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Where Do We Stand with Fuzzy Project Scheduling?

Pierre Bonnal'; Didier Gourc?; and Germain Lacoste®

Abstract: Fuzzy project scheduling has interested several researchers in the past two decades; about 20 articles have been written on this
issue. Contrary to stochastic project-scheduling approaches that are used by many project schedulers, and even if the axiomatic associated
to the theory of probabilities is not always compatible with decision-making situations, fuzzy project-scheduling approaches that are most
suited to these situations have been kept in the academic sphere. This paper starts by recalling the differences one can observe between
uncertainty and imprecision. Then most of the published research works that have been done in this field are summarized. Finally, a
framework for addressing the resource-constrained fuzzy project-scheduling problem is proposed. This framework uses temporal linguis-
tic descriptors, which might become very interesting features to the project-scheduling practitioners.

CE Database subject headings: Scheduling; Project management; Fuzzy sets.

Introduction

“Simple things are wrong, while complex ones are unusable
French poet Paul Valery said one century ago. Project schedulers
are facing a similar dilemma when trying to find the most appro-
priate tool for scheduling their projects. Project-scheduling mod-
els that are simple can sometimes be misleading. Models that are
too sophisticated, because of their low reactivity, can be useless.

Critical-path method (CPM) is the simplest method available
for modeling the execution of a project. If the complexity of the
project is low, one can believe that such an approach may be
sufficient. For more complex projects, such as large-scale indus-
trial or construction projects, additional features such as a wider
variety of precedence constraints including start—start, start—
finish, finish—finish, and with or without a lag; temporal con-
straints such as milestones; as well as resource constraints shall
be considered.

Among these additional features, uncertainty is an issue that is
addressed in one of the first publications related to the project-
scheduling problem—the Malcolm et al. paper on the program
evaluation and review technique (PERT) method (Malcolm
1959). Several interesting papers have been issued following this
primary paper, and among them, a paper proposing the use of
Monte-Carlo simulations by Van Slyke (1963), also papers ex-
tending the stochastic scheduling problem to branching (the so-
called generalized project-scheduling problem) (Eisner 1962; El-
maghraby 1964; Elmaghraby 1966; Moore and Clayton 1976;
Pritsker 1968), and a few others aiming to criticize the PERT
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method (Kotiah and Wallace 1973; McCrimmon and Rayvec
1964; Parks and Ramsing 1969).

Additional criticisms came from some writers interested in the
implementation of the fuzzy-set and the possibility theories to
solve practical decision-making problems. They argued, and still
do, that the project-scheduling problem is not a domain that suits
the axiomatic associated with the probability theory. Fuzzy or
possibilistic approaches are much more appropriate.

The first paper addressing the project-scheduling problem with
a fuzzy point of view was by Chanas and Kamburowski (1981)
and was published in the early 1980s. In the last 20 years, about
20 papers have been published on that issue. Most of them are
very theoretical and cannot be implemented in real-life situations.

We believe that these scheduling approaches are mature
enough and that, through some adaptations, project-management
practitioners can benefit from them. The aim of this paper is to
sum up the knowledge acquired on fuzzy/possibilistic project
scheduling over the years and to propose a practical method to
add to the project-scheduler toolbox.

Uncertainty versus Imprecision

Some definitions of terms associated with the notions of uncer-

tainty and imprecision are given in this section. From Dubois and

Prade (1988) and from Klir and Folger (1988) we can derive the

following:

* Uncertainty usually refers to the random nature of a result; this
term is of a probabilistic nature, and

* Imprecision refers to the incompletely defined nature of a re-
sult; imprecision has a deterministic nature.

A pragmatic approach to the notion of information consists of
considering it as a predicate, a truth, to which a balancing quali-
fier is attached. Several qualifiers come to mind including prob-
able, possible, necessary, plausible, credible, and so on.

Probable

This qualifier gets its meaning when used in the perspective of the
probability theory. If we consider that this theory refers to the
measurement of the frequency of event occurrences, then the



probable has a pure arithmetical meaning. In certain cases, the
probability theory refers to the feeling of uncertainty, i.e., the
price that someone may pay if the proposal he/she believes to be
true is really false. In such situations, the probable has a more
subjective meaning. In the project-management domain, this is
the latter meaning that is usually considered, probable activity
duration for instance.

Possible and Necessary

Aristotle already mentioned the duality that exists between these
two terms. The possible expresses the difficulty associated with
the realization of an event, while the necessary refers to the obli-
gation to have an event realized. If an event is necessary, that
means its contrary is impossible. One can locate the probable
somewhere in between the possible and the necessary.

Plausible and Credible

Everything that comes from a corpus of knowledge is said to be
credible. Everything that does not is said to be plausible.

The probability theory is a proven mathematical theory. Al-
though it has been in existence for several centuries, its axiomatic
is quite recent as shown in Kolmogorov’s work in the 1930s. This
theory has many axioms, but they are clear. Its global consistency
is uncontested. Its implementation to a wide range of domains has
given valuable results. However, because it is a particularly axi-
omatic theory, several limitations can be observed when applied
to other fields such as project management.

Prior to any calculation, two of its axioms require that all the
possible discrete events are identified, and that the sum of all
these probabilities equals one. When applied to decision-making
processes, these two conditions are rarely satisfied. By definition,
the knowledge someone can have of the future is vague. There-
fore, it is extremely difficult to identify all the possible events that
may occur.

The distribution law of a random variable gives the frequency
of occurrence of each of its possible values. Math textbooks are
full of distribution laws, but their use supposes that enough data
has been gathered to let the analyst check if the envisioned laws
fit the data. Unfortunately, the project-management analyst does
not have enough information to perform this prerequisite. This is
due to the fact that, by definition, a project is a collection of
nonrepetitive activities. Even if the closing-out phases are cor-
rectly performed, the collected data does not have the quality
required for ensuring a good fit of distribution laws.

Project activities are usually not fair dice because project man-
agers obviously have some power to steer the execution of their
projects. With this last argument, one has three irrefutable reasons
for concluding on the inappropriateness of the probability theory
when used in the project-management field, and especially for the
resolution of the project-scheduling problem.

Cantor and Dedekind launched the basis of the set theory in
the middle of the 19th century. It was quite a controversial math-
ematical theory at that time. That is not the case anymore. This
theory’s principle is that all of the elements of the universe can be
sorted out in sets, and every set can be considered as a whole.
When this theory is applied to real-life problems, it is sometimes
difficult to decide whether an element belongs to a set or not. In
the 1920s, the Polish logician Lukasiewicz and the Romanian
mathematician Moisil, proposed a multivalent logic that handles
the notion of doubt to deal with this. If O is false and 1 is true,
then the notion of uncertainty can be associated with 1/2 for in-

stance. One had to wait until the 1960s and for Zadeh’s work to
have a complete algebra for treating vagueness and fuzziness. The
fuzzy-set and possibility theories have much less axiomatic limi-
tations as compared to the probability theory. For instance, an
event can be possible, so does its contrary. Because this theory is
compatible with the limitations given above, we are convinced
that project schedulers may benefit from using it. This is particu-
larly the case for planning and scheduling large-scale industrial or
construction projects.

Deterministic Activity Network Calculations

A project can be broken down into activities that must be per-
formed in a determined sequence. An acyclic-directed graph is
usually used to model this sequence of activities. The CPM ap-
proach associates activities to vertices and precedence constraints
to nodes. Another approach makes the contrary, and is preferred
because it is easier to handle. Let us call A={a,,...,a,} the
project activities and U=[uy ] the precedence matrix made as
follows: u; =1 if a, is an immediate successor of a;, and u
=0 otherwise. Let us call I';CA the subset of the activities that
are immediate successors of a;, and F]]CA the subset of the
activities that are immediate predecessors of a; . It shall be men-
tioned that all these subsets derives from U. The resolution of the
so-called project-scheduling problem, i.e., of the graph G
=(A,U) supposes that all activity duration is known. To simplify
the understanding of the calculation procedure, two zero-duration
activities are added: a, and a,, . a, precedes all the activities for
which 171:@ ; a, is called the initial activity of the network,
and its start date is known. The a,, succeeds all the activities for
which I';=( and a,, is called the terminal activity. The aim of
the exercise is to determine the minimum makespan for the
project and the earliest start dates #; and the latest finish dates 7;
of each activity. The 7; are computed throughout the so-called
forward calculation at the end of which the minimum makespan is
obtained; r,—1¢,. Then ¢, and 7, are made equal in order to
compute the 7; throughout the so-called backward calculation.
Total and free floats can be computed when all the dates associ-
ated to the activities are known.

TF;=7;—t;+d; and FFj=minkEFj{tk}—tj+dj

Calculations are performed from a, to a,, (forward) and from
a, to a, (backward). An activity can be scheduled if its immedi-
ate predecessors (forward) or successors (backward) are already
calculated.

tj=maxkerj—1{tk+dk} if F;l#@ and 1;=t, otherwise
Tj:minkepj{ﬁ'k—dk} if I';j# and 7;=7, otherwise

In the scheduling of real-life projects, schedulers often need to
consider temporal constraints (fixed milestones which correspond
to external events) and a wider range of precedence constraints
including finish—start, start—start, start—finish, and finish—finish.
The introduction of these additional features in the calculation
procedure given previously is quite straightforward.

The scheduler may also need to consider resource constraints.
The problem becomes more difficult to resolve as no exact solu-
tion can be found in a polynomial computational time. This is
why several attempts were made, and are still being made, to find
heuristics and metaheuristics that give solutions close to the exact
one. Several domains of the applied mathematics including beam,
light-beam, and taboo search, as well as bound and branch, ge-
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Fig. 1. Fuzzy versus crisp numbers and intervals

netic algorithms, and simulated annealing have been investigated.
The use of priority rules is undoubtedly the simpler approach one
can implement to resolve the resource-constrained project-
scheduling problem (RCPSP). Assuming that the remainder of
this paper treats fuzzy project scheduling, this heuristic method-
ology gives good enough results (Alvares-Valdes and Tamarit
1989; Davis 1973; Davis and Patterson 1973). As a prerequisite to
the RCPSP, a calculation of the activity network as per the pro-
cedure is given above, i.e., the resource constraints are omitted.
They are then added in the following way: Eaie,,erR’, Vi,

where P is the set of the activities in progress at a given time, rj-
is the amount of the /th resource needed for performing activity
a;, and R! is the availability of the /th resource over the given
time period.

The RCPSP calculations are similar to the ones just given.
Because of limited resources, it may be possible for just a subset
of the eligible activities to be scheduled. In such situations, pri-
ority rules are used to make a selection among all the eligible
activities. Alvares-Valdes and Tamarit (1989) showed through an
activity network benchmarking that the combinations of the
greatest-rank positional weight (GRPW) added to the latest start
time or GRPW added to the most total successors lead to a satis-
factory optimization.

Therefore, we can observe that a limited number of arithmeti-
cal operations are required for resolving the project-scheduling
problem, and the RCPSP including sum, difference, maximum,
minimum, and ranking.

Ay A Aw

B (1] BL1 BRt Bﬂ)
trapezoidal fuzzy interval

Some Definitions From Fuzzy-Set and Possibility
Theories

Most of the results given hereafter can be found in most of the
textbooks addressing fuzzy arithmetic or fuzzy logic (Dubois and
Prade 1988; Klir and Folger 1988). In the crisp-set theory, an
element x does or does not belong to a set X. The membership
function py(x) equals 1 if xeX, and zero otherwise, i.e.,
px(x) €{0,1}. In the fuzzy-set theory, an element may more or
less belong to a set: wy(x)e[0,1]. Fuzzy numbers and fuzzy
intervals are fuzzy sets over the real line R. Some characteristics
of fuzzy vs. crisp numbers and intervals are shown in Fig. 1.

Throughout this paper, and for computational efficiency, the
trapezoidal notation is used. A fuzzy interval is defined from four
crisp numbers x;o, X;;, Xg;, and xp, as follows: X
=(x10,X11 Xg1 -Xgoy (Fig. 2). Additional definitions such as
a-cuts are given in Fig. 2.

Addition and Subtraction

The most often used formulas for adding or subtracting fuzzy

intervals ¥=(x7,%; X1 Xgo) and Y={(y10,Yr1-Yr1:Yro) ar€
the following:

T+5=(xr0FtYro-*L1+Yr1 Xg1+Yr1 Xr0T YRO)

T—=5=(X10~ YRro-XL1 = YR1 XR1 VL1 XRO ™Y L0)

a-cut

Fig. 2. Trapezoidal notation; a-cuts




These two formulas are known to be pessimistic. To avoid the
inflation of the imprecision, the following operators were pro-
posed:

T+y=(xpityo—[(xp1—x20) 9+ (Vo1 —y20) 1 X1 +yp s
Xgi+Yr1 Xg1+ YR [ (xR0~ XR1) T (YRo— YR1)4]YY)
F=5=(xp = yr1—[(xp1—=x00) 7+ (Yro— Y1) X101 — VR S

X1 =Y Xr1— Y1 H(Xgo— xR 1)+ (yp _)’Lo)q]”q>

For g>1, the two operators give more optimistic results. In some
ways, they average the imprecision. We are convinced that in a
decision-making context, the imprecision of a result (a sum or a
difference for instance) shall have at least the imprecision of the
most imprecise of its operands. This is why we are proposing the
following alternative operators. Let 2=z, .2, -Zr1 »Zro) e the
result of X+¥ and W=(wo,w; | ,Wgi ,Wgo) the result of ¥—7.

Z0=2p1—Max{X;; —X10,Y11 Yo} XC2

ZL1:§(XL1+XR|+)’L1+YR|)_maX{xR|_XL| YRITYLIEXC

1
Zp, =§(XL1 Fxpit Yyt yr) T max{xg —x 1, Yr1— Y1} Xy

ZRo=2ZR1 T Max{Xgo—Xg1 ,Yro— Yr1}XC2

Wro=wpy—max{X,; —X.0,Yro~ Yr1} X C2

WL1:§(XL1+XR1*yu*ym)*max{xm*xu YRITYLIXC

WR1 :z(xLl+le_yLl_le)+maX{le_xLl YRITYL1EXC

WRo=Wg1 T Max{Xgo—Xg1,Y11~ Yo} X C2

Interesting results can be obtained with ¢;=1/2 and ¢,=1.

Maximum and Minimum

The most often used formulas for fuzzy maximum and minimum
operations are the following:

max{X,y}=[max(x;¢.y0):max(xz;,y.;);max(xg; ,Yg)
max(Xgo,Ygo)]
min{X,5}=[min(x¢.y0):min(xy ,yz;):min(xg; ,yg)

min(x g,y go) ]

These two operators also give quite pessimistic results, but if the
operands are fuzzy intervals with similar imprecision ratios, im-
precision can be kept within acceptable limits.

Ranking

Let ¥=(x70.x.; . Xg) Xgo) and F=(y10.YL1.Yr1:Yro) be two
fuzzy intervals. If x;0=<y,;0, X, 1=V71> Xrp1=Vr1 and Xzo=Yro >
the ranking of ¥ and y is straightforward y is said to be strongly
greater than X. If one or two of these four inequalities is/are not
true, the strong comparison rule must be abandoned to the advan-
tage of the so-called weak comparison rule (WCR). Several pro-
posals have been made to address this issue including WCR using

i

0-: o 3 >
L R
\%(“L"'an)

Fig. 3. Comparison rule that uses middle of a-cuts

area compensation, barycentre comparison, measures of possibili-
ties, and of necessities. The WCR that uses the middle of a-cuts,
proposed by Dubois, Fargier, and Fortemps (2000) seems to be
the most efficient one. It also has the advantage of the linearity.
This method associates to each of the fuzzy intervals to be com-
pared, a crisp quantity that is obtained from the middle of the
segments generated by a-cuts (Fig. 3).

1 (1
55'—>F(55):§J. (ap+ag)da
0

Also, when the fuzzy intervals to compare are trapezoidal inter-
vals

1
F(%)= Z(XLO+XL1 +xgi+Xgo)

Fuzzy/Possibilistic Project-Scheduling Problem

Over the last 20 years, two dozen articles or so tried to address
the fuzzy project-scheduling problem. Three different axes have
been investigated so far (Galvagnon 2000).

e The membership level of an arc to a graph has been consid-
ered. In an activity-on-arrow formulation, it is the existence of
an activity which is considered, while in a activity-on-node
formulation, it is the existence of a precedence constraint. Very
few papers address this issue. There is only one by Dubois and
Prade (1978) and a second by Klein (1988).

e The project-scheduling problem can also be seen as a con-
straint satisfaction problem. In that case, the aim is to calculate
a satisfaction level of an activity network (Fargier 1994).

e The imprecision associated with the quantitative information
which characterizes an activity network can also be looked at;
for instance, the activity duration, the work load required, the
resource availability, fixed dates and soon.

The latter axis is by far the one that has been investigated the

most. The most significant contributions are numerous; they are

briefly described hereafter. The chronological order of publication
is used.

Chanas and Kamburowski

The two writers are the very first who processed the project-
scheduling problem in a fuzzy environment (Chanas and Kambu-
rowski 1981). The criticisms made by several writers (Kotiah and
Wallace 1973; McCrimmon and Rayvec 1964; Parks and Ram-
sing 1969) toward the PERT probabilistic approach motivated the
publication of this paper. Chanas and Kamburowski featured a
methodology for addressing the fuzzy project-scheduling problem
that slices the activity duration given as fuzzy intervals, in a-cuts.
The project-scheduling problem is then solved for each a-cut
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Fig. 4. Estimating fuzzy duration (Lesmann et al.)

level. Hence, it is crisp quantities that are handled. A recombina-
tion of all these calculation results gives a fuzzy solution to the
project-scheduling problem.

Dubois and Prade

The proposal made by these two writers (Dubois and Prade 1988)
is certainly the most significant. It is also the most straightfor-
ward. They have also considered that, by definition, activity du-
ration is imprecise, and that this information must be estimated
using fuzzy quantities. Further on, they used trapezoidal intervals
for modeling fuzzy duration. The methodologies used for solving
the project-scheduling problem and the RCPSP are very similar to
the ones recalled above. They differ by the fact that addition,
subtraction, maximum, minimum, and ranking have been re-
placed by their fuzzy equivalents. Gazdik’s (1983) and Wang’s
(1999) papers feature methodologies similar to that of Dubois and
Prade.

Lootsma

After comparing the benefits of possibilistic scheduling ap-
proaches with respect to probabilistic ones, and after recalling the
inconsistency of building a probabilistic activity network,
Lootsma (1989) proposed a comparative analysis of the two
methodologies through an example. From it, he observed that the
total project makespan is shorter when the possibilistic approach
is used. The dispersion over the project termination date is also
greater.

Nasution

In their approaches, none of the writers cited previously men-
tioned the phenomenon that may occur at the backward calcula-
tion of the activity network. Nasution (1994) addresses it through
an example that is recalled hereafter. Let G be a project made of
two activities a, and a,3, which can be performed in parallel.
Because the writer prefers an activity-on-arrow formulation, a
dummy activity a5 is introduced. Let ?j and 7; be the early and
late date associated with the event e; . Except 7, , which is a crisp
date 71 =t :(0,0,0>, all dates and duration of this microproject
are expressed with triangular fuzzy numbers. Let us say that d 5
>dyy, then Ty=max{t,+d 5.t +dy}=dy. e; is the terminal
event, then prior to the backward calculation of the activity net-

work: T3=15 and T, =3 —d3=d\3—dy . If d\3=(x19.%) Xgo)
and dp3=(y10.Y1-Yro): T2=(X10~Yro X1~ Y1 Xro~ Y10)- Also,
because a5 is a dummy activity ¥, =7,. The expression shows
that, even if x| and y, are positive numbers, 7| can be a negative
fuzzy number. This phenomenon, also mentioned by Galvagnon
et al. (2000), comes from the fact that ¥+ 5 —5#X, ¥ and § being
two fuzzy numbers. Two proposals have been made to avoid this
difficulty. Nasution proposes to replace (in the backward calcula-
tion) the ordinary fuzzy subtraction operator by another one he
called interactive fuzzy subtractor that makes ¥+ y—y=X. Hapke
and Stovinski (1996a) propose to use the optimistic fuzzy opera-
tor (see previous section).

It should also be mentioned that the core of Nasution paper
consists of symbolic calculations, with perhaps some interests
from the academic point of view, but due to their complexity, with
very few interests to the practitioner.

Geidel

To respect the chronological order, we have to mention Geidel’s
works (Geidel 1988, 1989). This writer proposes the use of mea-
sures of possibility and necessity for a better ranking of activities.

Lesmann et al.

This approach (Lessmann 1994) is similar to the one of Dubois
and Prade. They also noted the phenomenon depicted previously.
To address the latter, they made two proposals. They argued that
in most construction projects, the project due date is specified in
the contract. Hence, backward calculations can be initiated from a
crisp date. Otherwise, because they preferred to use polynomial
fuzzy numbers, they suggested transferring the earliest date of the
terminal milestone to the latest date as follows: ¥,=T,=x, as-
suming 7,={xX;(,...,X| ».--»Xgo). A methodology for estimating
fuzzy numbers is also given (Fig. 4).

Hapke and Stovinski

Most of the papers addressing the fuzzy project-scheduling prob-
lem are from Hapke and Stovinski together with few others
(Hapke and Stovinski 1993, 1996a,b; Hapke et al. 1994, 1997a.b,
1998; Hapke 1995). Their research involves the RCPSP with
fuzzy data. To solve this problem, they investigated the use of
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Fig. 5. Linguistic descriptors of duration

several heuristics and metaheuristics such as the Pareto-simulated
annealing, the light beam search and so on.

Galvagnon et al.

Their works were motivated by the fact that no satisfactory pro-
posal had been made to tackle the backward calculation problem
in a fuzzy project-scheduling environment. Even though their
framework addresses this more accurately, no solution can be
found in a polynomial computational time unless the activity net-
work is modeled as a series-parallel graph, which is quite a re-
strictive simplification (Galvagnon et al. 2000; Galvagnon 2000).
Despite the analytical rigor and interest of this proposal, it is of
low interest to the project practitioner.

Chanas and Zielinski

The two most recent papers by these writers are of great interest
especially because no one took care of the problem associated

with the determination of critical paths in a fuzzy environment

before. In their first paper on this issue (Chanas and Zielinski

2002), they demonstrated that

e The problem that consists in finding a critical path (and dem-
onstrating its criticality) is an easy problem that can be solved
in a polynomial computational time.

e The problem of searching for all of the critical paths of an
activity network can only be solved in an exponential compu-
tational time.

In their second paper, Chanas and Zielinski (2001) propose two

algorithms for determining the so-called f-criticality index of a

path.

Temporal Linguistic Descriptors
Linguistic descriptors are certainly among the very interesting

features provided by the fuzzy-set theory. The relationship one
can find between everyday speaking for describing things and
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situations and their mathematical equivalent is through the so-
called linguistic descriptors (LD). We are making some proposals
to associate trapezoidal fuzzy intervals to temporal LDs, i.e., LDs
of dates and LDs of duration (Figs. 5 and 6).

The benefits of gathering information in a fuzzy project-
scheduling environment are straightforward. For instance, when a
project planner asks an engineer for the time he needs to complete
the writing of a technical specification, an answer of about 1 week
does certainly not mean exactly 5 working days or 40 working
hours. If nothing happens, the specification can be issued within 4
days. On the contrary, if the completion of the specification be-
comes slightly more difficult than foreseen, then its duration may
equal 6 or 7 days. This is just a matter of precision (or of impre-
cision) of the estimation. In hindsight, the engineer considers that
in both cases the precision he has given is accurate enough for the
purpose.

One can also apply modifiers to this imprecise duration. A big
week is slightly longer than / week, and approximately 1 month is
more imprecise than / month (Figs. 5 and 6).

Unfortunately, the multiplication of two trapezoidal fuzzy
numbers or intervals is a problem that is not as trivial as the ones
that consist of adding or subtracting such numbers. The product
of trapezoidal fuzzy interval is not a trapezoidal interval! For the
remainder of this paper, the multiplication of crisp numbers to
trapezoidal fuzzy numbers is sufficient. For instance

2 weeks=2X1 Week:2><<3,4,6,7>=(6,8,12,14)

The multiplication is also required when resources are in-
volved. We limit ourselves to crisp resources allocation and avail-
ability. It should be noted that Galvagnon (2000) has made pro-
posals for using fuzzy intervals for describing workloads in a
resource-constrained project-scheduling environment.

Fuzzy Activity-Network Calculations

The methodology proposed here for resolving the resource-
constrained fuzzy project-scheduling problem is made of several
phases.



Table 1. Input Data to Numerical Example

Activity ID Temporal LD r-! Resources dp, dy dgy dgo
o — — Al — 00 0.0 0.0 0.0
A 3 weeks a B,E R1 9.0 12.0 18.0 21.0
B About 1 month A C R2 10.0 150 20.0 25.0
C About 1 month B D R3 10.0 150 200 250
D 2 weeks C,F L R3 6.0 8.0 12.0 14.0
E 3 big weeks A F R2 12.0 150 18.0 24.0
F About 3 weeks E D,G R1.R3 3.0 7.5 22.5 37.0
G About 3 weeks F H R2 3.0 75 225 37.0
H About 2 months G %) R2 20.0 30.0 10.0 50.0
I About 3 weeks o J R1 3.0 7.5 22.5 37.0
J 2 small weeks I K R1 40 8.0 10.0 12.0
K 2 big weeks J L R1 8.0 10.0 12.0 16.0
L About 6 weeks D, K o) R1 6.0 15.0 450 54.0
® — L,H — — 00 00 00 0.0
Phase 1 » Crisp arithmetic operations are replaced by their fuzzy equiva-

The transformation of the activity-network information gathered
with temporal linguistic descriptors into trapezoidal fuzzy inter-
vals is a prerequisite. This first phase straightforwardly assumes
what has been said previously.

Phase 2

The second phase aims to identify critical activities. Because the
search of critical paths may sometimes be a problem that cannot
be solved in a polynomial computational time, the following pro-
cedure is proposed to approximate criticality indices of activities.

The fuzzy activity network is transformed in a crisp network
by considering the most optimistic duration of each activity, i.e.,
d;=d, ;. This optimistic network is then calculated (forward and
backward processes). At the end of this first treatment, critical and
noncritical activities can be distinguished. Let us call C the set of
the possible critical activities. These calculations on crisp activity
networks are reiterated, considering the most optimistic duration
(d;j=d, ;) for the activities that belong to the set C and the most
pessimistic duration (d;=dg, ;) for those that are not in this set.
At the end of each iteration, newly critical activities are appended
to C. The process is stopped when the cardinality of C has be-
come constant.

This algorithm is bound to be processed in a polynomial com-
putational time because the number of iterations is obviously less
than the number of the activities of the network. Let us call n the
total number of iterations, and p; the number of iterations at the
end of which the activity a; is found critical. The criticality index
CI; can be appraised as follows: CI;=p;/n. If CI;=1, this
means that activity a; is always critical, as per the global impre-
cision associated with the activity network. If 0<C1;<1, the ac-
tivity a; can be critical in some configurations, and if C/;=0, one
can conclude that there is no way to have the activity a; critical.
One of the interesting features of these criticality indices is that
they can be ranked.

Phase 3

Up to that phase, resources have not been taken into account in
schedule calculations. The procedure for calculating a resource-
constrained fuzzy activity network is similar to the RCPSP using
priority rules with the following differences:

lents,

e The ranking of eligible activities is made with respect to the
late start time (7;— d ;). The CIs are then used for discriminat-
ing equalities. Other ranking combinations can be envisaged,
and

 To avoid imprecision propagation, we propose that 7, is trans-
ferred to 7, as follows:

_ tpitigy tpptigy tpptigy tpptig
T — > B >
@ 2 2 2 2

Phase 4

It is of interest to any project practitioner to know the critical
activities of a project. The critical activities of C that have been
identified in Phase 2 of the present scheduling methodology may
not reflect the results of Phase 3 calculations. Hence, it is wise to
relaunch a process similar to the one of Phase 2. In order to use an
identical algorithm, pseudo-precedence constraints can be added
between activities that share identical resources.

Phase 5

Despite the fact that attenuated arithmetical operators are being
used all along this process, the transformation of the calculated
dates (7]- and 7;) into temporal LDs is not straightforward. We

propose to use the means (7;), associated with an imprecision
range (At;) to make the following transformations:

_ 1 1
thZ(tLO+tLl+tR1+tR0)j and '?j=z(TL0+TL1+TR1+TRo)j
1
Atj=€(tL0+2tL1—2tR1—tR0)j and

A”"j=g("fL0+2TL1 —2TR1—TRo);j

If A1;<5 days (AT;<5 days), the dates 7; (7;) can be ex-
pressed in weeks. One can easily find the week number associated

to 7; (T,), and these figures serve as a basis for the corresponding
temporal LDs. For instance, if ?_/: November 6, 2005, then, week
No. 45 can be used to express ?j .



Table 2. Results of Computations

Criticality index

Earliest dates

Latest dates

Without Resources

Activity ID  resources  constrained tp tr At D T AT

a 1 1 Week 0 Week 0 0 Beginning January  Beginning January =5 weeks
A 0.7 1 Week 0 Week 3 +1 week  Beginning January 2nd half January *5 weeks
B 03 03 Week 9 Week 10 +1 week Mid-February Ist half March *5 weeks
C 0.3 0.3 Week 13 Week 15 *1 week 1st half March Beginning April *5 weeks
D 0.3 0.3 Week 18 Week 19 +1 week Beginning April Mid-April +5 weeks
E 03 0.7 Week 4 Week 6 +1 week 2nd half January Mid-February +5 weeks
F 03 0.3 Ist half February  1st half March %3 weeks End February 2nd half March +3 weeks
G 03 0.3 1st half March End March *3 weeks 2nd half March Ist half April +3 weeks
H 0.3 03 End March Mid-May *3 weeks 1st half April End may +2 weeks
1 03 0.3 2nd half January Mid-February +3 weeks Beginning March 2nd half March +5 weeks
J 03 03 Mid-February End February +3 weeks 2nd half March Beginning April +5 weeks
K 0.3 0.3 1st half March End March +3 weeks Beginning April Mid-April *5 weeks
L 0.7 0.7 Mid-April End May *5 weeks Mid-April End May *5 weeks
[O) 1 1 End May End May *5 weeks End May End May *5 weeks

If At;=5 days (A7;=5 days), the dates 7; (7;) should be
expressed in months. Similarly, the day of the month, ¢;, can

easily be found for each date ?j (7). In the present methodology,
five cases may be distinguished.

if g;e[1,6] then ¢;=beginning of month
if q;e[7,12]
if q;€[13,19]

if g,e[20,25]

then ¢ j:ﬁrst half of month
then #;=middle of month
then #;=second half of month

if g;e[26,31] then 7;=end of month

For dates that have an imprecision range lower than 5 days,
i.e., expressed in weeks, it appears useless to state this informa-
tion. If Az;=5 days or A7;=5 days, this information is of inter-
est. We propose these imprecision ranges in weeks, and round

them to the closest integer. Let us use again ?j:November 6,

2005. 1f A7;=21.6 days for instance, then ?j=beginning Novem-

ber 2005, *4 weeks.

Numerical Example

A network made of 12 activities has been used as a numerical
example. Table 1 gives information on input data, such as activity
duration (expressed in the form of temporal LDs), predecessors
and successors, and the corresponding trapezoidal interval asso-
ciated with the activity duration (Fig. 5). The results of the com-
putations are in Table 2.

Conclusions

After about 20 years of maturation in the academic sphere, we
believe that fuzzy project scheduling is mature enough to be used
in real-world projects. If classical deterministic approaches such
as CPM remain the most valuable for small projects, large-scale
industrial or construction ones may benefit from fuzzy project-
scheduling approaches. The methodologies one can find in the
literature on this issue are quite theoretical and difficult to imple-
ment. The approach we propose in this paper is pragmatic enough

to be understood by project-scheduling practitioners, and thus to
be implemented in real-world projects. Among the difficulties one
could face, the gathering of imprecise data in the form of fuzzy
numbers or intervals could constitute a restraint to the implemen-
tation of fuzzy project-scheduling approaches. We are now con-
vinced that this obstacle is removed thanks to the use of temporal
LDs. This paper aims at making the link between researchers and
practitioners. Feedbacks from field implementations are now re-
quired for making research on this issue advance. One of the
issues pending is the tuning of temporal LD definitions.

Acknowledgments

The writers’ thanks go out to all those who helped us collect all
the literature that has been published on the fuzzy project-
scheduling problem especially Didier Dubois, Vincent Galvag-
non, Joachim Geidel, and Professor Michael Oberguggenberger.

References

Alvares-Valdés Olaguibel, R., and Tamarit Goerlich, J. M. (1989). “Heu-
ristic algorithms for resource-constrained project scheduling: A re-
view of an empirical analysis.” Advances in project scheduling, R.
Stovinski and J. Weglarz, eds., Elsevier Science, Amsterdam, 113—
134.

Chanas, S., and Kamburowski, J. (1981). “The use of fuzzy variables in
PERT.” Fuzzy Sets Syst., 5, 11-19.

Chanas, S., and Zielinski, P. (2001). “Critical path analysis in a network
with fuzzy activity times.” Fuzzy Sets Syst., 122(2), 195-204.

Chanas, S., and Zielinski, P. (2002). “The computational complexity of
the interval critical path method.” Eur. J. Oper. Res., 136(3), 541—
550.

Davis, E. W. (1973). “Project scheduling under resource constraints: His-
torical review and categorization procedure.”” AIIE Trans., 5(4), 297—
313.

Davis, E. W., and Patterson, J. H. (1973). <A comparison of heuristic and
optimal solutions in resource constraint project scheduling.”” Manage.
Sci., 20(1), 944-955.

Dubois, D., Fargier, H., and Fortemps, P. (2000). “‘Ordonnancement sous
contraintes flexibles et données incertaines: L’approche floue.” Or-
donnacement de la production, P. Lopez, and F. Roubellot, Hermes,
Paris, 361-391 (in French).



Dubois, D., and Prade, H. (1978). “Algorithmes de plus courts chemins
pour traiter de données floues.” RAIRO: Anal. Numer., 12(2), 213~
227 (in French).

Dubois, D., and Prade, H. (1988). Théorie des possibilités, 2nd Ed., Mas-
son, Paris (in French).

Eisner, H. (1962). <A generalized network approach to the planning and
scheduling of a research program.” J. Oper. Res. Soc., 10(1), 115—
125.

Elmaghraby, S. E. (1964). “An algebra for the analysis of generalized
activity networks.” Manage. Sci., 10(3), 494-515.

Elmaghraby, S. E. (1966). “On generalized activity networks.” J. Ind.
Eng., 17(11), 621-631.

Fargier, H. (1994). Probleme de satisfaction de contraintes flexibles: Ap-
plication a I’ordonnancement de la production, PhD thesis, Université
Paul-Sabatier, Toulouse (in French).

Galvagnon, V. (2000). Aide a la décision en gestion multi-projects distri-
buée: Approche locale pour la planification a moyen terme, PhD the-
sis, Sup’Aéro/E.N.S.A E., Toulouse (in French).

Galvagnon, V., Dubois, D., and Fargier, H. (2000). “Fuzzy PERT in
series-parallel graphs.” Proc. 9th IEEE Int. Conf. on Fuzzy Systems,
IEEE, Piscataway, N.J., 717-722.

Gazdik, I. (1983). “Fuzzy network planning.” IEEE Trans. Reliability
R32,304-313.

Geidel, J. (1988). “Zeitplanung von Projeckten mit unsharfen Daten.”
PhD thesis, Univ. Karslruhe, Institut fur Wirtschaftstheorie und Op-
erations Research, Karslruhe, Germany (in German).

Geidel, J. (1989). “Project scheduling with fuzzy data.” Meth. Op. Res.,
62, 339-347.

Hapke, M. (1995). “A two-stage method for scheduling projects under
uncertainty.” Rep. RA-009/95 Poznan Univ. of Tech., Poznan, Poland.

Hapke, M., Jaszkiewicz, A., and Stovinski, R. (1994). “Fuzzy project
scheduling system for software development.” Fuzzy Sets Syst., 67(1),
101-117.

Hapke, M., Jaszkiewicz, A., and Stovinski, R. (1997a). “Fuzzy project
scheduling with multiple criteria.” Proc., 6th IEEE Int. Conf. on
Fuzzy Systems, Piscataway, N.J., 1277-1282.

Hapke, M., Jaszkiewicz, A., and Stovinski, R. (1997b). “Multi-objective
fuzzy project scheduling.” Proc., European Workshop of Fuzzy Deci-
sion Analysis for Management, Planning and Optimization,
EFDAN’97, Dortmund, Germany, 31-40.

Hapke, M., Jaszkiewicz, A., and Stovinski, R. (1998). “Interactive analy-
sis of multiple-criteria project scheduling problems.” Eur. J. Oper.
Res., 107, 315-324.

Hapke, M., and Stovinski, R. (1993). “A DSS for resource-constrained
project scheduling under uncertainty.” J. Decision Syst., 2(2), 111—
128.

Hapke, M., and Stovinski, R. (1996a). “Fuzzy priority heuristics for
project scheduling.” Fuzzy Sets Syst., 83, 291-299.

Hapke, M. and Stovinski, R. (1996b). “Fuzzy scheduling under resource
constraints.” Proc., European Workshop of Fuzzy Decision Analysis
for Management, Planning and Optimization, EFDAN’96, Dortmund,
Germany, 121-126.

Klein, C. M. (1988). “Fuzzy shortest path.” PhD thesis, Dept. of Indus-
trial Engineering, Univ. of Missouri at Columbia, Columbia, Mo.
Klir, G. J., and Folger, T. A. (1988). Fuzzy sets, uncertainty and informa-

tion, Prentice-Hall, Englewood Cliffs, N.J.

Kotiah, T. C. T., and Wallace, B. D. (1973). “Another look at the PERT
assumption.” Manage. Sci., 20(1), 44—-49.

Lessmann, H., Muhlogger, J., and Oberguggenberger, M. (1994). “Netz-
plantechnik mit unscharfen Methoden.” Bauingenieur, 69, 469—478
(in German).

Lootsma, F. A. (1989). “Stochastic and fuzzy PERT.” Eur. J. Oper. Res.,
43, 174-183.

Malcolm, D. G., Rosenbloom, J. H., Clark, C. E., and Fazer, W. (1959).
“Application of a technique for R&D program evaluation (PERT).”
Oper. Res., 7(5), 646—669.

McCrimmon, K. R., and Rayvec, A. (1964). “An analytical study of the
PERT assumption.” Oper. Res., 12(1), 16-37.

Moore, L. G., and Clayton, E. R. (1976). GERT modeling and simulation:
Fundamentals and applications, Petrocelli-Charter, New York.

Nasution, S. H. (1994). “Fuzzy critical path method.” IEEE Trans. Syst.
Man Cybern., 24(1), 48-57.

Parks, W. H., and Ramsing, K. D. (1969). “The use of the compound
Poisson in PERT.” Manage. Sci., 15(8), B397-B402.

Pritsker, A. A. B. (1968). “GERT networks.” Prod. Eng. (N.Y.), Jan.

Van Slyke, R. M. (1963). “Monte-Carlo method and the PERT problem.”
Oper. Res., 11(5), 839-860.

Wang, J. R. (1999). “A fuzzy set approach to activity scheduling for
product development.” J. Oper. Res. Soc., 50(12), 1217-1228.



