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Spectral Learning from a Single Trajectory under Finite-State Policies

Borja Balle 1 Odalric-Ambrym Maillard 2

Abstract
We present spectral methods of moments for
learning sequential models from a single trajec-
tory, in stark contrast with the classical litera-
ture that assumes the availability of multiple i.i.d.
trajectories. Our approach leverages an efficient
SVD-based learning algorithm for weighted au-
tomata and provides the first rigorous analysis
for learning many important models using depen-
dent data. We state and analyze the algorithm un-
der three increasingly difficult scenarios: proba-
bilistic automata, stochastic weighted automata,
and reactive predictive state representations con-
trolled by a finite-state policy. Our proofs in-
clude novel tools for studying mixing properties
of stochastic weighted automata.

1. Introduction
Spectral methods of moments are a powerful tool for de-
signing provably correct learning algorithms for latent vari-
able models. Successful applications of this approach in-
clude polynomial-time algorithms for learning topic mod-
els (Anandkumar et al., 2012; 2014), hidden Markov mod-
els (Hsu et al., 2012; Siddiqi et al., 2010; Anandkumar
et al., 2014), mixtures of Gaussians (Anandkumar et al.,
2014; Hsu & Kakade, 2013), predictive state representa-
tions (Boots et al., 2011; Hamilton et al., 2014; Bacon et al.,
2015; Langer et al., 2016), weighted automata (Bailly,
2011; Balle et al., 2011; Balle & Mohri, 2012; Balle et al.,
2014a;b; Glaude & Pietquin, 2016), and weighted context-
free grammars (Bailly et al., 2010; Cohen et al., 2013;
2014). All these methods can be split into two classes de-
pending on which spectral decomposition they rely on. The
first class includes algorithms based on an Singular Value
Decomposition (SVD) decomposition of a matrix contain-
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ing (estimated) moments of the target distribution (e.g. Hsu
et al. (2012); Boots et al. (2011); Balle et al. (2014a)). The
other class includes algorithms relying on symmetric ten-
sor decomposition methods (e.g. Anandkumar et al. (2014);
Hsu & Kakade (2013)). The advantage of tensor methods is
that their output is always a proper probabilistic model. On
the other hand, SVD methods, which do not always output
a probabilistic model, provide learning algorithms for mod-
els which are provably non-learnable using tensor meth-
ods. A notable example is the class of stochastic weighted
automata that do not admit a probabilistic parametrization
(Jaeger, 2000; Denis & Esposito, 2008).

Natural language processing (NLP) and reinforcement
learning (RL) are the two main application domains of
spectral learning. For example, SVD methods for learn-
ing weighted context-free grammars have proved very suc-
cessful in language-related problems (Cohen et al., 2013;
Luque et al., 2012). In the context of RL, efficient SVD
methods for learning predictive state representations were
proposed in (Boots et al., 2011; Hamilton et al., 2014). A
recent application of tensor methods to RL is given in (Az-
izzadenesheli et al., 2016), where the authors use a spectral
algorithm to obtain a PAC-RL learning result for POMDP
under memory-less policies. All these results have in com-
mon that they provide learning algorithms for models over
sequences. However, there is a fundamental difference be-
tween the nature of data in NLP and RL. With the excep-
tion of a few problems, most of NLP “safely” relies on
the assumption that i.i.d. data from the target distribution
is available. In RL, however, the most general scenario as-
sumes that the learner can only collect a single continuous
trajectory of data while all existing analysis of the SVD
method for sequential models1 rely on the i.i.d. assumption
(Hsu et al., 2012; Balle & Mohri, 2015; Glaude & Pietquin,
2016). Regarding tensor methods, (Azizzadenesheli et al.,
2016) gave the first analysis under dependent data satisfy-
ing certain mixing conditions.

The purpose of this paper is to provide the first rigorous
analyses of spectral SVD methods for learning sequential
models from non-i.i.d. data. We provide efficient algo-
rithms with provable guarantees for learning several se-
quential models from a single trajectory. Specifically, we

1See (Thon & Jaeger, 2015) for a survey of sequential models
learnable with SVD methods.
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consider three models: probabilistic automata, stochastic
weighted automata, and PSRs under control from a finite-
state policy. The first two results extend existing results in
the literature for i.i.d. data (Hsu et al., 2012; Balle et al.,
2014a). The last result is an analog of the environment
learning result for POMDP – not the whole RL result –
of (Azizzadenesheli et al., 2016), with the difference that
our analysis provides guarantees under a much larger set
of policies (finite-state, as opposed to memory-less). This
result can also be interpreted as an extension of the batch-
based PSR learning algorithm from (Boots et al., 2011)
to the non-i.i.d. case, although they do not provide finite-
sample guarantees. Our analysis is especially relevant since
the single trajectory spectral algorithm we analyze has been
used previously without an explicit instantiation or analy-
sis. For example, (Kulesza et al., 2015; Shaban et al., 2015)
present experiments with datasets containing single or few
long trajectories which are broken into short subsequences
and given as input to an spectral algorithm designed for
i.i.d. data. A more detailed list of our contributions is as
follows:

(1) A single-trajectory spectral-learning algorithm for
probabilistic automata whose sample complexity de-
pends on the mixing properties of the target automaton
(Section 3).

(2) An extension of this result showing that the same algo-
rithm also learns stochastic weighted automata (Sec-
tion 4). In this case the analysis is more involved,
and requires a novel notion of mixing for stochastic
weighted automata and tools from the theory of linear-
invariant cones (Berman & Plemmons, 1994).

(3) A generalization of the algorithm that learns reactive
PSR controlled by a finite-state stochastic policy (Sec-
tion 5). We provide for this algorithm finite-sample
bounds under a simple exploration assumption.

The most important tool in our analysis is a concentration
inequality for functions of dependent random variables.
These inequalities depend on the mixing coefficients of the
underlying process. We provide technical estimates for the
relevant mixing coefficients in each of the three cases listed
above. Our goal for future work is to extend (3) to prove
a PAC-RL for PSR under finite-state policies. We also
think that the tools we develop to prove (2) can be used to
improve the sample complexity of algorithms for learning
stochastic weighted automata in the i.i.d. case.

In Section 2, we start by recalling several facts about
weighted automata, spectral learning, and mixing that will
play a role in the sequel. For space reasons, most of our
proofs are deferred to the Supplementary Material.

2. Background
Let Σ be a finite alphabet, Σ? denote the set of words of
finite length on Σ, Σω the set of all infinite words on Σ, and
ε be the empty word. Given two sets of words U ,V ⊂ Σ?

we write U · V to denote the set of words {uv|u∈U , v∈V}
obtained by concatenating all words in U with all words in
V . Let P(Σω) be the set of probability distributions over
Σω . A member ρ ∈ P(Σω) is called a stochastic process
and a random infinite word ξ∼ρ is called a trajectory.

Weighted and probabilistic automata A weighted fi-
nite automaton (WFA) with n states is a tuple A =
〈α, β, {Aσ}σ∈Σ〉 where α, β∈Rn are vectors of initial and
final weights respectively, and Aσ ∈Rn×n are matrices of
transition weights. A weighted automaton A computes a
function fA : Σ? → R given by fA(w) = α>Awβ where
Aw = Aw1 · · ·Awt for w = w1 · · ·wt. A WFA is minimal
if there does not exist another WFA with less states com-
puting the same function. A WFA A is stochastic if there
exists a stochastic process ρ such that for every w ∈ Σ?,
fA(w) = P[ξ ∈ wΣω]; that is, A provides a representa-
tion for the probabilities of prefixes under the distribution
of ρ. A weighted automaton is irreducible if the labelled
directed graph with n vertices obtained by adding a tran-
sition from i to j with label σ whenever Aσ(i, j) 6= 0 is
strongly connected. It can be shown that irreducibility im-
plies minimality, and that almost all WFA are irreducible in
the sense that the set of irreducible WFA are dense on the
set of all WFA (Balle et al., 2017).

A probabilistic finite automaton (PFA) is a stochastic WFA
A = 〈α, β, {Aσ}〉 where the weights have a probabilistic
interpretation. Namely, α is a probability distribution over
[n], Aσ(i, j) is the probability of emitting symbol σ and
transitioning to state j starting from state i, and β(i) = 1
for all i ∈ [n]. It is immediate to check that a PFA satisfy-
ing these conditions induces a stochastic process. However
not all stochastic WFA admit an equivalent PFA (Jaeger,
2000; Denis & Esposito, 2008).

If A is a PFA, then the matrix A =
∑
σ∈ΣAσ yields the

Markov kernel A(i, j) = P[j | i] on the state space [n] after
marginalizing over the observations. It is easily checked
that A is row-stochastic, and thus Aβ = β. Furthermore,
for every distribution α0 ∈ Rn over [n] we have α>0 A = α1

for some other probability distribution α1 over [n]. In the
case of PFA irreducibility coincides with the usual concept
of irreducibility of the Markov chain induced by A.

Hankel matrices and spectral learning The Hankel ma-
trix of a function f : Σ? → R is the infinite matrix
Hf ∈ RΣ?×Σ? with entries Hf (u, v) = f(uv). Given fi-
nite sets U ,V ⊂ Σ?, HU,Vf ∈RU×V denotes the restriction
of matrix Hf to prefixes in U and suffixes in V .

Fliess’ theorem (Fliess, 1974) states that a Hankel matrix
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Hf has finite rank n if and only if there exists a WFA A
with n states such that f =fA. This implies that a WFA A
with n states is minimal if and only if n = rank(HfA). The
spectral learning algorithm for WFA (Balle et al., 2014a)
provides a mechanism for recovering such a WFA from
a finite sub-block HU,Vf of Hf such that: 1) ε ∈ U ∩ V ,
2) there exists a set U ′ such that U = U ′ ∪ (∪σ∈ΣU ′σ),
3) rank(Hf ) = rank(HU

′,V
f ). A pair (U ,V) that satis-

fies these conditions is called a complete basis for f . The
pseudo-code of this algorithm is given below:

Algorithm 1: Spectral Learning for WFA

Input: number of states n, Hankel matrix HU,V

Find U ′ such that U = U ′ ∪ (∪σ∈ΣU ′σ)

Let Hε = HU
′,V

Compute the rank n SVD Hε ≈ UDV >

Let hV = H{ε},V and take α = V >hV

Let hU ′ = HU
′,{ε} and take β = D−1U>hU ′

foreach σ ∈ Σ do
Let Hσ = HU

′σ,V and take Aσ = D−1U>HσV

return A = 〈α, β, {Aσ}〉

The main strength of Algorithm 1 is its robustness to noise.
Specifically, if only an approximation ĤU,V of the Han-
kel matrix is known, then the error between the target au-
tomaton A and the automaton Â learned from ĤU,V can
be controlled in terms of the error ‖HU,V − ĤU,V‖2; see
(Hsu et al., 2012) for a proof in the HMM case and (Balle,
2013) for a proof in the general WFA case. These tedious
but now standard arguments readily reduce the problem of
learning WFA via spectral learning to that of estimating the
corresponding Hankel matrix.

Classical applications of spectral learning assume one has
access to i.i.d. samples from a stochastic process ρ. In this
setting one can obtain a sample S = (ξ(1), . . . , ξ(N)) con-
taining N finite-length trajectories from ρ, and use them to
estimate a Hankel matrix ĤU,VS as follows:

ĤU,VS (u, v) =
1

N

N∑
i=1

I{ξ(i) ∈ uvΣω} .

If ρ = ρA for some stochastic WFA, then obviously
ES [ĤU,VS ] = HU,VfA

and a large sample size N will pro-

vide a good approximation ĤU,VS of HU,VfA
. Explicit con-

centration bounds for Hankel matrices bounding the error
‖HU,VfA

− ĤU,VS ‖2 can be found in (Denis et al., 2016).

In this paper we consider the more challenging setup where
we only have access to a sample S = {ξ} of size N = 1
from ρ. In particular, we show it is possible to replace the
empirical average above by a Césaro average and still use
the spectral learning algorithm to recover the transition ma-

trices of a stochastic WFA. To obtain a finite-sample anal-
ysis of this single-trajectory learning algorithm we prove
concentration results for Césaro averages of Hankel matri-
ces. Our analysis relies on concentration inequalities for
functions of dependent random variables which depend on
mixing properties of the underlying process.

Mixing and concentration Let ρ ∈ P(Σω) be a stochastic
process and ξ = x1x2 · · · a random word drawn from ρ.
For 1 6 s < t 6 T and u ∈ Σs we let ρt:T (·|u) denote
the distribution of xt · · ·xT conditioned on x1 · · ·xs = u.
With this notation we define the quantity

ηt(u, σ, σ
′) = ‖ρt:T (·|uσ)− ρt:T (·|uσ′)‖TV

for any u ∈ Σs−1, and σ, σ′ ∈ Σ. Then the η-mixing
coefficients of ρ at horizon T are given by

ηs,t = sup
u∈Σs−1,σ,σ′∈Σ

ηt(u, σ, σ
′) .

Mixing coefficients are useful in establishing concentration
properties of functions of dependent random variables. The
Lipschitz constant of a function g : ΣT → R with respect
to the Hamming distance is defined as

‖g‖Lip = sup |g(w)− g(w′)| ,

where the supremum is taken over all pairs of words
w,w′ ∈ ΣT differing in exactly one symbol. The follow-
ing theorem proved in (Chazottes et al., 2007; Kontorovich
et al., 2008) provides a concentration inequality for Lips-
chitz functions of weakly dependent random variables.

Theorem 1 Let ρ∈P(Σω) and ξ=x1x2 · · ·∼ρ. Suppose
g : ΣT→R satisfies ‖g‖Lip61 and let Z=g(x1, . . . , xT ).
Let ηρ = 1+max1<s<T

∑T
t=s+1 ηs,t, where ηs,t are

the η-mixing coefficients of ρ at horizon T . Then the fol-
lowing holds for any ε > 0:

Pξ [Z − EZ > εT ] 6 exp

(
−2ε2T

η2
ρ

)
,

with an identical bound for the other tail.

Theorem 1 shows that the mixing coefficient ηρ is a key
quantity in order to control the concentration of a func-
tion of dependent variables. In fact, upper-bounding ηρ
in terms of geometric ergodicity coefficients of a latent
variable stochastic process enables (Kontorovich & Weiss,
2014) to analyze the concentration of functions of HMMs
and (Azizzadenesheli et al., 2016) to provide PAC guar-
antees for an RL algorithm for POMDP based on spectral
tensor decompositions. Our Lemma 2 uses a similar but
more refined bounding strategy that directly applies when
the transition and observation processes are not condition-
ally independent. Lemma 4 refines this strategy further to
control ηρ for stochastic WFA (for which there may be no
underlying Markov stochastic process in general). To the
best of our knowledge this yields the first concentration re-
sults for the challenging setting of stochastic WFA.
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3. Single-Trajectory Spectral Learning of PFA
In this section we focus on the problem of learning the tran-
sition structure of a PFA A using single trajectory is gen-
erated by A. We provide a spectral learning algorithm for
this problem and a finite-sample analysis consisting of a
concentration bound for the error on the Hankel matrix es-
timated by the algorithm. We assume the learner has access
to a single infinite-length trajectory ξ ∼ ρA that is progres-
sively uncovered. The algorithm uses a length t prefix from
ξ to estimate a Hankel matrix whose entries are Césaro av-
erages. This Hankel matrix is then processed by the usual
spectral learning algorithm to recover an approximation to
an automaton with transition weights equivalent to those of
A. We want to analyze the quality of the model learned by
the algorithm after observing the first t symbols from ξ.

We start by showing that Césaro averages provide a consis-
tent mechanism for learning the transition structure of A.
Then we proceed to analyze the accuracy of the Hankel es-
timation step. As discussed in Section 2, this is enough to
obtain finite-sample bounds for learning PFA. The general
case of stochastic WFA is considered in Section 4.

3.1. Learning with Césaro Averages is Consistent
Let A = 〈α, β, {Aσ}〉 be a PFA computing a function fA :
Σ?→R and defining a stochastic process ρA∈P(Σω). For
convenience we drop the subscript and just write f and ρ.
Since we only have access to a single trajectory ξ from ρwe
cannot obtain an approximation of the Hankel matrix for f
by averaging over multiple i.i.d. trajectories. Instead, we
compute Césaro averages over the trajectory ξ to obtain a
Hankel matrix whose expectation is related to A as follows.

For any t ∈ N let f̄t : Σ? → R be the function
given by f̄t(w) = (1/t)

∑t−1
s=0 f(Σsw), where f(Σsw) =∑

u∈Σs f(uw). We shall sometimes write fs(w) =
f(Σsw). Using the definition of the function computed by
a WFA it is easy to see that∑

u∈Σs

f(uw) =
∑
u∈Σs

α>AuAwβ = α>AsAwβ ,

where A=
∑
σ Aσ is the Markov kernel on the state space

of A. Thus, introducing ᾱ>t = (1/t)
∑t−1
s=0 α

>As we get
f̄t(w) = ᾱ>t Awβ. Since α is a probability distribution, A
is a Markov kernel, and probability distributions are closed
by convex combinations, then ᾱt is also a probability dis-
tribution over [n]. Thus, we have just proved the following:

Lemma 1 (Consistency) The Césaro average of f over
t steps, f̄t, is computed by the probabilistic automaton
Āt = 〈ᾱt, β, {Aσ}〉. In particular, A and Āt have the same
number of states and the same transition probability matri-
ces. Furthermore, if A is irreducible then Āt is minimal.

The irreducibility claim follows from (Balle et al., 2017).

For convenience, in the sequel we write H̄U,Vt for the
(U ,V)-block of the Hankel matrix HfĀt

.

Remark 1 The irreducible condition simply ensures there
is a unique stationary distribution, and that the Hankel ma-
trix of Āt has the same rank as the Hankel matrix of A
(otherwise it could be smaller).

3.2. Spectral Learning Algorithm
Algorithm 2 describes the estimation of the empirical Han-
kel matrix ĤU,Vt,ξ from the first t+L symbols of a single tra-
jectory using the corresponding Césaro averages. To avoid
cumbersome notations, in the sequel we may drop super
and subscripts when not needed and write Ĥt or Ĥ when U ,
V , and ξ are clear from the context. Note that by Lemma 1
the expectation E[Ĥ] over ξ∼ρ is equal to the Hankel ma-
trix H̄t of the function f̄t computed by the PFA Āt.

Algorithm 2: Single Trajectory Spectral Learning
(Generative Case)

Input: number of states n, length t, prefixes
U ⊂ Σ?, suffixes V ⊂ Σ?

Let L = maxw∈U·V |w|
Sample trajectory ξ = x1x2 · · ·xt+L · · · ∼ ρ
foreach u ∈ U and v ∈ V do

Let Ĥ(u, v) = 1
t

∑t−1
s=0 I{xs+1:s+|uv| = uv}

Apply the spectral algorithm to Ĥ with rank n

3.3. Concentration Results
Now we proceed to analyze the error Ĥt − H̄t in the Han-
kel matrix estimation inside Algorithm 2. In particular, we
provide concentration bounds that depend on the length t,
the mixing coefficient ηρ of the process ρ, and the struc-
ture of the basis (U ,V). The main result of this section is
the matrix-wise concentration bound Theorem 3 where we
control the spectral norm of the error matrix. For compari-
son we also provide a simpler entry-wise bound and recall
the equivalent matrix-wise bound in the i.i.d. setting.

Before trying to bound the concentration of the errors us-
ing Theorem 1 we need to analyze the mixing coefficient
of the process generated by a PFA. This is the goal of the
following result, whose proof is provided in Appendix A.

Lemma 2 (η-mixing for PFA) Let A be PFA and assume
that it is (C, θ)-geometrically mixing in the sense that for
some constants C > 0, θ ∈ (0, 1) we have

∀t ∈ N, µA
t = sup

α,α′

‖αAt − α′At‖1
‖α− α′‖1

6 Cθt ,

where the supremum is over all probability vectors. Then
we have ηρA 6 C/(θ(1− θ)).
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Remark 2 A sufficient condition for the geometric con-
trol of µA

t is that A admits a spectral gap. In this case θ
can be chosen to be the modulus of the second eigenvalue
|λ2(A)| < 1 of the transition kernel A.

Before the main result of this section we provide a con-
centration result for each individual entry of the estimated
Hankel matrix as a warmup (see Appendix D).

Theorem 2 (Single-trajectory, entry-wise) Let A be a
(C, θ)-geometrically mixing PFA and ξ ∼ ρA a trajectory
of observations. Then for any u∈U , v∈V and δ∈(0, 1),

P

[
ĤU,Vt,ξ (u, v)−H̄U,Vt (u, v) >

|uv|C
θ(1− θ)

√(
1 +
|uv| − 1

t

) log(1/δ)

2t

]
6 δ ,

with an identical bound for the other tail.

A naive way to handle the concentration of the whole Han-
kel matrix is to control the Frobenius norm ‖Ĥt− H̄t‖F
by taking a union bound over all entries using Theorem 2.
However, the resulting concentration bound would scale as√
|U||V|. To have better dependency with the dimension

(the matrix has dimension |U| × |V|) can split the empiri-
cal Hankel matrix Ĥ into blocks containing strings of the
same length (as suggested by the dependence of the bound
above on |uv|). We thus introduce the maximal length
L = maxw∈U·V |w|, and the set U` = {u ∈ U : |u| = `}
for any ` ∈ N. We use these to define the quantity
nU = |{` ∈ [0, L] : |U`| > 0}|, and introduce likewise
V`, nV with obvious definitions. With this notation we can
now state the main result of this section.

Theorem 3 (Single-trajectory, matrix-wise) Let A be as
in Theorem 2. Let m =

∑
u∈U,v∈V f̄t(uv) be the proba-

bility mass and d = min{|U||V|, 2nUnV} be the effective
dimension. Then, for all δ ∈ (0, 1) we have

P

[
‖ĤU,Vt,ξ −H̄

U,V
t ‖2 >

(
√
L+

√
2C

1− θ

)√
2m

t

+
2LC

θ(1−θ)

√(
1+

L−1

t

)d ln(1/δ)

2t

]
6 δ .

Remark 3 Note that quantity nUnV in d can be exponen-
tially smaller than |U||V|. Indeed, for U = V = Σ6L/2 we
have |U||V| = Θ(|Σ|L) while nUnV = Θ(L2).

For comparison, we recall a state-of-the-art concentration
bound for estimating the Hankel matrix of a stochastic lan-
guage2 from N i.i.d. trajectories.

2A stochastic language is a probability distribution over Σ?.

Theorem 4 (Theorem 7 in (Denis et al., 2014)) Let A be
a stochastic WFA with stopping probabilities and S =
(ξ(1), . . . , ξ(N)) be an i.i.d. sample of size N from the dis-
tribution ρA ∈ P(Σ?). Let m =

∑
u∈U,v∈V fA(uv). Then,

for all c > 0 we have

P

[
‖ĤU,VS −HU,VfA

‖2 >
√

2cm

N
+

2c

3N

]
6

2c

ec − c− 1
.

3.4. Sketch of the Proof of Theorem 3

In this section we sketch the main steps of the proof of
Theorem 3 (the full proof is given in Appendices A and D).
We focus on highlighting the main difficulties and paving
the path for the extension of Theorem 3 to stochastic WFA
given in Section 4.

The key of the proof is to study the function g(ξ) =

‖ĤU,Vt,ξ − H̄
U,V
t ‖2, in view of applying Theorem 1. To

this end, we first control the η-mixing coefficients using
Lemma 2. The next step is to control the Lipschitz con-
stant ‖g‖Lip. This part is not very difficult and we derive
after a few careful steps the bound ‖g‖Lip 6 L

√
d/t.

The second and most interesting part of the proof is about
the control of E[g(ξ)]. Let us give some more details.

Decomposition step We control ‖ĤU,Vt − H̄U,Vt ‖2 by its
Frobenius norm and get

E[‖ĤU,Vt −H̄U,Vt ‖2]2 6
∑

w∈U·V
|w|U,VE[(f̂t(w)−f̄t(w))2] ,

where we introduced |w|U,V = |{(u, v) ∈ U × V :

uv = w}|, and f̂t(w) = 1
t

∑t
s=1bs(w) using the short-

hand notation bs(w) = I{xs . . . xs+|w|−1 = w}. Also,
f̄t(w) = E[f̂t(w)] = 1

t

∑t
s=1 fs(w), where fs(w) =

ρA(Σs−1wΣω). This implies that we have a sum of vari-
ances, where each of the terms can be written as

E[(f̂t(w)− f̄t(w))2] =

1

t2
E

( t∑
s=1

bs(w)

)2
− 1

t2

(
t∑

s=1

fs(w)

)2

.

Slicing step An important observation is that each prob-
ability term satisfies fs(w) = α>As−1Awβ because of
the PFA assumption on ρA. Furthermore, it follows from
A being a PFA that

∑
|w|=l fs(w) = 1 for all s and l.

This suggests that we group the terms in the sum over
W = U ·V by length, so we writeWl =W∩Σl and define
Ll = maxw∈Wl

|w|U,V the maximum number of ways to
write a string of length l inW as a concatenation of a prefix
in U and a suffix in V . Note that we always have Ll 6 l+1.
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A few more steps lead to the following bound

E[‖ĤU,Vt − H̄U,Vt ‖2]2 6 (1)

1

t2

∞∑
l=0

∑
w∈Wl

|w|U,V
[ t∑
s=1

(1−fs(w))fs(w)

+2
∑

16s<s′6t

(
E[bs(w)bs′(w)]−fs(w)fs′(w)

)]
.

We control the first term in (1) using

∞∑
l=0

∑
w∈Wl

|w|U,V
t∑

s=1

(1−fs(w))fs(w)6 t
∑

u∈U,v∈V
f̄t(uv) .

Cross terms Regarding the remaining “cross”-term in (1)
we fix w ∈ Wl and obtain the equation

E[bs(w)bs′(w)]− fs(w)fs′(w)

= α>s−1

(
As
′−s
w −Awβα>s′−1Aw

)
β , (2)

where we introduced the vectors α>s =α>As and transition
matrixAs

′−s
w =

∑
x∈Σs

′−s
w

Ax corresponding to the “event”

Σs
′−s
w =wΣs

′−s ∩ Σs
′−sw. We now discuss two cases.

First control If s′− s < l, we use the simplifying fact that
Σs
′−s
w ⊂ wΣs

′−s to upper bound (2) by

α>s−1Aw

(
As
′−s − βα>s′−1Aw

)
β

= fs(w)(1− fs′(w)) 6 fs(w) .

Second control When s′−s > |w| = l we have Σs
′−s
w =

wΣs
′−s−lw and As

′−s
w =AwA

s′−s−lAw. Thus, we rewrite
(2) and bound it using Hölder’s inequality as follows:

α>s−1Aw

(
As
′−s−l−βα>s′−1

)
Awβ 6 (3)

‖α>s−1Aw‖1‖As
′−s−l − βα>s′−1‖∞‖Awβ‖∞ .

Using Lemma 6 in Appendix A we bound the induced norm
as ‖As′−s−l − βα>s′−1‖∞ 6 2µA

s′−s−l, where µA
t is the

mixing coefficient defined in Lemma 2. Also, it holds that
‖Awβ‖∞ 6 1. Finally, since α>s−1Aw is a sub-distribution
over states, we have the key equalities∑
w∈Wl

|w|U,V‖α>s−1Aw‖1 =
∑
w∈Wl

|w|U,Vα>s−1Awβ (4)

=
∑
w∈Wl

|w|U,Vfs(w) =
∑

u∈U,v∈V:uv∈Wl

fs(uv) .

The proof is concluded by collecting the previous bounds,
plugging them into (1), and using Lemma 2 to get

E[g(ξ)]2 6

(
2L− 1 +

4C

1− θ

)
m

t
. (5)

4. Extension to Stochastic WFA
We now generalize the results in previous section to the
case where the distribution over ξ is generated by a stochas-
tic weighted automaton that might not have a probabilistic
representation. The key observation is that Algorithm 2
can learn stochastic WFA without any change, and the con-
sistency result in Lemma 1 extends verbatim to stochastic
WFA. However, the proof of the concentration bound in
Theorem 3 requires further insights into the mixing proper-
ties of stochastic WFA. Before describing the changes re-
quired in the proof, we discuss some important geometric
properties of stochastic WFA.

4.1. The State-Space Geometry of SWFA
Recall that a stochastic WFA (SWFA) A = 〈α, β, {Aσ}〉
defines a stochastic process ρA and computes a function
fA such that fA(w) = P[ξ ∈ wΣω], where ξ ∼ ρA. It is
immediate to check that this implies that the weights of A
satisfy the properties: (i) α>Axβ > 0 for all x ∈ Σ?, and
(ii) α>Atβ =

∑
|w|=t α

>Awβ = 1 for all t > 0, where
A =

∑
σ∈ΣAσ . Without loss of generality we assume

throughout this section that A is a minimal SWFA of di-
mension n, meaning that any SWFA computing the same
probability distribution than A must have dimension at least
n. Importantly, the weights in α, β, and Aσ are not re-
quired to be non-negative in this definition. Nonetheless,
it follows from these properties that β is an eigenvector of
A of eigenvalue 1 exactly like in the case of PFA. We now
introduce further facts about the geometry of SWFA.

A minimal SWFA A is naturally associated with a proper
(i.e. pointed, closed, and solid) cone in K⊂Rn called the
backward cone (Jaeger, 2000), and characterized by the fol-
lowing properties: 1) β∈K, 2) AσK⊆K for all σ∈Σ, and
3) α>v>0 for all v∈K. Condition 2) says that every tran-
sition matrix Aσ leaves K invariant, and in particular the
backward vector Awβ belongs to K for all w ∈ Σ?.

The vector of final weights β plays a singular role in the
geometry of the state space of a SWFA. This follows from
facts about the theory of invariant cones (Berman & Plem-
mons, 1994) which provides a generalization of the clas-
sical Perron–Frobenius theory of non-negative matrices to
arbitrary matrices. We recall from (Berman & Plemmons,
1994) that a norm on Rn can be associated with every vec-
tor in the interior of K. In particular, we will take the norm
associated with the final weights β ∈ K. This norm, de-
noted by ‖ · ‖β , is completely determined by its unit ball
Bβ = {v ∈ Rn : −β 6K v 6K β}, where u 6K v means
v − u∈K. In particular, ‖v‖β = inf{r > 0 : v ∈ rBβ}.
Induced and dual norms are derived from ‖ · ‖β as usual.
When A is a PFA one can takeK to be the cone of vectors in
Rn with non-negative entries, in which case β = (1, . . . , 1)
and ‖ · ‖β reduces to ‖ · ‖∞ (Berman & Plemmons, 1994).
The following result shows that ‖ · ‖β provides the right
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generalization to SWFA of the norm ‖·‖∞ used in the Sec-
ond control step of the proof for PFA (see Appendix B).

Lemma 3 For any w ∈ Σ?: (i) ‖Awβ‖β 6 1, and (ii)
‖α>Aw‖β,∗ = α>Awβ.

It is also natural to consider mixing coefficients for stochas-
tic processes generated by SWFA in terms of the dual β-
norm. This provides a direct analog to Lemma 2 for PFA:

Lemma 4 (η-mixing for SWFA) Let A be SWFA and as-
sume that it is (C, θ)-geometrically mixing in the sense that
for some C > 0, θ ∈ (0, 1),

µA
t = sup

α0,α1:α>0 β=α>1 β=1

‖α>0 At − α>1 At‖β,?
‖α0 − α1‖β,?

6 Cθt .

Then the η-mixing coefficient satisfies ηρA 6 C/θ(1− θ).

Remark 4 A sufficient condition for the geometric con-
trol of µA

t is that A admits a spectral gap. In this case
θ can be chosen to be the modulus of the second eigen-
value |λ2(A)|<1 of A. Another sufficient condition is that
θ=γβ(A)<1, where

γβ(A) = sup

{
||Aν||β,?
||ν||β,?

: ν s.t. ||ν||β,? 6= 0, ν>β = 0

}
.

4.2. Concentration of Hankel Matrices for SWFA
We are now ready to extend the proof of Theorem 3 to
SWFA. Using that both PFA and SWFA define probabil-
ity distributions over prefixes it follows that any argument
in Section 3.4 that only appeals to the function computed
by the automaton can remain unchanged. Therefore, the
only arguments that need to be revisited are described in
the Second control step. In particular, we must provide
versions of (3) and (4) for SWFA.

Recalling that Hölder’s inequality can be applied with
any pair of dual norms, we start by replacing the norms
‖ · ‖∞ and ‖ · ‖1 in (3) with the cone-norms ‖ · ‖β and
‖ · ‖β,? respectively. Next we use Lemma 3 to obtain,
for any w ∈ Σ?, the bound ‖Awβ‖β 6 1 and the equa-
tion ‖α>Aw‖β,∗ = α>Awβ which are direct analogs
of the results used for PFA. Then it only remains to re-
late the β-norm of As

′−s−l − βα>s′−1 to the mixing co-
efficients µA

t . Applying Lemma 8 in Appendix A yields
‖As′−s−l − βα>s′−1‖β 6 2µA

s′−s−l. Thus we obtain for
SWFA exactly the same concentration result that we ob-
tained for empirical Hankel matrices estimated from a sin-
gle trajectory of observations generated by a PFA.

Theorem 5 (Single-trajectory, SWFA) Let A be a SWFA
that is (C, θ)-geometrically mixing with the definition in
Lemma 4. Then the concentration bound in Theorem 3 also
holds for trajectories ξ ∼ ρA.

5. The Controlled Case
This section describes the final contribution of the paper:
a generalization of our analysis of spectral learning from
a single trajectory the case of dynamical systems under
finite-state control. We consider discrete-time dynamical
systems with finite set of observations O and finite set of
actions A, and let Σ =O×A. We assume the learner has
access to a single trajectory ξ=(ot, at)t>1 in Σω . The tra-
jectory is generated by coupling an environment defining a
distribution over observations conditioned on actions and
a policy defining a distribution over actions conditioned
on observations. Assuming the joint action-observation
distribution can be represented by a stochastic WFA is
equivalent to saying that the environment corresponds to
a POMDP or PSR, and the policy has finite memory.
To fix some notation we assume the environment is repre-
sented by a conditional3 stochastic WFA A = 〈α, β, {Aσ}〉
with n states. This implies the semantics fA(w) =
P[o1 · · · ot|a1 · · · at] for the function computed by A,
where w = w1 · · ·wt with wi = (oi, au). For any w ∈ Σ?

we shall write wA = a1 · · · at andwO = o1 · · · ot. We also
assume there is a stochastic policy π represented by a con-
ditional PFA Aπ = 〈απ, βπ, {Πσ}〉 with k states; that is,
fAπ (w) = π(wA|wO) = P[a1 · · · at|o1 · · · ot]. In partic-
ular, Aπ represents a stochastic policy that starts in a state
s1 ∈ [k] sampled according to απ(i) = P[s1 = i], and at
each time step samples an action and changes state accord-
ing to Πo,a(i, j) = P[st+1 = j, at = a|ot = o, st = i].
The trajectory ξ observed by the learner is generated by
the stochastic process ρ ∈ P(Σω) obtained by coupling
A and Aπ . A standard construction in the theory of
weighted automata (Berstel & Reutenauer, 1988) shows
that this process can be computed by the product automa-
ton B = A⊗Aπ = 〈α⊗, β⊗, {Bσ}〉, where α⊗ = α⊗απ ,
β⊗ = β ⊗ βπ , and Bo,a = Ao,a ⊗Πo,a. It is easy to verify
that B is a stochastic WFA with nk states computing the
function fB(w) = fA(w)fAπ (w) = P[ξ ∈ wΣω].

At this point, the spectral algorithm from Section 4 could
be used to learn B directly from a trajectory ξ∼ ρB. How-
ever, since the agent interacting with environment A knows
the policy π, we would like to leverage this information to
learn directly a model of the environment. This approach
is formalized in Algorithm 3, which provides a single-
trajectory version of the algorithm in (Bowling et al., 2006)
for learning PSR from non-blind policies with i.i.d. data.
The main difference with Algorithm 2 is that in the reactive
case we need a smoothing parameter κ that will prevent the
entries in the empirical Hankel matrix Ĥ to grow unbound-
edly plus that the policy π satisfies an exploration assump-
tion. κ plays a similar role in our analysis as the smoothing
parameter introduced in (Denis et al., 2014) for learning

3Such WFA are also called reactive predictive state represen-
tations in the RL literature.
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Algorithm 3: Single Trajectory Spectral Learning
(Reactive Case)

Input: number of states n, length t, U ,V⊂(A×O)?,
policy π, smoothing coefficient κ

Let L = maxw∈U·V |w|
Sample trajectory o1a1o2a2 · · · ot+Lat+L using π
foreach u ∈ U and v ∈ V do

Let Ĥ(u, v) =
1
t

∑t−1
s=0

I{os+1as+1···os+|uv|as+|uv|=uv}
κsπ(a1···as+|uv||o1···os+|uv|)

Apply the spectral algorithm to Ĥ with rank n

stochastic languages from factor estimates in the i.i.d. case.
The difference is that in our case the smoothing parameter
must satisfy κε > 1, where ε is the exploration probability
of the policy π provided by the following assumption.

Assumption 1 (Exploration) There exists some ε > 0
such that for each w ∈ Σ? the policy π satisfies
π(wA|wO) > ε|w|. In particular, at every time step each
action a ∈ A is picked with probability at least ε.

Before moving to the next section, where we provide finite-
sample concentration results for the Hankel matrix esti-
mated by Algorithm 3, we show that Algorithm 3 is consis-
tent, that is it learns in expectation a WFA whose transition
matrices are equivalent to those of the environment A. The
proof of the following lemma is provided in Appendix E.

Lemma 5 The Hankel matrix Ĥ = ĤU,Vt,ξ computed in Al-

gorithm 3 satisfies E[ĤU,Vt,ξ ] = H̃U,Vt , where H̃U,Vt is
a block of the Hankel matrix corresponding to the stochas-
tic WFA Ãt=〈α̃t, β, {Aσ}〉 where we introduced the modi-
fied vector α̃t=(1/t)

∑t−1
s=0 α

>(A/κ)s. We denote by
f̃t the function computed by Ãt.

5.1. Concentration Results

Broadly speaking, a concentration bound for the estima-
tion error ‖ĤU,Vt,ξ −H̃

U,V
t ‖2 can be obtained by following a

proof strategy similar to the ones used in Theorems 3 and 5.
However, almost all the bounds used in the previous proofs
need to be reworked to account for (i) the effect of the extra
dependencies introduced by the policy π, and (ii) the fact
that the target automaton A to be learned is not a stochas-
tic WFA in the sense of Section 4 but rather a conditional
stochastic WFA.

Point (i) is addressed in our proof by introducing a “nor-
malized” reference process ρĀ corresponding to the cou-
pling Ā = A ⊗ Aunif between the environment A and
the uniform random policy that at each step takes each ac-
tion independently with probability 1/|A|. Assuming the
smoothing parameter satisfies κε> 1 for some exploration

parameter ε (cf. Assumption 1), then 1/κ 6 1/|A|. This
observation is used, for example, to bound some variance
terms in E[g(ξ)] by replace occurrences of f̃t with f̃unift ,
the function computed by taking the Césaro average of the
first t steps of Ā. Ultimately, this makes our bound depend
not only on the mixing properties of ρB, but also on those
of the normalized process ρĀ induced by the SWFA Ā. In-
cidentally, this argument is also used to address point (ii):
by bounding quantities involving κ by quantities computed
by a SWFA we can use again the arguments sketched in
Section 4.1.

Pursuing the ideas above, and assuming that Ā is (C̄, θ̄)-
geometrically mixing, we obtain the following bound
which can be compared to the one in (5):

E[g(ξ)]2 6
m̃

tεL(1− 1/(κε)2)
+

2m̄

tε2L

(
L+

C̄

1− θ̄

)
,

where L = maxw∈U·V |w|, m̃ =
∑
u∈U,v∈V f̃t(uv), and

m̄ =
∑
u∈U,v∈V f̃

unif
t (uv).

Theorem 6 Suppose that B is (C, θ)-geometrically mixing
and Ā is (C̄, θ̄)-geometrically mixing. Suppose π satis-
fies Assumption 1 and the smoothing coefficient κ satisfies
κε > 1. Let d =

∑
w∈U·V |w|U,V , and define L, m̃, m̄ as

above. Then for any δ ∈ (0, 1) we have

P

[
‖ĤU,Vt,ξ − H̃

U,V
t ‖2 >

√
m̃

tεL(1− κ−2ε−2)
+√

2m̄

tε2L

(
L+

C̄

1−θ̄

)
+

C

θ(1−θ)εL

√
2d ln(1/δ)

t

]
6 δ .

On a final note we remark that the dependence on εL might
be unavoidable due to inherent increase in variance pro-
duced by importance sampling estimators.

6. Conclusion
We present the first rigorous analysis of single-trajectory
SVD-based spectral learning algorithms for sequential
models with latent variables. Our analysis highlights the
role of mixing properties of WFA and their relation with the
geometry of the underlying state space. In the controlled
case we obtain a result for control with finite-state poli-
cies, a much more general class than previously considered
memoryless policies. In future work we will use our results
to get upper confidence bounds on the predictions made by
the learned environment with the goal of solving the full
RL problem for PSR with complex control policies.
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A. Mixing Properties of Probabilistic Automata
Lemma 2 (η-mixing for PFA) Let A be PFA and assume that it is (C, θ)-geometrically mixing in the sense that for some
constants C > 0, θ ∈ (0, 1) we have

∀t ∈ N, µA
t = sup

α,α′

‖αAt − α′At‖1
‖α− α′‖1

6 Cθt ,

where the supremum is over all probability vectors. Then we have ηρA 6 C/(θ(1− θ)).

Proof of Lemma 2:

We start by controlling the term η, defined by

ηρA = 1 + max
1<i<t

t∑
j=i+1

ηi,j ,

We proceed similarly to Lemma 7 of (Kontorovich & Weiss, 2014). By definition of the total variation
norm ‖ · ‖TV ,

ηi,j =
1

2
sup

u∈Σi−1,σ,σ′∈Σ

sup
Z⊆Σt−j+1

∣∣∣∣α>AuAσAj−i−1AZβ

α>AuAσβ
− α>AuAσ′A

j−i−1AZβ

α>AuAσ′β

∣∣∣∣ ,
where AZ =

∑
z∈Z Az . At this point, it is convenient to introduce the vector α>u,σ = α>AuAσ

α>AuAσβ
.

Indeed, we then have the rewriting

ηi,j =
1

2
sup

u∈Σi−1,σ,σ′∈Σ

sup
Z⊆Σt−j+1

∣∣∣∣(αu,σ − αu,σ′)>Aj−i−1AZβ

∣∣∣∣
6

1

2
sup

u∈Σi−1,σ,σ′∈Σ

sup
Z⊆Σt−j+1

‖(αu,σ − αu,σ′)>Aj−i−1‖1‖AZβ‖∞

where we used a simple application of Hölder inequality. Since A is a PFA, we note that ‖AZβ‖∞ 6
1 because ‖

∑
|z|=t−j+1Azβ‖∞ = 1 and all the entries are non-negative. Also note that α>u,σβ =

‖α>u,σ‖1 = 1. Thus ‖αu,σ − αu,σ′‖ 6 2. We deduce from these steps that

ηi,j 6 sup
α,α′

‖(α− α′)>Aj−i−1‖1
‖α− α′‖1

,

where the supremum is taken over all α, α′ that are probability vectors. We note that the later quantity
is precisely the definition of the coefficient µA

j−i−1. Assuming (C, θ)-geometrically mixing, that is
µA
j 6 Cθ

j for all j, this implies that

ηi,j 6 Cθ
j−i−1 .



Spectral Learning from a Single Trajectory under Finite-State Policies (Supplementary Material)

We then deduce that

ηρA 6 1 + C max
1<i<t

t∑
j=i+1

θj−i−1 6
C

θ
(1 +

t−2∑
j=1

θj) =
C

θ

1− θt−1

1− θ
6

C

θ(1− θ)
. �

The following result provides a control of the ηρA coefficients, and shows this can be made explicit in specific cases.

Corollary 1 Let A be PFA with n states and assume that its matrix A has a spectral gap, that is |λ2(A)| < 1. then there
exists C such that ηρA 6

C
|λ2(A)|(1−|λ2(A)|) . When the corresponding chain is further aperiodic, irreducible and reversible,

we further have C 6
√
n.

Proof of Corollary 1:

The first part of the result is folklore, and can be proven using some tedious steps involving the Jordan
decomposition of the matrix see e.g. Fact 3 in (Rosenthal, 1995).

When the chain is irreducible, aperiodic and more importantly reversible, the spectral gap admits the
following characterization, see Lemma 2.2 from (Kontoyiannis & Meyn, 2012):

γ2(A) = λ2(A) = sup

{
‖Aν‖2
‖ν‖2

: ν s.t. ‖ν‖2 6= 0, ν>1 = 0

}
.

Thus, from λ2(A) < 1 together with a change of norm from ‖ · ‖1 to ‖ · ‖2 and a standard argument
(closely following that of Lemma 7), we obtain that

µA
j 6 C|λ2|j ,

where C = maxx∈Rn
||x||1
||x||2 =

√
n. �

We end this section with a more technical lemma, that is useful to decompose terms in the proof of Theorem 3.

Lemma 6 (Mixing times of PFA) Let A = 〈α, β, {Aσ}〉 be a PFA. Then, for any s > s′ ∈ N it holds

‖As
′
− βα>As‖∞ 6 2µA

s′ .

Proof of Lemma 6:

Let denote α>s = α>As. We need to bound ‖As′ − βα>s ‖∞. Recall that for any matrix M the
‖ · ‖∞-induced norm is given by ‖M‖∞ = maxi

∑
j |M(i, j)| = maxi ‖M(i, :)‖1. The ith row of

As
′ − βα>s is given by e>i A

s′ − α>s , where ei is the ith column of the identity matrix. In particular,
e>i A

s′ is the distribution over states after starting in state i and running the chain for s′ steps, and
α>s is the distribution over states starting from the distribution given by α and running the chain for s
steps. The latter can also be rewritten as α>s = α>As = α>As−s

′
As
′

= α>s−s′A
s′ , where α>s−s′ is

again a distribution over states. Therefore we obtain the desired bound, since:

‖As
′
− βα>s ‖∞ = max

i∈[n]
‖e>i As

′
− α>s−s′As

′
‖1

6 sup
α1,α2

‖α>1 As
′ − α>2 As

′‖1
‖α1 − α2‖1

‖ei − αs−s′‖1

6 2µA
s′ . �

2
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B. Geometry of Stochastic Weighted Automata
Lemma 3 (claim (i)) For any w ∈ Σ? we have ‖Awβ‖β 6 1.

Proof of Lemma 3 (claim (i)):

We shall use the cone monotonicity property of ‖ · ‖β , which says that 0 6K u 6K v implies
‖u‖β 6 ‖v‖β . First note that by construction of K we have 0 6K Awβ. If we show that Awβ 6K β
also holds, then cone monotonicity implies ‖Awβ‖β 6 ‖β‖β = 1.

To prove the claim note that because β is an eigenvector of A of eigenvalue 1 we have β = Atβ =∑
|w|=tAwβ. Therefore, β −Awβ =

∑
|w′|=|w|,w′ 6=w′ Aw′β which is a vector in K because convex

cones are closed under non-negative linear combinations, and we conclude that Awβ 6K β. �

Lemma 3 (claim (ii)) For any w ∈ Σ? we have ‖α>Aw‖β,∗ = α>Awβ.

Proof of Lemma 3 (claim (ii)):

By unrolling the definitions of the dual norm and Bβ we get

‖α>Aw‖β,∗ = sup
−β6Kv6Kβ

α>Awv .

Now note that for any v such that β − v ∈ K we have

α>Awv = α>Awβ − α>Aw(β − v) 6 α>Awβ ,

where we used that β − v ∈ K implies Aw(β − v) ∈ K implies α>Aw(β − v) > 0. Since −β 6K
β 6K β, the supremum in the definition of ‖α>Aw‖β,∗ is attained at v = β and the result follows. �

C. Mixing Properties of Stochastic Weighted Automata
Lemma 4 (η-mixing for SWFA) Let A be SWFA and assume that it is (C, θ)-geometrically mixing in the sense that for
some C > 0, θ ∈ (0, 1),

µA
t = sup

α0,α1:α>0 β=α>1 β=1

‖α>0 At − α>1 At‖β,∗
‖α0 − α1‖β,∗

6 Cθt .

Then the η-mixing coefficient satisfies

ηρA 6
C

θ(1− θ)
.

Proof of Lemma 4:

3
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The proof follows the same initial steps as for Lemma 2. Introducing the vector α>u,σ = α>AuAσ
α>AuAσβ

,
we then have the rewriting

ηi,j =
1

2
sup

u∈Σi−1,σ,σ′∈Σ

sup
Z⊆Σt−j+1

∣∣∣∣(αu,σ − αu,σ′)>Aj−i−1AZβ

∣∣∣∣
6

1

2
sup

u∈Σi−1,σ,σ′∈Σ

sup
Z⊆Σt−j+1

‖(αu,σ − αu,σ′)>Aj−i−1‖β,∗‖AZβ‖β

where we used a simple application of Hölder inequality and the norm induced by β. Since A is a
SWFA, the same argument in the proof of Lemma 3 (i) can be used to show that ‖AZβ‖β 6 1 for
any Z ⊆ Σt−j+1. On the other hand, from Lemma 3 (ii) we have 1 = α>u,σβ = ‖α>u,σ‖β,∗. Thus
‖αu,σ − αu,σ′‖β,∗ 6 2. We deduce from these steps that

ηi,j 6 sup
α,α′

‖(α− α′)>Aj−i−1‖β,∗
‖α− α′‖β,∗

,

where the supremum is taken over all α, α′ that satisfy α>β = 1 We note that the later quantity
is precisely the definition of the coefficient µA

j−i−1. We then conclude similarly to the proof of
Lemma 2. �

Lemma 7 (Geometrical mixing of weighted automata) Let A = 〈α, β, {Aσ}〉 be a stochastic WFA, A =
∑
σ Aσ , and

γβ(A) = sup

{
‖Aν‖β,∗
‖ν‖β,∗

: ν s.t. ‖ν‖β,∗ 6= 0, ν>β = 0

}
.

be its spectral gap with respect to β. It holds that

µA
t = sup

α0,α1:α>0 β=α>1 β=1

‖α>0 At − α>1 At‖β,∗
‖α0 − α1‖β,∗

6 γβ(A)t .

Proof of Lemma 7:

To this end, note that if α0, α1 are are such that α>0 β = α>1 β = 1, then v = α0 − α1 is such that
v>β = 0. A crucial remark is that since A is a weighted automaton matrix, α>0 Aβ = α>1 Aβ = 1
and thus w = A(α0 − α1) also satisfies w>β = 0. Likewise, (α0 − α1)>Atβ = 0 for all t ∈ N.

A second remark is that if ‖Asv‖β,∗ = 0 for some s < t, then ‖Atv‖β,∗ = 0. Thus, we can restrict
to v such that ‖Asv‖β,∗ 6= 0 for all s 6 t. Then, it comes for such v = α0 − α1,

‖Atν‖β,∗
‖ν‖β,∗

=
‖AAt−1ν‖β,∗
‖At−1ν‖β,∗

. . .
‖Aν‖β,∗
‖ν‖β,∗

6 γβ(A)t .

For the last inequality, we used the fact that sinceA is a weighted automaton matrix, and v = α0−α1,
then v>Asβ = 0 for all s. This guarantees that indeed ‖AA

sν‖β,∗
‖Asν‖β,∗ 6 γβ(A) for all s. �

Lemma 8 (Mixing times of SWA) Let A = 〈α, β, {Aσ}〉 be a SWFA. Then, for all s > s′ ∈ N it holds

‖As
′
− βα>As‖β 6 2µA

s′ .

4
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Proof of Lemma 8:

Let α>s = α>As. To prove this we proceed as follows:

‖As
′
− βα>s ‖β = sup

‖v‖β61

‖(As
′
− βα>s )v‖β

= sup
‖v‖β61

sup
‖u‖β,∗61

u>(As
′
− βα>s )v

= sup
‖u‖β,∗61

‖u>(As
′
− βα>s )‖β,∗

= sup
‖u‖β,∗61

‖u>(As
′
− βα>s−s′As

′
)‖β,∗ .

Next we note that for any u such that ‖u‖β,∗ 6 1 we have |u>β| 6 1, so:

‖u>βα>t ‖β,∗ = |u>β|‖α>t ‖β,∗
6 ‖α>t ‖β,∗ .

Furthermore, the same argument we used to show that ‖α>Ax‖β,∗ = α>Axβ implies that ‖α>t ‖β,∗ =
‖α>At‖β,∗ = α>Atβ = 1. Therefore, we see that ‖u‖β,∗ 6 1 implies ‖u>βα>t ‖β,∗ 6 1, and we
get the inequality

‖As
′
− βα>s ‖β 6 sup

‖u1‖β,∗61

sup
‖u2‖β,∗61

‖u>1 As
′
− u>2 As

′
‖β,∗

6 µA
s′ sup
‖u1‖β,∗61

sup
‖u2‖β,∗61

‖u1 − u2‖β,∗

6 2µA
s′,β . �

D. Single-Trajectory Concentration Inequalities for Probabilistic Automata
Theorem 2 (Single-trajectory, entry-wise concentration) Let A be a PFA that is (C, θ)-geometrically mixing, and
ξ ∼ ρA ∈ P(Σω) a trajectory of observations. Then for any u ∈ U , v ∈ V and δ ∈ (0, 1) it holds

P
(
ĤU,Vt,ξ (u, v)− H̄U,Vt )u, v) >

|uv|C
θ(1− θ)

√(
1 +
|uv| − 1

t

) ln(1/δ)

2t

)
6 δ .

Proof of Theorem 2:

We control ηρA by a direct application of Lemma 2.

Control of ‖g‖Lip: Let us fix u ∈ U , v ∈ V define g(ξ) = tĤU,Vt,ξ (u, v). We first control the
regularity of f .

To this end, let ξ′ be a trajectory ξ′ = x1, . . . , xk−1, x
′
k, xk+1, . . . , x` that only differs by one element

from ξ, say at position k. Then, we get for any u, v

g(ξ)− g(ξ′) =

t∑
s=1

(I{xs . . . xs+|uv|−1 = uv} − I{xs . . . x′k . . . xs+|uv|−1 = uv})

6 |{s ∈ [1, t] : k ∈ [s : s+ |uv| − 1]}| .

5



Spectral Learning from a Single Trajectory under Finite-State Policies (Supplementary Material)

Now, in order to bound |{s ∈ [1, t] : k ∈ [s : s + |uv| − 1]}| note that k ∈ [s : s + |uv| − 1] if and
only if s 6 k 6 s + |uv| − 1. From the first inequality we see that s 6 k, and from the second one
s > k − |uv|+ 1. Combined with the restrictions on s, this means that

|{s ∈ [1, t] : k ∈ [s : s+ |uv| − 1]}| = |[max{1, k − |uv|+ 1},min{k, t}]| 6 |uv| ,

which show that ‖g‖Lip 6 |uv|.

Combining the two quantities Combining these two results, and noting that t + |uv| − 1 symbols
appears in g(ξ), we deduce that ∀ε > 0,

P
(
t(ĤU,Vt,ξ (u, v)− H̄U,Vt (u, v)) > |uv|(t+ |uv| − 1)ε

)
6 exp

(
− 2(t+ |uv| − 1)θ2(1− θ)2ε2

C2

)
,

or equivalently, for all δ ∈ (0, 1),

P
(
ĤU,Vt,ξ (u, v)− H̄U,Vt (u, v) >

√
t+ |uv| − 1|uv|

t

C

θ(1− θ)

√
ln(1/δ)

2t

)
6 δ .

�

The proof of following result is more challenging.

Theorem 3 (Single-trajectory, matrix-wise) Let ρA ∈ P(Σω) be as in Theorem 2 and define the probability mass
mU,V =

∑
u∈U,v∈V f̄t(uv). Then, for all δ ∈ (0, 1),

P
(
‖ĤU,Vt −H̄U,Vt ‖2 >

(
√
L+

√
2C

1− θ

)√
2mU,V

t

+
2LC

θ(1−θ)

√(
1+

L−1

t

)min{|U||V|, 2nUnV} ln(1/δ)

2t

)
6 δ .

Proof of Theorem 3:

Let us introduce the function g(ξ) = ‖ĤU,Vt − H̄U,Vt ‖2. We first control ‖g‖Lip then E[g(ξ)], before
applying Theorem 1.

Step 1: Control of ‖g‖Lip. In this step, we show that

‖g‖Lip 6
L

t

√
min{|U||V|, 2nUnV}

where L = maxu∈U,v∈V |uv| denote the maximal length of words in U · V and nU = |` ∈ [0, L] :
|U`| > 0|, nV = |` ∈ [0, L] : |V`| > 0|, denote the number lengths such that the set U` = {u ∈
U : |u| = `} (respectively V` = {v ∈ V : |v| = `}) is non empty. Note that the second term in
the min can be exponentially smaller than the first. For example, taking U = V = Σ6L/2 we have
|U ||V | = Θ(|Σ|L) while nUnV = Θ(L2).

Step 1.1. Let ξ′ ∼ p be a trajectory ξ′ = x1, . . . , xk−1, x
′
k, xk+1, . . . , x` that only differs by one

6
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element from ξ, say at position k. We note that∣∣∣‖ĤU,Vt,ξ − H̄
U,V
t ‖2 − ‖ĤU,Vt,ξ′ − H̄

U,V
t ‖2

∣∣∣ 6 ‖ĤU,Vt,ξ − Ĥ
U,V
t,ξ′ ‖2

= sup
q∈RV

1

t‖q‖2

√√√√∑
u∈U

(∑
v∈V

t∑
s=1

(
I{xs . . . xs+|uv|−1 = uv} − I{xs . . . x′k . . . xs+|uv|−1 = uv}

)
qv

)2

6 sup
q∈RV

1

t‖q‖2

√∑
u∈U

(∑
v∈V
|uv|qv

)2

6 sup
q∈RV

1

t‖q‖2

√∑
u∈U

∑
v∈V
|uv|2

√∑
v∈V

q2
v .

Let L = maxu∈U,v∈V |uv|. A simple bound is then ‖g‖Lip 6 L
t

√
|U||V|, which is essentially

optimal if all words uv, u ∈ U , v ∈ V have same length.

Step 1.2. A more refined bound may be helpful in case many words have length |uv| much smaller
than L. To his end, let us write ĤU,Vt = 1

t

∑t
s=1Ms with Ms(u, v) = bs,uv = I{xs . . . xs+|uv|−1 =

uv}. Similarly, let HU,Vt,ξ′ = 1
t

∑t
s=1M

′
s with the obvious definition. Now, by the same argument we

used to bound ‖g‖Lip in the entry-wise case, we have

t
(
ĤU,Vt,ξ − Ĥ

U,V
t,ξ′

)
=

k∑
s=k−L+1

Ms −M ′s =

k∑
s=k−L+1

∆s ,

since for s < k − L+ 1 or s > k we must have Ms = M ′s.

Now let us partition the setsU and V as disjoint unions of sets with strings of the same length. That is,
we write U = ∪L`=0U` with U` = U ∩ Σ`, and V = ∪L`=0V` with analogous definitions. This allows
us to write Ms ∈ {0, 1}U×V as a block matrix Ms = (M i,j

s )06i,j6L with M i,j
s ∈ {0, 1}Ui×Vj .

For simplicity of notation, in the sequel we are assuming that U`, V` 6= ∅ for all 0 6 ` 6 L, but
the argument remains the same after we remove the empty sets of rows and columns. Note that by
definition we have M i,j

s (u, v) = I{xs . . . xs+i+j−1 = uv} for any u ∈ Ui and v ∈ Vj . This implies
that each of the block matrices M i,j

s contains at most one non-zero entry.

If we make analogous definitions and write M ′s = (M ′s
i,j

)06i,j6L, then we obtain a block decompo-
sition for ∆s = Ms −M ′s = (∆i,j

s )06i,j6L where each block is either:

1. zero,
2. a {0, 1}-matrix with a single 1,
3. a {0,−1}-matrix with a single −1,
4. a {0, 1,−1}-matrix with a single 1 and a single −1.

In any of these cases one can see that the bound ‖∆i,j
s ‖2 6 ‖∆i,j

s ‖F 6
√

2 is always satisfied.
Therefore, we have ‖∆s‖22 6 ‖∆s‖2F =

∑
i,j ‖∆i,j

s ‖2F 6 2nUnV , where

nU = |` ∈ [0, L] : |U`| > 0| ,
nV = |` ∈ [0, L] : |V`| > 0| .

By plugging these estimates into ĤU,Vt,ξ − Ĥ
U,V
t,ξ′ we finally get

‖ĤU,Vt,ξ − Ĥ
U,V
t,ξ′ ‖2 6

L
√

2nUnV
t

.

Therefore we obtain the bound ‖g‖Lip 6 (L
√

2nUnV)/t.

7
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Control of E[g(ξ)]. We now want to control the following quantity E[‖ĤU,Vt − H̄U,Vt ‖2]. More
precisely, we show in this step that

E[‖ĤU,Vt − H̄U,Vt ‖2]2 6
O
(
L2 + 1

1−θ

)(∑
u∈U,v∈V f̄t(uv)

)
t

,

where L = maxw∈U·V |w|, and f̄t(w) = 1
t

∑t
s=1 fs(w), where fs(w) = P[ξ ∈ Σs−1wΣω].

Step 2.1. Let q ∈ RV be a unit vector (‖q‖2 = 1.) Then, by Jensen’s inequality, the norm of
ĤU,Vt − H̄U,Vt is controlled by its Frobenius norm

E[‖ĤU,Vt − H̄U,Vt ‖2]2 6 E[‖ĤU,Vt − H̄U,Vt ‖22]

6 E[
∑
u∈U

(∑
v∈V

(ĤU,Vt (u, v)− H̄U,Vt (u, v))qv

)2

]

6
∑
u∈U

∑
v∈V

E[(ĤU,Vt (u, v)− H̄U,Vt (u, v))2]

=
∑

w∈U·V
|w|U,VE[(f̂t(w)− f̄t(w))2] ,

where U · V is the set of all words of the form u · v with u ∈ U and v ∈ V; |w|U,V = |(u, v) ∈
U × V : u · v = w|, and f̂t(w) = 1

t

∑t
s=1 bs,w with the notation defined above. We also use

f̄t(w) = E[f̂t(w)] = 1
t

∑t
s=1 fs(w), where fs(w) = P[ξ ∈ Σs−1wΣω]. This implies that we have a

sum of variances, and each of them can be written as

E[(f̂t(w)− f̄t(w))2] = E[f̂t(w)2]− f̄t(w)2 .

An important first observation is that we can write fs(w) = α>As−1Awβ. Furthermore, it follows
from A being a probabilistic automaton that

∑
|w|=l fs(w) = 1 for all s and l. This suggests that

we group the terms in the sum over W = U · V by length, so we write Wl = W ∩ Σl and define
Ll = maxw∈Wl

|w|U,V the maximum number of ways to write a string of length l in W as a product
of a prefix in U and a suffix in V . Note that we always have Ll 6 l + 1. Henceforth, we want to
control the following terms for all possible values of l:

∑
w∈Wl

|w|U,V
(
E[f̂t(w)2]− f̄t(w)2

)
=

1

t2

∑
w∈Wl

|w|U,V
[
E

( t∑
s=1

bs,w

)2
−( t∑

s=1

fs(w)

)2 ]
.

Step 2.2. Let us focus on each of the quadratic terms. On the one hand, it holds(
t∑

s=1

fs(w)

)2

=

t∑
s=1

fs(w)2 + 2
∑

16s<s′6t

fs(w)fs′(w) ,

while other on the other hand, we get

E

( t∑
s=1

bs,w

)2
 =

t∑
s=1

E[b2s,w] + 2
∑

16s<s′6t

E[bs,wbs′,w] .

Hence this enables to derive the following bound

E[‖ĤU,Vt − H̄U,Vt ‖2]2 6
1

t2

∞∑
l=0

∑
w∈Wl

|w|U,V
[ t∑
s=1

(1− fs(w))fs(w)

+2
∑

16s<s′6t

(
E[bs,wbs′,w]− fs(w)fs′(w)

)]
. (6)

8
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Step 2.3. In order to control the first term in (6), we remark that

∞∑
l=0

∑
w∈Wl

|w|U,V
t∑

s=1

(1− fs(w))fs(w) =
∑

u∈U,v∈V

t∑
s=1

(1− fs(uv))fs(uv)

6
∑

u∈U,v∈V

t∑
s=1

fs(uv)

= t
∑

u∈U,v∈V
f̄t(uv) . (7)

Step 2.4. We thus focus on controlling the remaining ”cross”-term in (6) and to this end we study, for
w ∈Wl, the quantity

E[bs,wbs′,w]− fs(w)fs′(w) = P[ξ ∈ Σs−1Σs
′−s
w Σω]− (α>As−1Awβ)(α>As

′−1Awβ) ,

where we introduced for convenience the set Σs
′−s
w = wΣs

′−s ∩ Σs
′−sw. Introducing as well the

vectors α>s−1 = α>As−1, α>s′−1 = α>As
′−1 and the transition matrix As

′−s
w =

∑
x∈Σs

′−s
w

Ax

corresponding to the “event” Σs
′−s
w , it comes

E[bs,wbs′,w]− fs(w)fs′(w) = α>s−1

(
As
′−s
w −Awβα>s′−1Aw

)
β .

We now discuss two cases. First the case when s′ − s > l, then the case when s′ − s < l.

Note that if s′ − s > |w| = l, then Σs
′−s
w simplifies to Σs

′−s
w = wΣs

′−s−lw and thus As
′−s
w =

AwA
s′−s−lAw. For such words, we thus obtain

α>s−1

(
As
′−s
w −Awβα>s′−1Aw

)
β = α>s−1Aw

(
As
′−s−l − βα>s′−1

)
Awβ

6 ‖α>s−1Aw‖1‖As
′−s−l − βα>s′−1‖∞‖Awβ‖∞ .

Moreover, from Lemma 6, it holds ‖As′−s−l − βα>s′−1‖∞ 6 2µA
s′−s−l. Also, it holds that

‖Awβ‖∞ 6 1. Finally, since α>s−1Aw is a sub-distribution over states, we have∑
w∈Wl

|w|U,V‖α>s−1Aw‖1 =
∑
w∈Wl

|w|U,Vα>s−1Awβ

=
∑
w∈Wl

|w|U,Vfs(w) =
∑

u∈U,v∈V:uv∈Wl

fs(uv) .

Now, on the other hand if s′ − s < l, using the fact that Σs
′−s
w ⊂ wΣs

′−s, then

α>s−1

(
As
′−s
w −Awβα>s′−1Aw

)
β 6 α>s−1Aw

(
As
′−s − βα>s′−1Aw

)
β

= fs(w)(1− fs′(w)) 6 fs(w) .

So in this case we again see that
∑
w∈Wl

|w|U,Vfs(w) =
∑
u∈U,v∈V:uv∈Wl

fs(uv).

Step 2.5. Therefore, combining the above steps, so far we have seen that for a fixed l > 0, the sum∑
w∈Wl

|w|U,V
∑

16s<s′6t(E[bs,wbs′,w]− fs(w)fs′(w)) is upper bounded by:∑
16s<s′6t

∑
u∈U,v∈V:|uv|=l

fs(uv)(2µA
s′−s−lI{s′ − s > l}+ I{s′ − s < l})

=
∑

u∈U,v∈V:|uv|=l

t−1∑
s=1

fs(uv)

[ t∑
s′=s+1

2µA
s′−s−lI{s′ − s > l}+ I{s′ − s < l}

]
.

9
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Now note that
∑t
s′=s+1 I{s′−s < l} = min{l−1, t−s} 6 l−1. Furthermore, using that µA

t 6 Cθ
t

we get

t∑
s′=s+1

µA
s′−s−lI{s′ − s > l} = I{t > s+ l}

t−s−l∑
k=0

µA
k

6 CI{t > s+ l}1− θt−s−l+1

1− θ
6

C

1− θ
.

In conclusion, we get

∑
u∈U,v∈V:|uv|=l

t−1∑
s=1

fs(uv)

[ t∑
s′=s+1

2µA
s′−s−lI{s′ − s > l}+ I{s′ − s < l}

]

6

(
l − 1 +

2C

1− θ

) ∑
u∈U,v∈V:|uv|=l

t−1∑
s=1

fs(uv)

6 t

(
l − 1 +

2C

1− θ

) ∑
u∈U,v∈V:|uv|=l

f̄t(uv) .

Finally, putting all the pieces together and introducing L = maxw∈U·V |w|, we get from equations
(6), (7), (8),

E[‖ĤU,Vt − H̄U,Vt ‖2]2 6

∑
u∈U,v∈V f̄t(uv)

t
+

2

t

∞∑
l=0

∑
u∈U,v∈V:|uv|=l

f̄t(uv)(l − 1 +
2C

1− θ
)

6

[
2L− 1 +

4C

1− θ

]∑
u∈U,v∈V f̄t(uv)

t
.

Step 3. Application of Theorem 1. It remains to apply Theorem 1 with

‖g‖Lip 6
L

t

√
min{|U||V|, 2nUnV} ,

E[‖ĤU,Vt − H̄U,Vt ‖2] 6

(
√
L+

√
2C

1− θ

)√
2
∑
u∈U,v∈V f̄t(uv)

t
,

for some constant C. After some rewriting, it comes

P
(
‖ĤU,Vt − H̄U,Vt ‖2 >

(
√
L+

√
2C

1− θ

)√
2
∑
u∈U,v∈V f̄t(uv)

t

+
LC

(1− θ)

√(
1 +

L− 1

t

)min{|U||V|, 2nUnV} ln(1/δ)

2t

)
6 δ .

�

E. Single-Trajectory Hankel Concentration Inequalities with Finite-State Control

Lemma 5 The Hankel matrix Ĥ = ĤU,Vt,ξ computed in Algorithm 3 satisfies E[ĤU,Vt,ξ ] = H̃U,Vt , where H̃U,Vt is
a block of the Hankel matrix corresponding to the stochastic WFA Ãt = 〈α̃t, β, {Aσ}〉 where we introduced the modified
vector α̃t=(1/t)

∑t−1
s=0 α

>(A/κ)s. We denote by f̃t the function computed by Ãt.

10
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Proof of Lemma 5:

For any t > 0 and w ∈ Σ? let us define the function ϕs,w : Σω → R given by

ϕs,w(x) =
I{os+1as+1 · · · os+|uv|as+|uv| = w}
κsπ(a1 · · · as+|w||o1 · · · os+|w|)

,

where x = (o1, a1)(o2, a2) · · · . Thus, the entries of the Hankel matrix computed in Algorithm 3 can
be written as Ĥ(u, v) = (1/t)

∑t−1
s=0 ϕs,uv(ξ). Now note that the expectation E[ϕs,w] with respect to

a trajectory ξ ∼ ρB can be written as

∑
w′∈Σs

P[ξ ∈ w′wΣω]

κsπ(w′AwA|w′OwO)
=
∑
w′∈Σs

fB(w′w)

κsfAπ (w′w)

=
∑
w′∈Σs

fA(w′w)

κs
=
α>AsAwβ

κs
.

Therefore, the Hankel matrix Ĥ = ĤU,Vt,ξ computed in Algorithm 3 satisfies E[ĤU,Vt,ξ ] = H̃U,Vt , where
H̃U,Vt is a block of the Hankel matrix corresponding to the stochastic WFA Ãt = 〈α̃t, β, {Aσ}〉 with
modified vector α̃t = (1/t)

∑t−1
s=0 α

>(A/κ)s. We denote by f̃t the function computed by Ãt. �

Theorem 6 (Controlled case, single-trajectory, matrix-wise) Let A = 〈α, β, {Aσ}〉 be a stochastic environment and
π a stochastic policy induced by a probabilistic automaton Aπ , both over Σ = A×O. Let B = A⊗ Aπ be the stochastic
WFA obtained by coupling the environment and the policy and ρB ∈ P(Σω) the corresponding stochastic process. Suppose
that B is (C, θ)-geometrically mixing. Suppose π satisfies the exploration Assumption 1 with parameter ε. Suppose the
importance sampling constant κ in Algorithm 3 satisfies κε > 1. Let Ãt = 〈α̃t, β, {Aσ}〉 be the WFA defined in Section 5,
where the initial vector is α̃t = (1/t)

∑t−1
s=0 α

>(A/κ)s . Let Ā = A ⊗ Aunif be the stochastic WFA 〈α, β,Aσ/|A|〉
obtained by coupling the environment A with the uniform random policy. Suppose Ā is (C̄, θ̄)-geometrically mixing. Let
L = maxw∈U·V |w|, m̃ =

∑
u∈U,v∈V f̃t(uv), and m̄ =

∑
u∈U,v∈V f̃

unif
t (uv), where f̃t = fÃt and f̃unift is the function

computed by the stochastic WFA obtained by Césaro averaging Ā over t steps. Let d =
∑
w∈U·V |w|U,V . Then for any

δ ∈ (0, 1) we have

P

(
‖ĤU,Vt,ξ − H̃

U,V
t ‖2 >

√
m̃

tεL(1− κ−2ε−2)
+

√
2m̄

tε2L

(
L+

C̄

1− θ̄

)
+

C

θ(1− θ)εL

√
2d ln(1/δ)

t

)
6 δ .

Proof of Theorem 6:

Let us introduce the function g(ξ) = ‖ĤU,Vt − H̃U,Vt ‖2. We first control ‖g‖Lip then E[g(ξ)], before
applying Theorem 1.

Step 1: Control of ‖g‖Lip.

Let ξ, ξ′ ∈ Σω be trajectories ξ = x1x2 · · · and ξ′ = x′1x
′
2 · · · differing by one element, say at

11
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position `. That is, xs = x′s for all s 6= `. We note that∣∣∣‖ĤU,V
t,ξ − H̃

U,V
t ‖2 − ‖ĤU,V

t,ξ′ − H̃
U,V
t ‖2

∣∣∣ 6 ‖ĤU,V
t,ξ − Ĥ

U,V
t,ξ′ ‖2

6

√∑
u∈U

∑
v∈V

(f̂t,ξ(uv)− f̂t,ξ′(uv))2

=
1

t

√√√√∑
u∈U

∑
v∈V

(
t−1∑
s=0

ϕs,uv(ξ)− ϕs,uv(ξ′)

)2

.

Next we take any w ∈ U · V and use xi = (oi, ai) to write

|ϕs,w(ξ)− ϕs,w(ξ′)| =

∣∣∣∣∣ I{os+1as+1 · · · os+|uv|as+|uv| = w}
κsπ(a1 · · · as+|w||o1 · · · os+|w|)

−
I{o′s+1a

′
s+1 · · · o′s+|uv|a

′
s+|uv| = w}

κsπ(a′1 · · · a′s+|w||o
′
1 · · · o′s+|w|)

∣∣∣∣∣
6

1

κs

(
1

π(a1 · · · as+|w||o1 · · · os+|w|)
+

1

π(a′1 · · · a′s+|w||o
′
1 · · · o′s+|w|)

)

6
2

κsεs+|w|
,

where we used the exploration assumption π(uA|uO) > ε|u| for all u ∈ Σ?.

From the expression above we see that for any w ∈ U · V we have

t−1∑
s=0

ϕs,w(ξ)− ϕs,w(ξ′) 6
2

(1− 1/(κε))ε|w|
,

where we used that κε > 1. Thus, we can conclude that

‖g‖Lip 6
2

t(1− 1/(κε))

√ ∑
w∈U·V

|w|U,V
ε2|w| 6

2

tεL(1− 1/(κε))

√ ∑
w∈U·V

|w|U,V .

Note that d =
∑
w∈U·V |w|U,V is the quantity defined in the statement of Theorem 3.

Step 2: Control of E[g(ξ)]. We now want to control the following quantity E[‖ĤU,Vt,ξ − H̃
U,V
t ‖2].

We start in the same way as in the proof of Theorem 3.

Step 2.1. By Jensen’s inequality, the norm of ĤU,Vt − H̃U,Vt is controlled by its Frobenius norm

E[‖ĤU,Vt,ξ − H̃
U,V
t ‖2]2 6

∑
u∈U

∑
v∈V

E
[(
f̂t,ξ(uv)− f̃t(uv)

)2
]

=
∑

w∈U·V
|w|U,VE

[(
f̂t,ξ(w)− f̃t(w)

)2
]
.

Recall that in Section 5 we showed that E[f̂t,ξ(w)] = f̃t(w) for any w ∈ Σ?. Hence the expression
above is a sum of variances, each of which can be written as

E
[(
f̂t,ξ(w)− f̃t(w)

)2
]

= E
[
f̂t,ξ(w)2

]
− f̃t(w)2 . (8)

12
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Now we recall the definitions of the quantities appearing in this expression:

f̂t,ξ(w) =
1

t

t−1∑
s=0

ϕs,w(ξ)

=
1

t

t−1∑
s=0

I{os+1as+1 · · · os+|w|as+|w| = w}
κsπ(a1 · · · as+|w||o1 · · · os+|w|)

,

f̃t(w) =
1

t

t−1∑
s=0

fA(Σsw)

κs

=
1

t

t−1∑
s=0

α>
(
A

κ

)s
Awβ .

Therefore, we can expand the squares in (8) as follows:

E
[
f̂t,ξ(w)2

]
=

1

t2

t−1∑
s=0

E
[
ϕs,w(ξ)2

]
+ 2

∑
06s<s′6t−1

E [ϕs,w(ξ)ϕs′,w(ξ)]

 ,

f̃t(w)2 =
1

t2

t−1∑
s=0

fA(Σsw)2

κ2s
+ 2

∑
06s<s′6t−1

fA(Σsw)fA(Σs
′
w)

κs+s′

 .

Using these expression we now bound the difference in (8) by considering the “squared” and the
“cross” terms separately.

Step 2.2. We start with the “squared” terms and note that for any 0 6 s 6 t − 1 and w ∈ U · V we
have

E
[
ϕs,w(ξ)2

]
=
∑
w′∈Σs

fB(w′w)

κ2sπ(w′AwA|w′OwO)2

=
∑
w′∈Σs

fA(w′w)

κ2sπ(w′AwA|w′OwO)

6
fA(Σsw)

κ2sεs+|w|

=
fA(Σsw)

κs(κε)sε|w|
.

Using Cauchy–Schwartz to sum these terms over t we obtain:

t−1∑
s=0

E
[
ϕs,w(ξ)2

]
6

t−1∑
s=0

fA(Σsw)

κs(κε)sε|w|

6
1

(1− 1/(κ2ε2))ε|w|

(
t−1∑
s=0

fA(Σsw)2

κ2s

)

Using this bound we can now see that the contribution of the “squared” terms to (8) is at most

1

t2

(
t−1∑
s=0

E
[
ϕs,w(ξ)2

]
−

t−1∑
s=0

fA(Σsw)2

κ2s

)
6

1

t2

(
1

(1− 1/(κ2ε2))ε|w|
− 1

)(t−1∑
s=0

fA(Σsw)2

κ2s

)

6
1

t2(1− 1/(κ2ε2))ε|w|

(
t−1∑
s=0

fA(Σsw)2

κ2s

)
.

13
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This expression can be further simplified by noting that ε 6 1/|A| implies κ > |A| and therefore
fA(Σsw)/κs 6 fA(Σsw)/|A|s 6 1 since this corresponds to the probability of observing wO when
taking the actions in wA after the first s actions have been chosen by a uniform random policy. Thus,
we get

1

t2

(
t−1∑
s=0

E
[
ϕs,w(ξ)2

]
−

t−1∑
s=0

fA(Σsw)2

κ2s

)
6

1

t2(1− 1/(κ2ε2))ε|w|

(
t−1∑
s=0

fA(Σsw)

κs

)

=
f̃t(w)

t(1− 1/(κ2ε2))ε|w|
.

To complete this step we sum this bound for all w ∈ U ·V to control the contribution of the “squared”
terms in (8):∑

w∈U·V
|w|U,V

f̃t(w)

t(1− 1/(κ2ε2))ε|w|
6

1

t(1− 1/(κ2ε2))εL

∑
w∈U·V

|w|U,V f̃t(w)

=
1

t(1− 1/(κ2ε2))εL

∑
u∈U,v∈V

f̃t(uv) ,

where L = maxw∈U·V |w|.

Step 2.3. We now focus on controlling the “cross” terms in (8) of the form

E [ϕs,w(ξ)ϕs′,w(ξ)]− fA(Σsw)fA(Σs
′
w)

κs+s′
. (9)

Using the same notation Σs
′−s
w = wΣs

′−s ∩ Σs
′−sw as in the proof of Theorem 3, we first note that

E [ϕs,w(ξ)ϕs′,w(ξ)] =
∑

x∈ΣsΣs
′−s
w

fB(x)

κs+s′π(xA1:s+|w||x
O
1:s+|w|)π(xA1:s′+|w||x

O
1:s′+|w|)

=
∑

x∈ΣsΣs
′−s
w

fA(x)

κs+s′π(xA1:s+|w||x
O
1:s+|w|)

6
∑

x∈ΣsΣs
′−s
w

fA(x)

κs+s′εs+|w|

=
fA(ΣsΣs

′−s
w )

κs+s′εs+|w|

=
α>AsAs

′−s
w β

κs+s′εs+|w|
,

where we used the notation As
′−s
w =

∑
x∈Σs

′−s
w

Ax. We also define Ã = A/κ and α>s = α>Ãs.
Then we can write (9) as

α>AsAs
′−s
w β

κs+s′εs+|w|
− (α>AsAwβ)(α>As

′
Awβ)

κs+s′
= α>s

(
As
′−s
w

κs′εs+|w|
−Awβα>s′Aw

)
β . (10)

To bound this quantity we proceed by considering two cases.

Step 2.4. First suppose that s′ − s > l = |w|. In this case we have As
′−s
w = AwA

s′−s−lAw and (10)
equals to

α>s Aw

(
As
′−s−l

κs′εs+l
− βα>s′

)
Awβ = α>s Aw

(
Ãs
′−s−l

κs+lεs+l
− βα>s+lÃs

′−s−l

)
Awβ .
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Now we apply the same argument we used to bound the “cross” terms in the case of stochastic
WFA using cone norms. In particular, we consider the stochastic WFA Ā = 〈α, β, Āσ〉, where
Āσ = Aσ/|A|. Note this is the stochastic WFA obtained by coupling environment A with the random
policy that at each step chooses each action independently with probability 1/|A|. Now we let ‖ · ‖β
and ‖ · ‖β,? denote the cone norms corresponding to Ā. Using Lemma 3 we see that the following
hold for all w ∈ Σ?:

‖Awβ‖β = |A|l‖Āwβ‖β 6 |A|l

‖α>s Aw‖β,? =
|A|s+l

κs
‖α>ĀsĀw‖β,? =

|A|s+l

κs
α>ĀsĀwβ ,

where we used the notation Ā = A/|A|. We also note that for any vector satisfying ‖u‖β,? 6 1 we
have

‖u>βα>s ‖β,? 6 ‖α>s ‖β,? =
|A|s

κs
‖α>Ās‖β,? 6

|A|s

κs
6

1

κsεs
.

This last bound can now be combined with the argument used in the case of stochastic WFA to show
that∥∥∥∥∥ Ãs

′−s−l

κs+lεs+l
− βα>s+lÃs

′−s−l

∥∥∥∥∥
β

= sup
‖u‖β,?61

∥∥∥∥∥u> Ãs
′−s−l

κs+lεs+l
− u>βα>s+lÃs

′−s−l

∥∥∥∥∥
β,?

6 sup
‖u1‖β,?61

sup
‖u2‖β,?61

∥∥∥∥∥u>1 Ãs
′−s−l

κs+lεs+l
− u>2

Ãs
′−s−l

κs+lεs+l

∥∥∥∥∥
β,?

=
|A|s′−s+l

κs′εs+l
sup

‖u1‖β,?61

sup
‖u2‖β,?61

∥∥∥u>1 Ās′−s−l − u>2 Ās′−s−l∥∥∥
β,?

6
|A|s′−s+l

κs′εs+l
µĀ
s′−s−l ,

where we used the definition of the mixing coefficient µĀ
s′−s−l for stochastic WFA Ā.

We now observe that |A| 6 1/ε < κ implies |A|s′+l/κs+s′εs+l 6 1/κsεs+2l. Finally, by plugging
all these bounds together on an application of Hölder’s inequality yields:∣∣∣∣∣α>s Aw

(
As
′−s−l

κs′εs+l
− βα>s′

)
Awβ

∣∣∣∣∣ 6 µĀ
s′−s−l
κsεs+2l

α>ĀsĀwβ .

Step 2.5. Now we consider the case s′ − s < l = |w|. Using the fact that this implies Σs
′−s
w ⊂

wΣs
′−s, then

α>s A
s′−s
w β 6 α>s AwA

s′−sβ = |A|s
′−sα>s AwĀ

s′−sβ = |A|s
′−sα>s Awβ ,

where we used Āβ = β. Therefore, we can bound the expression in (10) as

α>s

(
As
′−s
w

κs′εs+l
−Awβα>s′Aw

)
β 6 α>s Awβ

(
|A|s′−s

κs′εs+l
− α>s′Awβ

)
6
|A|s′−s

κs′εs+l
α>s Awβ

=
|A|s′+l

κs′+sεs+l
α>ĀsĀwβ 6

1

κsεs+2l
α>ĀsĀwβ .

Step 2.6. Finally, we can combine the bounds above by summing over all w ∈ U · V and all 0 6 s <
s′ 6 t − 1 in the same way we did for PFA. We first note that from Steps 2.4 and 2.5 we obtain the
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following bound for (10):

α>s

(
As
′−s
w

κs′εs+|w|
−Awβα>s′Aw

)
β 6

f̄s(w)

κsεs+2|w|

(
µĀ
s′−s−|w|I{s

′ − s > |w|}+ I{s′ − s < |w|}
)
.

Now let l = |w| and note that µĀ
s′−s−l 6 C̄θ̄

s′−s−l, where C̄ and θ̄ are the geometric mixing constants
for stochastic WFA Ā. Thus, summing first over s′ we get

t−1∑
s′=s+1

µĀ
s′−s−|w|I{s

′ − s > |w|}+ I{s′ − s < |w|} 6 l +
C̄

1− θ̄
.

Therefore, writingWl for all words of length l inW = U · V we get:

2

t2

∑
w∈U·V

|w|U,V
∑

06s<s′6t−1

(
E [ϕs,w(ξ)ϕs′,w(ξ)]− fA(Σsw)fA(Σs

′
w)

κs+s′

)

6
2

t2

∞∑
l=0

∑
w∈Wl

|w|U,V
ε2l

(
l +

C̄

1− θ̄

) t−2∑
s=0

f̄s(w)

κsεs

6
2

t

∞∑
l=0

1

ε2l

(
l +

C̄

1− θ̄

) ∑
w∈Wl

|w|U,V
t−1∑
s=0

f̄s(w)

t

6
2

tε2L

(
L+

C̄

1− θ̄

) ∑
u∈U,v∈V

f̃unift (uv) ,

where we used that κε > 1 and f̃unift (w) = (1/t)
∑t−1
s=0 f̄s(w).

Step 2.7. Our final bound for E[‖ĤU,Vt,ξ − H̃
U,V
t ‖2] is now obtained by combining the results from

Step 2.2 and 2.6:

E[‖ĤU,Vt,ξ − H̃
U,V
t ‖2]2 6

1

tεL(1− 1/(κε)2)

∑
u∈U,v∈V

f̃t(uv) +
2

tε2L

(
L+

C̄

1− θ̄

) ∑
u∈U,v∈V

f̃unift (uv) .

Note that m̃ =
∑
u∈U,v∈V f̃t(uv) and m̄ =

∑
u∈U,v∈V f̃

unif
t (uv) are the quantities defined in the

statement of Theorem 6.

Step 3. Application of Theorem 1 It follows directly from Theorem 1 that with probability at least
1− δ we have

‖ĤU,Vt,ξ − H̃
U,V
t ‖2 6 E[‖ĤU,Vt,ξ − H̃

U,V
t ‖2] + ηρB‖g‖Lip

√
t ln(1/δ)

2
.

Using that ρB is (C, θ)-geometrically mixing and Lemma 4 we can bound the η-mixing coefficient as
ηρB 6 C/(θ(1− θ)). Thus, by plugging our estimates for ‖g‖Lip and E[‖ĤU,Vt,ξ − H̃

U,V
t ‖2] we obtain

that with probability at least 1− δ:

‖ĤU,Vt,ξ −H̃
U,V
t ‖2 6

√
m̃

tεL(1−κ−2ε−2)
+

√
2m̄

tε2L

(
L+

C̄

1−θ̄

)
+

C

θ(1−θ)εL

√
2d ln(1/δ)

t
.

�
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