Skip to Main content Skip to Navigation
Journal articles

Learning to Choose the Best System Configuration in Information Retrieval: the case of repeated queries

Abstract : This paper presents a method that automatically decides which system configuration should be used to process a query. This method is developed for the case of repeated queries and implements a new kind of meta-system. It is based on a training process: the meta-system learns the best system configuration to use on a per query basis. After training, the meta-search system knows which configuration should treat a given query. The Learning to Choose method we developed selects the best configurations among many. This selective process rests on data analytics applied to system parameter values and their link with system effectiveness. Moreover, we optimize the parameters on a per-query basis. The training phase uses a limited amount of document relevance judgment. When the query is repeated or when an equal-query is submitted to the system, the meta-system automatically knows which parameters it should use to treat the query. This method its the case of changing collections since what is learnt is the relationship between a query and the best parameters to use to process it, rather than the relationship between a query and documents to retrieve. In this paper, we describe how data analysis can help to select among various configurations the ones that will be useful. The "Learning to choose" method is presented and evaluated using simulated data from TREC campaigns. We show that system performance highly increases in terms of precision, specifically for the queries that are difficult or medium difficult to answer. The other parameters of the method are also studied.
Complete list of metadatas

Cited literature [35 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01592024
Contributor : Open Archive Toulouse Archive Ouverte (oatao) <>
Submitted on : Friday, September 22, 2017 - 2:33:36 PM
Last modification on : Tuesday, September 8, 2020 - 10:42:05 AM
Long-term archiving on: : Saturday, December 23, 2017 - 1:27:10 PM

File

bigot_16858.pdf
Files produced by the author(s)

Identifiers

Citation

Anthony Bigot, Sebastien Déjean, Josiane Mothe. Learning to Choose the Best System Configuration in Information Retrieval: the case of repeated queries. Journal of Universal Computer Science, Graz University of Technology, Institut für Informationssysteme und Computer Medien, 2015, vol. 21 (n° 13), pp. 1726-1745. ⟨10.3217/jucs-021-13-1726⟩. ⟨hal-01592024⟩

Share

Metrics

Record views

147

Files downloads

86