T. Albrektsson, P. Brånemark, H. Hansson, B. Kasemo, K. Larsson et al., The interface zone of inorganic implantsIn vivo: Titanium implants in bone, Annals of Biomedical Engineering, vol.2, issue.Suppl 9, pp.1-27, 1983.
DOI : 10.1007/BF02363944

D. Ambard, A. Pedrono, and P. Swider, A predictive numerical model of the periprosthetic tissue formation surrounding a stable implant. Paper presented at: 50 th Annual Meeting of Orthopaedic Research Society, 2005.

D. Ambard and P. Swider, A predictive mechano-biological model of the bone-implant healing, European Journal of Mechanics - A/Solids, vol.25, issue.6, pp.927-937, 2006.
DOI : 10.1016/j.euromechsol.2006.02.006

URL : https://hal.archives-ouvertes.fr/hal-00582982

J. Anderson, Biological Responses to Materials, Annual Review of Materials Research, vol.31, issue.1, pp.81-110, 2001.
DOI : 10.1146/annurev.matsci.31.1.81

A. Bailón-plaza and M. Van-der-meulen, A Mathematical Framework to Study the Effects of Growth Factor Influences on Fracture Healing, Journal of Theoretical Biology, vol.212, issue.2, pp.191-209, 2001.
DOI : 10.1006/jtbi.2001.2372

G. Box, W. Hunter, and J. Hunter, Statistics for experimenters: design, innovation, and discovery, 2005.

S. Checa and P. Prendergast, A Mechanobiological Model for Tissue Differentiation that Includes Angiogenesis: A Lattice-Based Modeling Approach, Annals of Biomedical Engineering, vol.14, issue.2, pp.129-145, 2009.
DOI : 10.1089/ten.teb.2008.0153

C. Colnot, D. Romero, S. Huang, J. Rahman, J. Currey et al., Molecular Analysis of Healing at a Bone-Implant Interface, Journal of Dental Research, vol.86, issue.9, pp.862-867, 2007.
DOI : 10.1177/154405910708600911

C. Conover, Insulin-like growth factors and the skeleton Skeletal growth factors, pp.101-116, 2000.

S. Cowin, Bone mechanics handbook, Boca Raton, 2001.
DOI : 10.1115/1.1579463

K. Dee, T. Anderson, and R. Bizios, Osteoblast population migration characteristics on substrates modified with immobilized adhesive peptides, Biomaterials, vol.20, issue.3, pp.221-227, 1999.
DOI : 10.1016/S0142-9612(98)00161-6

C. Fall, E. Marland, J. Wagner, and J. Tyson, Computational cell biology. Interdisciplinary applied mathematics, 2002.

B. Fermor, R. Gundle, M. Evans, M. Emerton, A. Pocock et al., Primary Human Osteoblast Proliferation and Prostaglandin E2 Release in Response to Mechanical Strain In Vitro, Bone, vol.22, issue.6, pp.637-643, 1998.
DOI : 10.1016/S8756-3282(98)00047-7

M. Franchi, M. Fini, G. Giavaresi, and V. Ottani, Peri-implant osteogenesis in health and osteoporosis, Micron, vol.36, pp.630-644, 2005.

P. Friedl, K. Zanker, and E. Brocker, Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function, Microscopy Research and Technique, vol.271, issue.5, pp.369-378, 1998.
DOI : 10.1074/jbc.271.46.29393

L. Geris, A. Gerisch, J. Sloten, R. Weiner, and H. Oosterwyck, Angiogenesis in bone fracture healing: A bioregulatory model, Journal of Theoretical Biology, vol.251, issue.1, pp.137-158, 2008.
DOI : 10.1016/j.jtbi.2007.11.008

G. Guérin, D. Ambard, and P. Swider, Cells, growth factors and bioactive surface properties in a mechanobiological model of implant healing, Journal of Biomechanics, vol.42, issue.15, pp.2555-2561, 2009.
DOI : 10.1016/j.jbiomech.2009.07.012

M. Hahn, M. Vogel, F. Eckstein, M. Pompesius-kempa, and G. Delling, Bone structure changes in hip joint endoprosthesis implantation over the course of many years. A quantitative study, Chirurg, issue.11, pp.59782-787, 1998.

M. Kibbin, The biology of fracture healing in long bones, J Bone Joint Surg A, vol.79, pp.1938-1941, 1998.

K. Kieswetter, Z. Schwartz, T. Hummert, D. Cochran, J. Simpson et al., Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells, Journal of Biomedical Materials Research, vol.25, issue.1, pp.55-63, 1996.
DOI : 10.1002/jbm.820250708

K. Kilpadi, P. Chang, and S. Bellis, Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel, Journal of Biomedical Materials Research, vol.80, issue.2, pp.258-267, 2001.
DOI : 10.1016/S0022-3913(98)70009-5

D. Lauffenburger, C. Rothman, and S. Zigmond, Measurement of leukocyte and chemotaxis parameters with a linear underagarose migration assay, J Immunol, vol.131, pp.940-947, 1983.

T. Linkhart, S. Mohan, and D. Baylink, Growth factors for bone growth and repair: IGF, TGF beta and BMP, Bone. Review, vol.19, issue.1, pp.1-12, 1996.
DOI : 10.1016/s8756-3282(96)00138-x

G. Maheshwari and D. Lauffenburger, Deconstructing (and reconstructing) cell migration, Microscopy Research and Technique, vol.75, issue.5, pp.358-368, 1998.
DOI : 10.1083/jcb.75.2.606

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.463.4949

J. Martin, Z. Schwartz, T. Hummert, D. Schraub, J. Simpson et al., Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63), Journal of Biomedical Materials Research, vol.25, issue.3, pp.389-401, 1995.
DOI : 10.1177/00220345880670021701

L. Meinel, E. Zoidis, J. Zapf, P. Hassa, M. Hottiger et al., Localized insulin-like growth factor I delivery to enhance new bone formation, Bone, vol.33, issue.4, pp.660-672, 2003.
DOI : 10.1016/S8756-3282(03)00207-2

S. Morshed, K. Bozic, M. Ries, H. Malchau, J. Colford et al., Comparison of cemented and uncemented fixation in total hip replacement, Acta Orthopaedica, vol.20, issue.2, pp.315-326, 2007.
DOI : 10.1016/S0736-0266(01)00090-0

K. Mustafa, A. Wennerberg, J. Wroblewski, K. Hultenby, B. Lopez et al., Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone, Clinical Oral Implants Research, vol.11, issue.5, pp.515-525, 2001.
DOI : 10.1034/j.1600-0501.1998.090102.x

C. Neidlinger-wilke, H. Wilke, and L. Claes, Cyclic stretching of human osteoblasts affects proliferation and metabolism: A new experimental method and its application, Journal of Orthopaedic Research, vol.36, issue.1, pp.70-78, 1994.
DOI : 10.1016/0304-4165(80)90126-9

S. Overgaard, Calcium phosphate coatings for fixation of bone implants, Acta Orthop Scand, vol.71, pp.1-74, 2000.

V. Pessková, D. Kubies, H. Hulejová, and L. Himmlová, The influence of implant surface properties on cell adhesion and proliferation, Journal of Materials Science: Materials in Medicine, vol.22, issue.3, pp.465-473, 2007.
DOI : 10.1615/CritRevBiomedEng.v28.i56.10

K. Popat, L. Leoni, C. Grimes, and T. Desai, Influence of engineered titania nanotubular surfaces on bone cells, Biomaterials, vol.28, issue.21, pp.3188-3197, 2007.
DOI : 10.1016/j.biomaterials.2007.03.020

D. Puleo, L. Holleran, R. Doremus, and R. Bizios, Osteoblast responses to orthopedic implant materialsin vitro, Journal of Biomedical Materials Research, vol.22, issue.6, pp.711-723, 1991.
DOI : 10.1016/S0232-1513(84)80078-X

P. Puthumanapully, A. New, and M. Browne, DO MULTI-LAYER BEADS ON POROUS COATED IMPLANTS INFLUENCE BONE INGROWTH? A FINITE ELEMENT STUDY, Journal of Biomechanics, vol.41, p.290, 2008.
DOI : 10.1016/S0021-9290(08)70289-6

B. Ramamurti, T. Orr, C. Bragdon, J. Lowenstein, M. Jasty et al., Factors influencing stability at the interface between a porous surface and cancellous bone: A finite element analysis of a canine in vivo micromotion experiment, Journal of Biomedical Materials Research, vol.36, issue.2, pp.274-280, 1997.
DOI : 10.1002/(SICI)1097-4636(199708)36:2<274::AID-JBM17>3.3.CO;2-U

X. Rausch-fan, Z. Qu, M. Wieland, M. Matejka, and A. Schedle, Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces, Dental Materials, vol.24, issue.1, pp.102-110, 2008.
DOI : 10.1016/j.dental.2007.03.001

A. Roberts, Transforming growth factor-b? In: Canalis E, editor. Skeletal growth factors, pp.221-232, 2000.

A. Rosa and M. Beloti, Rat bone marrow cell response to titanium and titanium alloy with different surface roughness, Clinical Oral Implants Research, vol.9, issue.1, pp.43-48, 2003.
DOI : 10.1002/(SICI)1097-4636(199805)40:2<301::AID-JBM15>3.0.CO;2-O

F. Schwarz, M. Herten, M. Sager, M. Wieland, M. Dard et al., titanium implants: preliminary results of a pilot study in dogs, Clinical Oral Implants Research, vol.76, issue.4, pp.481-488, 2007.
DOI : 10.1002/jbm.a.30320

K. Søballe, E. Hansen, B. -rasmussen, H. Jorgensen, P. Bunger et al., Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions, Journal of Orthopaedic Research, vol.182, issue.suppl 220, pp.285-299, 1992.
DOI : 10.1016/0142-9612(85)90020-1

M. Vestermark, J. Bechtold, P. Swider, and K. Søballe, Mechanical interface conditions affect morphology and cellular activity of sclerotic bone rims forming around experimental loaded implants, Journal of Orthopaedic Research, vol.74, issue.3, pp.647-652, 2004.
DOI : 10.1016/j.orthres.2003.10.012

L. Wakefield, T. Winokur, R. Hollands, K. Christopherson, A. Levinson et al., Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution., Journal of Clinical Investigation, vol.86, issue.6, pp.1976-1984, 1990.
DOI : 10.1172/JCI114932

J. Wang, B. Wicklund, R. Gustilo, and D. Tsukayama, Prosthetic Metals Interfere With the Functions of Human Osteoblast Cells In Vitro, Clinical Orthopaedics and Related Research, vol.339, pp.216-226, 1997.
DOI : 10.1097/00003086-199706000-00030