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Abstract—We design a model of wireless terminals, i.e. trans-
mitters and receivers, obtained from a Poisson point process
with support in an embedded fractal map. The terminals form
a virtual MISO (Multiple Input Single Output) system with
successful reception under SNR (signal-to-noise ratio) capture
condition in a single hop transmission. We show that if we omit
antennas cross sections, the energy needed to broadcast a packet
of information tends to zero when the density of transmitters
and receivers increases. This property is a direct consequence
of the fact that the support map is fractal and would not hold
if the terminal distribution were Poisson uniform, as confirmed
by simulations. The result becomes invalid if the cross sections
overlap or if we consider a masking effect due to antennas, which
would imply an extremely large density of terminals. In the case
where the cross sections of the transmitters have a non-zero value,
the energy has a non-zero limit which decays to zero when the
cross sections tend to zero.

I. INTRODUCTION

Sensors, the major electronic elements that constitute a
sensor network, are devices of a limited size that dispose
of a limited amount of energy. To optimize the energy
consumption, one important role is given by constraints to
the topology of the networks, as geometry arises as a major
factor in the determination of the transmission powers.

One of commonly used stochastic assumptions in the
theoretical studies of wireless networks is that nodes of a
network, at any given time, are represented as a realization of
a two-dimensional (planar) Poisson point process (PPP). There
has been a large body of work focused on the understanding
of the fundamental properties of wireless networks under
the assumption of a planar PPP [1]–[4]. In general, sensors
or mobile nodes are not randomly placed over a plane.
They rather follow geometric patterns with a certain level of
regularity defined by a network design plan itself, as well as
sometimes by repulsion properties [5], etc.

A recently considered concept for modeling wireless net-
works is self-similarity. For example, the world has a certain
degree of self-similarity that can be easily observed in or-
ganizational structures such as urban environment [6], [7]. In
more details: (i) towns are split in neighborhoods and quarters,
where each neighborhood is organized in blocks separated by
streets; (ii) blocks are made of buildings that are themselves
split in apartments, where each apartment is made of rooms;
(iii) the space of each room is delimited again by furniture
pieces; and so on. Unavoidably, networks inherit a part of the

Work was peformed at Nokia Bell Labs.

environment structure. Patterns, symmetry and further more,
self-similarity have been proven to be captured successfully by
fractal models. These models have been proven to show better
performances than two-dimensional PPP based models [6].

This work addresses the case of a network of sensors
(transmitters and receivers) that are distributed according to a
model of fractal repartition. The sensors follow a virtual MISO
communication setup, namely, the synchronized transmitters
broadcast the same packet to a set of receivers in a single
transmission. We present results on the total energy consump-
tion for correct packet reception: the energy decays towards
zero when the density of population increases considerably,
under specific assumptions. Furthermore, by getting closer to
a fractal repartition of nodes, a sensor network spends less and
less energy.

This zero energy limit is a property which is a direct
consequence of the fact that the sensor networks lays in a
fractal map, and should not hold if the terminal distribution is
Poisson homogeneous. Anyhow we believe that this property
should extend to self similar maps other than fractal maps. The
validity of the following results is based on the assumption of
non-overlapping antenna cross section. However the assump-
tion fails only when assuming an overwhelming density of
terminals such that antennas get into contact of each other.

When the cross section of the transmitters has a non-zero
value, the energy has a non-zero limit. By further allowing the
cross section to go to zero, this limiting energy decays to zero
as well. Furthermore, in the analysis we neglect the masking
effect between antennas and therefore the energy received by
one antenna can be reused by another one. This assumption
holds as the cumulated quantity of energy captured by the
antennas is extremely small.

Sensors usually have antennas physically larger than a half-
wavelength of the radiation they emit. These antennas have
three operating regions: near-field, Fresnel zone and far-field
[8]. Far-field region is the region where one can use Rayleigh
fading to characterize the effects of the propagation. The
condition for being in far field is to be located at least at the
Fraunhofer distance d = (2D2)/λ where D is the antenna
diameter and λ the wavelength [8]. E.g. For some typical
values for sensor networks as the antenna diameter 1cm and
operating frequency at 2.4GHz, the far-field starts at about
1.633cm away from the antenna, therefore even in random
placement, antenna cross section overlapping has a very low
probability proportional to d2 over the expected area of the



network map (few squared kilometers).

A. Related work

Here we detail some of the recent results. The topology
and performance evaluation of sensor networks have been
largely debated in the scientific literature [9]. While [1] gives
well-known results in two network scenarios, one including
arbitrarily located nodes and traffic patterns and the other one
with randomly located nodes and traffic patterns, [10] studies
the performance over time obtained in the tree-like sensor
networks. [11] gives an analytical approach for modeling the
coverage and connectivity of sensor grids as functions of key
parameters such as the number of nodes and their transmission
radius.

Authors of [12] investigate capacity in virtual MISO net-
works modeled using a uniform point process. In [13], capacity
is evaluated in MISO setups, exploiting fractal maps, namely,
when several simultaneous emitters of different and independ-
ent data and a single access point are randomly distributed in
an infinite fractal map embedded in a space of finite dimen-
sion. Other works target computing the energy requirements
in the case when multi hop scenario is deployed [14].

However, this paper addresses the issues where the emitters
transmit the same data and the capture condition must be
fulfilled in a single transmission. Furthermore, by using
fractal geometry, we show that in such a modeling of the
sensors networks, significant energy saving can be obtained,
much superior to previously used models.

The remainder of the paper is organized as follows. In
Section II we present the model. Sections III and IV provide
our main theoretical results and the corresponding proofs. In
Section V, we present the simulation experiments that exhibit
the performance of the proposed topologies comparing them
to the performance obtained in classic topologies (e.g. Poisson
point processes). We conclude and suggest further research in
section VI.

II. MODEL DESCRIPTION

We consider the network map embedded in the unit square
[0, 1]2 where the distributions of transmitters and receivers
follow the fractal distribution as it will be detailed in the next
section.

Let T be the set of transmitter positions and R the set of
receiver positions. The number of elements in R is n and the
number of elements in T is a Poisson random variable of mean
λn. Furthermore, we consider λn = O(n), since one of our
main goals is to analyze a communication when the number
of transmitters is not bigger than the number of receivers.

Each transmitting node uses the same nominal transmit
power, Pn. The power can evolve as a function in n when
the setting parameters of the problem vary. The signal power
path-loss is modeled by a function l(r) = (Ar)α where A is
a constant, r is the distance between the transmitter and the
receiver and α ≥ 2 is the attenuation factor that characterizes
the environment in which the devices communicate.The model
comprises also the aperture of the receiver antenna, δ which

becomes small when the antenna cross sections decay [15] as
we will see after. For every pair x ∈ T and y ∈ R at denote
by Sn(x,y) a signal received at y from x:

S(y,x) = δPn‖y − x‖−α , (1)

Throughout this work, we refer to the case when α = 2 which
is the attenuation factor in vacuum. This an assumption that
holds in our scenario, as in a high density of receivers and
transmitters, the greatest contribution in the received energy
at a certain node y comes from transmitters that are located at
very small distances from y such that the signal hardly suffers
any attenuation due to the environment.

To avoid a singular behavior, a more realistic hypothesis is
to assume that a signal received at y from x is

Sn(y,x) = δPn (max{dmin, ‖y − x‖})−α , (2)

where dmin is typically of the order of the width of the
antennas of both devices. In fact δ should contain a factor
of order dα−2min due to the fact that the quantity of energy
radiated through the antenna cross section remains constant
when dmin → 0, but this factor disappears if we consider
α = 2.

Signal-power is also perturbed by random fading F, inde-
pendently sampled for each transmitter-receiver pair at each
time slot. A signal received at receiver at position y from
transmitter at position x can have a random (multiplicative)
fading factor F(x,y), which modifies the received power as:

Sn(y,x) = δF(x,y)Pn (max{dmin, ‖Yr −Xt‖})−α . (3)

In this paper we will restrict to an important special case where
F(.) is exponentially distributed, which corresponds to the
situation of independent non selective Rayleigh fading with
P {F(x,y) > x} = e−x.

The offset entropy is the entropy created by the channel
due to the packet transmission starting times, differences in
delays in the transmission circuits, etc. To get the capacity of
the channel, one should remove the offset entropy from the
entropy received. In this work, we assume a large volume of
information per packet and that the offset entropy reported per
symbol is negligible.

The transmission is done by broadcast. All the transmitters
send identical packets to all the receivers. We are interested in
the received energy at each receiver, therefore we shall name
our setup a “virtual MISO setup” ,“virtual” as the transmitting
antennas are geographically separated and single output as
we are interested in the quantity of energy received by each
receiver. Thus, the signal received at y denoted by Sn(y, λn)
is equal to the sum of the received signal over all transmitters:

Sn(y, λn) :=
∑
x∈T

Sn(y,x) . (4)

We also make use of SNR capture condition which means
the following. Denote by N the noise at a node y and by K
a non-zero level of signal strength, the threshold over which a
transmission is considered successful. A packet is successfully



received by node y if the cumulated received signals from all
the transmitters λn is higher than the threshold NK.

To simplify our analysis we will assume that N is pro-
portional to the aperture δ by a constant factor which will
allow us to indifferently consider δ constant or tending to
zero. This would be in theory the case if the noise is limited
to some external spurious signals or interferences captured by
the antenna. If we consider that the noise can also be internal
to the receiver, one must assume the noise decays linearly with
the aperture. In the whole remainder of the paper we will just
assume N = δ = 1 in order to simplify the formulas.

More precisely, our goal is to find the level of energy such
that all devices in R correctly receive the packet, in other
words no node is in outage. We define the probability that a
node is in outage as loss probability and we denote it by ρn:

ρn = P {∃y ∈ R : Sn(y, λn) < K} (5)

When taking into account the Rayleigh co-interference of
the signals, we should replace Sn(λn,y) by F(y)Sn(λn,y).

In this work we will assume Sn(y,x) to be governed by (1),
which will lead to a simplified analysis but we will perform
simulations for both cases when Sn(y,x) is governed by (1)
or (2). Importantly, the effect of (2) has an impact on the
results at ‘extremely’ high densities of the devices.

A. Fractal maps

In order to give a more clear understanding of these results,
we briefly remind the fractal maps introduced in our previous
work.

The Cantor maps are the support of the population of
transmitters and receivers in our model. The sensor networks
inherit the property of self-similarity from the cantor map.

Let us first define the binary Cantor map and more generally
the `-ary Cantor map, where ` ≥ 2 is an integer. This repeats
the presentation done in [6], [13].

Definition 1 (`-ary Cantor maps). Let ` ≥ 2 be an integer
and 0 ≤ a ≤ 1/`. The `-Cantor finite map is the fractal set
K(a, `) that satisfies K(a, `) = ∩k≥0Kk(a, `) and K0(a, `) =

[0, 1] and Kk+1(a, `) =
⋃j=`−1
j=0 (j(a + b) + aKk(a, `)) with

a + b = (1 − a)/(` − 1). The infinite `-Cantor map K∗(a, `)
satisfies K∗(a, `) = ∪k≥0a−kK(a, `). The fractal dimension
is dF = − log `

log a .

One can notice that the finite Cantor map is contained in the
interval [0, 1]. The fractal dimension is obtained by observing
that reducing distance by factor a gives exactly the `th half
of the set: adF = 1/`. The fractal dimension of K(a, `)2
embedded in (R+)2 is −2 log `

log a .

Definition 2 (The infinite Cantor map). The infinite Cantor
map is the fractal set K∗(a) on R+ that satisfies K∗(a, `) =
∪k≥0a−kK(a, `),

We notice that the infinite Cantor map spans in the whole
R+ and that K(a) = K∗(a) ∩ [0, 1].

As a demonstration of the previous definitions, Figure 1a
presents the network support K2(1/8, 4) and Figure 1b

presents a Poisson shot on the Cantor map K2(1/8, 4) The
population analyzed in our model is obtained as such a
Poisson shot.
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Furthermore, this representation of the Poisson shots on
Cantor maps can be used to represent a Poisson Point Process
and all the stages between a uniform Poisson Point Process and
a Poisson shot on a Cantor map. Figures 2a,2b, 2c,2d illustrate
four topologies obtained for different values of a and l.

(a) l = 4, a = 0.25. (b) l = 4, a = 0.2

(c) l = 4, a = 0.1. (d) l = 4, a = 0.02

III. MAIN RESULTS

Definition 3. We define En(d) as the average total energy
required by n receivers to ensure SNR capture when dmin = d.
We denote by E∞(d) = lim sup

n→∞
En(d).

To simplify we will set En = En(0). Let us now give the
main results of our work.

Theorem III.1. In a network obtained as a Poisson shot in
a fractal map of dimension dF < 2 where the number of



receivers is n and the number of transmitters is a Poisson
variable of mean λn, assuming the asymptotic case when
antenna cross section is negligible, dmin = 0, and path loss
coefficient is α = 2, the loss probability, ρn, and the total
transmitted energy required to ensure SNR capture, En, tend
to zero, ρ→ 0, En → 0 when n→∞ given that:

λn
log n

→ ∞ (6)

λnPn → 0 and (7)
λnP

γ
n

(log n)1−γF
→ ∞ , (8)

with γF = dF
α

This theorem is the central result of our paper and states that
for high densities of population of transmitters, the total energy
needed to ensure packet reception decays towards zero when
the density of nodes becomes overwhelming. Furthermore,
the result holds because ”dF < 2”, in other words, the
phenomenon is a direct consequence of the fact that the
networks is in a fractal map.

Corollary 1. The energy required for broadcasting a packet
in a virtual MISO network with n nodes in a fractal Cantor
map of dimension dF scales as:

En = O(n−β), (9)

for all β < α/dF − 1.

A very important assumption for this results is dmin = 0.
In the case dmin > 0, the following holds:

Theorem III.2. In a network obtained as a Poisson shot in
a fractal map of dimension dF < 2 where the number of
receivers is n and the number of transmitters is a Poisson
variable of mean λn, assuming the asymptotic case when path
loss coefficient is α = 2. Both ρn → 0 and E(dmin) < ∞
when n tends to infinity and E∞(dmin)→ 0 when dmin → 0.

IV. THEORETICAL PROOF OF RESULTS

In order to prove our results, let us first compute the
distribution of distance in Cantor maps.

A. Distance distribution in the Cantor map

We consider the fractal map K(a, `)D see [6]. Let µD(Z)
be the fractal measure on [0, 1]D and define for x ∈ [0, 1]D

UD(r,x) :=

∫
z∈[0,1]D

µD(z)I (‖z− x‖ ≤ r) dzD . (10)

Then UD(r,x) can be seen as the distribution function of the
distance from z to x with the fractal measure µD on [0, 1]D.

First, by definition from (10), we have WD(r,x) = 0 for
all x when r < 0, and WD(r,x) is non-decreasing in r.

Lemma 1. For all, r and x ∈ [0, 1] we have U1(r, x) ≥
U1(r, 0).

Proof. It is known that K(a, `) =
⋂
k≥0Kk(a, `). Clearly

K(a, `) ⊂ Kk(a, `) for all integer k and Kk+1(a, `) ⊂

Kk(a, `). Let us define Uk(r, x) as the distribution function
of distances inside Kk(a, `). Clearly for all x ∈ K(a, `)
limk→∞ Uk(r, x) = U1(r, x).

We want to prove that for all x ∈ K(a, `) and for all integer
k, Uk(r, x) ≥ Uk(r, 0).
This is true for k = 0 due to the following:
U0(r, x) ≥ U0(r, 0) for all x ∈ [0, 1].
For all x < 1/2, U1(r, x) =
2rI (r ≤ x) + (x+ r)I (x < r ≤ 1− x) + I (r > 1− x)
which is greater than U0(r) = r,
and U0(r, x) = U0(r, 1− x), for x > 1/2

For the larger values of k we proceed via induction.
Let us first take the simpler case when 0 ≤ x ≤ a, for

k ≥ 1 one gets:

Uk(r, x) =
1

`
Uk−1

( r
a
,
x

a

)
+

`−1∑
j=1

1

`
Uk−1

(
r + x− j(a+ b)

a
, 0

)
The term 1

`U
k−1 ( r

a ,
x
a

)
describes the contribution of

Kk−1(a, `), the division by the factor a reflects the fact that
Kk−1(a, `) is shrunk by the factor a in the decomposition
of Kk(a, `) and the factor 1

` reflects the fact that the set
Kk−1(a, `) has weight 1/` in the decomposition of Kk(a, `).
The term 1

`U
k−1

(
r+x−j(a+b)

a , 0
)

reflects the contribution of
the set j(a+ b) + aKk−1(a, `).

Since the function Uk−1(r, x) is non decreasing in r then
the lower bound holds:

Uk(r, x) ≥ 1

`
Uk−1

( r
a
,
x

a

)
+

`−1∑
j=1

1

`
Uk−1

(
r − j(a+ b)

a
, 0

)
Using the recursion hypothesis that Uk−1(r, x) ≥ Uk−1(r, 0):

Uk(r, x) ≥
`−1∑
j=0

1

`
Uk−1

(
r − j(a+ b)

a
, 0

)
(11)

In the left-hand side, one can recognize the term Uk(r, 0).
A little more delicate is the case when x = m(a + b) + y

with m integer greater than 0 and smaller than ` and 0 ≤
y ≤ a. We further analyze it as the second and last case. The
decomposition is now different since it turns out that

Uk(r, x) =
1

`
Uk−1

( r
a
,
y

a

)
+
1

`

m−2∑
j=0

Uk−1
(
r − y − b− j(a+ b)

a
, 1

)

+
1

`

`−m∑
j=1

Uk−1
(
r − y − j(a+ b)

a
, 0)

)
The aim is still to prove that Uk(r, x) ≥ Uk(r, 0). It is

known that Uk−1
(
r
a ,

y
a

)
≥ Uk−1

(
r
a , 0
)
. Notice that in the

first sum in the right-hand side each term of the form r−yb−
j(a + b) = r + a − y − (j + 1)(a + b) ≥ r − (j + 1)(a + b)
which, in turn, is smaller than r − (`−m+ 1 + j)(a+ b).



By symmetry Uk−1
(
r−(`−m+1+j)(a+b)

a , 1
)

=

Uk−1
(
r−(`−m+1+j)(a+b)

a , 0
)

. Collecting with the terms
of the second sum we obtain:

Uk(r, x) ≥ 1

`

m−1∑
j=0

Uk−1
(
r − j(a+ b)

a
, 0

)
= Uk(r, 0),

(12)
which terminates the proof.

In a higher dimension D an analogous bound is achieved:

Lemma 2. UD(r,x) ≥ UD(r, 0) for all x ∈ [0, 1]D.

Proof. Denote z = (z, z), z ∈ [0, 1]D−1 is the projection
of z, and z ∈ [0, 1] is its last component, under the fractal
distribution µD. Analogously let x = (x, x), where x ∈
[0, 1]D−1 and x ∈ [0, 1]. Here x is given.

Then:

UD(r,x) =

∫ r

0

∂U1(ρ, x)

∂ρ
UD−1(

√
r2 − ρ2, x)dρ ,

≥
∫ r

0

∂U1(ρ, x)

∂ρ
UD−1(

√
r2 − ρ2, 0)dρ ,

= UD(r, (0, x))

=

∫ r

0

∂UD−1(ρ, 0)
∂ρ

U1(
√
r2 − ρ2, x)dρ ,

≥
∫ r

0

∂UD−1(ρ, 0)
∂ρ

U1(
√
r2 − ρ2, 0)dρ ,

= UD(r, 0) .

Corollary 2. The signal received at x = 0 is smaller in
distribution than the signal received at any other point of
K(a, `)D.

Let us now prove theorem III.1 and III.2 for the fractal map
K2(a, `) but we conjecture that they hold for any fractal maps.

B. Proof of theorem III.1

First, an upper bound of the loss probability ρn is intro-
duced.

Lemma 3.
ρn ≤ nP {Sn(λn, 0) < K} . (13)

Proof. Via a straightforward upper bound, the following is
obtained:

ρn ≤
∑
y∈R

P {Sn(λn,y) < K} . (14)

For a given node y in R:

P {Sn(λn,y) < KN}

=

∫
[0,1]2

µ2(z)P {Sn(λn, z) < K}P {y = z} dz2

since y is distributed according to the measure µ2 and thus

ρn ≤ n
∫
[0,1]2

µ2(z)P {Sn(λn, z) < K} dz2 . (15)

Since Sn(λn, z) ≥ Sn(λn, 0) in distribution thus
P {Sn(λn, z)} ≤ P {Sn(λn, 0)} thus
ρn ≤ nP {Sn(λn, 0) < KN}.

Let us now prove a Chebyshev formula.

Lemma 4. There exist BF , CF > 0 such that for all θ > 0
the following bound exists:

logE {exp(−θSn(λn, 0))} ≤ λn (−CF (Pnθ)γF +BFPnθ) ,
(16)

with γF = dF
2 .

Proof. In a first stage it is assumed that no fading factor is
present, i.e. Fr,t = 1 for all (r, t) ∈ R×T . Referring to [13]
and [6]:

E {exp(−θSn(λn, 0))}

= exp

(
−λn

∫
[0,1]2

(1− e−Pnθ‖z‖
−α

)µ2(z)dz
2

)
.

Clearly, since θ > 0, we have

E {exp(−θSn(λn, 0))}

= exp(−λn
∫
(R+)2

(1− e−θ‖z‖
−α

)µ∗2(z)dz
2

− λn
∫
(R+)2\[0,1])2

(1− e−θ‖z‖
−α

)µ∗2(z)dz
2), (17)

where µ∗2 is the extension of measure µ2 over the whole
unbounded K∗(a, `)2.

The integral
∫
(R+)2

(1− e−θ‖z‖−α)µ∗2(z)dz2 is the function
f(θ, 0) in [6] computed on the whole infinite Cantor map
with α = 2. It is known that f(θ, 0) = θγFP (log θ), with
γF = dF

α and P (·) is a positive function which periodic
with small oscillations. We can say that f(θ, 0) ≥ CθγF

for some constant C > 0 and therefore λn
∫
(R+)2

(1 −
e−Pnθ‖z‖

−α
)µ∗2dz

2 ≥ λnC(Pnθ)γF .
Let

J(θ) =

∫
(R+)2\[0,1]2

(1− e−θ‖z‖
−α

)µ∗2(z)dz
2 .

One can notice that if ‖z‖ ≤ 1 and z ∈ K∗(a, `)2 then z ∈
K(a, `)2. The following is obtained:

J(θ) ≤
∫
‖z‖≥1

(1− e−θ‖z‖
−α

)µ∗2(z)dz
2

Rewritten as:∫
‖z‖≥1

(1− e−θ‖z‖
−α

)µ∗2(z)dz
2

=

∫ ∞
1

(1− e−θr
−α

)
∂

∂r
U∗2 (r, 0)dr ,

(18)

where for x ∈ K∗(a, `) and for real r

U∗2 (r,x) =

∫
(R+)2

I (‖z− x‖ ≤ r)µ∗2(z)dz2 . (19)



Thus, using the inequality 1− e−x ≤ x and integration by
parts an upper bound on J(θ) is achieved:

J(θ) ≤ θ

∫ ∞
1

r−α
∂

∂r
U∗2 (r, 0)dr

= θ

(
[U∗2 (r, 0)r

−α]∞1 + α

∫ ∞
1

r−α−1U∗2 (r, 0)dr

)
= −θU∗D(1, 0) + θα

∫ ∞
1

r−α−1U∗2 (r, 0)dr

≤ θα

∫ ∞
1

r−α−1U∗2 (r, 0)dr .

From [13], it is known that U∗D(r, 0) = P2(log r)r
dF where

P2(.) is a non negative periodic function. Thus there exists
B∗ > 0 such that W ∗2 (r, 0) ≤ B∗rdF , thus

J(θ) ≤ αB∗

α− dF
θ = Bθ ,

with the appropriate value for constant B > 0. Therefore

E {exp(−θSn(λn, 0)} ≤ exp (−λn(CF (Pnθ)γF −BFPnθ) .

This proves the lemma for the case with no fading (F = 1).
The case when the fading factor F is not identically equal to
1 is straightforward. In this case we know that

E {exp(−θSn(λn, 0))} =

exp

(
−λnE

{∫
[0,1]2

(1− e−FPnθ‖z‖
−α

)µ2(z)dz
2

})
(20)

thus

E {exp(−θSn(λn, 0))}
≤ exp (E {λn(−CF (FPnθ)γ +BFFPnθ})
= exp (λn(−CFE {Fγ}Pnθ +BFPnθ)) ,

since E {F} = 1.

End of proof of theorem III.1. Via the Chebyshev inequality
we have

ρn ≤ n exp (−λn(CF (Pnθ)γF −BFPnθ) +Kθ) . (21)

The idea is to find the value of θ which minimizes the right-
hand side of (21). This is equivalent to minimizing

λn (−CF τγFn +Anτn) , (22)

obtained by exchanging θ with τn := Pnθ and introducing
An = BF +K/En, which is achieved at

τn =

(
An
γFCF

) 1
γF−1

. (23)

Then the minimal value of (22) is given by

− (CF γF )
1

1−γF

(
1

γF
− 1

)
λnA

γF /(γF−1)
n . (24)

Thus ρn tends to 0 when

log n− (CF γF )
1

1−γF

(
1

γF
− 1

)
λnA

γF /(γF−1)
n → −∞ .

(25)
Notice that En → 0 is equivalent to An →∞, hence:
An/

(
K
En

)
→ 1.

Then ρn → 0, i.e. (25) is satisfied, if

log n = o
(
λnE

γF /(1−γF )
n

)
. (26)

As a concrete example of this result, we stated the Corollary

1, En = ω

((
logn
n

) 1−γF
γF

)
. As a matter of fact if the fractal

map is K( 18 , 4) we have dF = 4
3 , then γF = 2

3 and En =
O(n−1/2) when λn = βn with n→∞.

C. Proof of theorem III.2

Let us start with the following lemma

Lemma 5. Considering dmin > 0, there exists DF such that
for all dmin ≥ 0 and for all θ > 0 the following bound holds:

logE {exp(−θSn(λn, 0))}

≤ λn
(
−CF (Pnθ)γF +BFPnθ +DF d

dF
min

)
(27)

Proof. With the modification that:
S(λn,x) =

∑
z∈T F(x, z) (max{dmin, ‖z− x‖})−2 we

still have S(λn,x) ≥ S(λn, 0) in distribution. To simplify,
it is assumed F = 1, the case F not identically equal to 1 will
be easy to handle as previously done. Now one gets

f(θ, 0) =

∫
[0,1]2

(1− eθ‖z‖
−2

)µ2(z)dz
2

−
∫
‖z‖≤dmin

(
e−θd

−2
min − eθ‖z‖

−2

)
)
µ2(z)dz

2.

The second term of the right hand side term can be lower
bounded by U2(dmin, 0). In fact it is as if we assumed that
in the worst case the receiver does not receive zero energy
from a transmitter when the antenna aperture overlap. Using
the bound U2(r, 0) ≤ DF r

dF one gets the bound:

f(θ, 0) ≥ CF θγF −BF θ −DF d
dF
min. (28)

End of proof of theorem III.2. We still have the Chebyshev
inequality but it now reads:

ρn ≤ n exp
(
−λn(CF (Pnθ)γF −BFPnθ −DF d

dF
min) +Kθ

)
(29)

Still with τn = Pnθ, the following quantity has to be
minimized:

λn(−CF τγFn +Anτn +DF d
dF
min), (30)

with An = BF +K/En. The opimal is attained for

τn =

(
An
γFCF

) 1
γF−1

. (31)



which gives the minimal value of (30):

−λn
(
(CF γF )

1
1−γF

(
1

γF
− 1

)
AγF /(γF−1)n −DF d

dF
min

)
.

(32)
Clearly there is AF > 0 such that if An = AF d

(γF−1)dF /γF
min =

AF d
(γF−1)/2
min then ρn → 0. This is equivalent to having:

lim supn→∞En = Emin of order d(1−γF )/2
min which tends to

0 when dmin → 0.

V. NUMERICAL EXPERIMENTS

We first conduct simulations in a fractal map of K2(1/8, 4),
where positions of the transmitters and receivers are ob-
tained as a Poisson shot. We keep the numbers of trans-
mitters receivers equal, denoted by λn = n, and vary n =
100, 200, 300, . . . , 5700. The SNR threshold for a successful
packet reception is first taken for K = 1dB and path loss
coefficient α = 2. Then simulations are conducted for four
relevant values of dmin = 0, 0.02, 0.04 and dmin = 0.1,
where we assume negligible antenna cross section.

Figure 3 displays the the results obtained for the total energy
required for ρ = 0, SNR = 1dB in a fractal map K2(1/8, 4).
The simulation results validate that the energy required to
ensure the capture condition decreases with dmin, attaining
the minimum values for dmin = 0.
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Figure 3: Variation of total energy in fractal maps of
K2(1/8, 4), SNR threshold K = 1dB, α = 2

In order to show that the decrease in energy is a property
specific to networks in fractal maps, we run the experiments
with the same set of parameters in a uniform Poisson map that
can be expressed as K2( 1l , l).

Figure 4 displays the results obtained for the total energy
required in order to ensure probability of packet loss equal to
zero in a uniform map. In this scenario also En is smaller
for smaller values of dmin. Although we can observe a
minor decrease in the total energy when the density of the
nodes increases, the savings of energy are not as large as in
fractal maps. To the contrary, the plots show rather a constant
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Figure 4: Variation of total energy in a uniform Poisson map,
SNR threshold K = 1dB, α = 2

behavior in the energy consumption as the number of nodes
varies. Furthermore, importantly, Emin in a fractal map is
always inferior to the total energy in the uniform Poisson map.
Let us validate this through an additional experiment.

For further demonstrating that the results obtained in fractal
maps are superior to the ones in uniform maps, we run
simulations for several values of SNR, for the same value
of dmin = 0. Figure 5 shows the energy obtained in fractal
map K2(1/8, 4) versus the one in uniform maps for the SNR
K = 1, 3, 5 dB. In every scenario, the energy required to
ensure zero loss probability under SNR threshold K is higher
in uniform maps. Furthermore, a closer look at the interval
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Figure 5: Results for energy in fractal maps K2(1/8, 4) and
uniform maps for different values of SNR, α = 2

of points 2000 to 3000 for SNR K = 3dB in fractal maps
shows that the same results are obtained for K = 1 dB in
uniform Poisson map. This is a promising result and provides
the intuition that by using the same level of energy in a fractal
map, one could obtain a superior quality of transmission.



In fact, Figure 6 shows that the energy necessary for SNR
capture decreases with the decrease of a, and therefore with
the decrease of the fractal dimension. Notice how for a = 0.02,
the energy approaches the zero limit for lower values of the
number of receivers.
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Figure 6: Simulated energy in fractal maps K2(a, 4) for
different values of a

Next, we validate Corollary 1, En = ω

((
logn
n

) 1−γF
γF

)
.

Figure 7 shows the energy obtained through simulations versus
the scaling law for a = 1/8 and l = 4. For this values, the
law reads as n−1/2.
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Figure 7: Simulated energy in fractal map K2(1/8, 4), SNR
threshold K = 1dB versus n−1/2, α = 2

VI. CONCLUSION

This paper brings into consideration a surprising fact: the
energy needed to transmit a packet tends to zero when
the number of receivers increases. We proved, theoretically
and experimentally, that in a Poisson shot in a fractal map
support, the total energy required for a zero loss probability
in a virtual MISO setup decreases with the increase of the
populations. Moreover, the phenomenon does not reproduce
under a uniform distribution of the devices, making it a unique

property of the networks of devices distributed in a Cantor
map. The setup offers an evident energy saving comparing to
the conventional setups based on a Poisson Point Process.

VII. DISCUSSION

In this work we have assumed that: one can neglect the
antenna cross section, the density of nodes is overwhelming,
and the path loss coefficient is 2. These assumptions may
be claimed not to be realistic, and one may argue about the
validity of the results. Our results indicate that savings in
the energy consumption may occur even under more realistic
values for the path loss exponent and distance between sensors.
To prove this phenomena remains as a subject of our future
work. Finally, this work opens up new horizons for studying
fractal sensor networks.
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