Quantum Vorticity at positive temperature for spin systems with continuous symmetry

Abstract : We propose a definition of vorticity at inverse temperature $\beta$ for Gibbs states in quantum XY or Heisenberg spin systems on the lattice by testing $\exp[-\beta H]$ on a complete set of observables ("one-point functions"). Imposing a compression of Pauli matrices at the boudary, which stands for the classical environment, we perform some numerical simulations on finite lattices in case of XY model, which exhibit usual vortex patterns.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [8 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01591668
Contributor : Stéphanie Suciu <>
Submitted on : Monday, May 14, 2018 - 9:10:05 AM
Last modification on : Thursday, May 24, 2018 - 9:51:14 AM
Document(s) archivé(s) le : Tuesday, September 25, 2018 - 8:50:39 PM

File

Rouleux-Quantum Vorticity.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Dimitriy Minenkov, Michel Rouleux. Quantum Vorticity at positive temperature for spin systems with continuous symmetry. Journal of Physics: Conference Series, IOP Publishing, 2017, ISQS24, Int. Conference on Integrable Syst. and Quantum symmetries, 804 (1), pp.012031. ⟨10.1088/1742-6596/804/1/012031⟩. ⟨hal-01591668⟩

Share

Metrics

Record views

219

Files downloads

36