart Grid, vol.7, issue.5, pp.2437-2447, 2016.
DOI : 10.1109/TSG.2016.2548565

J. Kwac, J. Flora, and R. Rajagopal, Lifestyle segmentation based on energy consumption data, IEEE Transactions on Smart Grid, 2017.
DOI : 10.1109/TSG.2016.2611600

J. Kwac, J. Flora, and R. Rajagopal, Household Energy Consumption Segmentation Using Hourly Data, IEEE Transactions on Smart Grid, vol.5, issue.1, 2014.
DOI : 10.1109/TSG.2013.2278477

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B, vol.39, pp.1-38, 1977.

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 1967.

G. N. Lance and W. Williams, A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems, The Computer Journal, vol.9, issue.4, pp.373-380, 1967.
DOI : 10.1093/comjnl/9.4.373

C. Beckel, L. Sadamori, and S. Santini, Towards automatic classification of private households using electricity consumption data, Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys '12, pp.169-176, 2012.
DOI : 10.1145/2422531.2422562

V. M. Balijepalli, V. Pradhan, S. Khaparde, and R. Shereef, Review of demand response under smart grid paradigm, ISGT2011-India, pp.1-3, 2011.
DOI : 10.1109/ISET-India.2011.6145388

H. Daneshi and A. Daneshi, Real time load forecast in power system, 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp.6-9, 2008.
DOI : 10.1109/DRPT.2008.4523494

S. Fan and R. J. Hyndman, Short-Term Load Forecasting Based on a Semi-Parametric Additive Model, IEEE Transactions on Power Systems, vol.27, issue.1, pp.134-141, 2012.
DOI : 10.1109/TPWRS.2011.2162082

M. L. Abadi, A. Same, L. Oukhellou, N. Cheifetz, P. Mandel et al., Predictive Classification of Water Consumption Time Series using Non-homogeneous Markov Models, Proceedings of the IEEE International Conference on Data science and Advanced Analytics (IEEE DSAA 2017) This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, pp.19-21, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581073