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Elastic guided waves are of interest for the non-destructive evaluation of cables. Cables are most often multi-
wire structures, and understanding wave propagation requires numerical models accounting for the helical
geometry of individual wires, the interwire contact mechanisms and the effects of prestress. In this paper,
a modal approach based on a so-called semi-analytical finite element method and taking advantage of a
biorthogonality relation is proposed in order to calculate the forced response under excitation of a cable,
multi-wired, twisted and prestressed. The main goal of this paper is to investigate how the energy transfers
from a given wire, directly excited, to the other wires in order to identify some localization of energy inside the
active wire as the waves propagate along the waveguide. The power flow of the excited field is theoretically
derived and an energy transfer parameter is proposed to evaluate the level of energy localization inside a given
wire. Numerical results obtained for different polarizations of excitation, central and peripheral, highlight
how the energy may localize, spread or strongly change in the cross-section as waves travel along the axis.
In particular, a compressional mode localized inside the central wire is found, with little dispersion and
significant excitability.

I. INTRODUCTION

Multi-wire cables are widely used in engineering appli-
cations. For instance, they are used in civil engineering
for prestressing and post-tensioning concrete, or as load
carrying members for cable bridges. In electrical engi-
neering, multi-wire cables are used in power transmission
lines.
Such structures are subjected to environmental degra-

dations (corrosion, temperature, wind). Maintaining
their safety becomes essential. In order to assess their
structural health, the development of non destructive
evaluation (NDE) techniques is necessary. Guided wave
based methods are of particular interest because these
waves can propagate over long distances and enhance the
inspection range with a single measurement.
In practice, the analysis of elastic guided waves re-

quires modeling tools due to their dispersive and mul-
timodal nature. Experiments have shown that a multi-
wire cable cannot generally be modeled as an effective
equivalent cylinder1–3. With multi-wire cables, the mod-
eling task must indeed face several difficulties, among
which the helical geometry of individual wires, the con-
tact between wires and the presence of huge tensile loads.
Some recent progress have been made by subsequently ac-
counting for these difficulties in numerical models of wave
propagation4–8. These numerical models are based on
a semi-analytical finite element (SAFE) method, which
has been widely used for the study of straight waveg-
uides of arbitrary shape9–12. For the modeling of he-
lical multi-wire strands, the SAFE formulation must be
written in twisting coordinates and account for prestress.
Numerical results have been shown to compare well with
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experimental results obtained for longitudinal modes in
seven-wire strands, in particular as far as the so-called
’notch frequency’ phenomenon1,2 is concerned (such a
phenomenon, related to a missing frequency band in ex-
periments, indeed corresponds to a curve veering and is
typical of strands6).

However, some modeling works are still required in or-
der to improve the understanding of wave propagation
inside cables. As far as it goes, the effort has mainly fo-
cused on the free response of cables regardless excitation.
The forced response of cables under excitation has been
barely considered13. Some transient three-dimensional
finite element models have been proposed14,15, but these
models are costly from a computational point view, which
limits the analysis and the physical interpretation of re-
sults.

Another specificity of multi-wire cables is that they
can naturally be considered as substructured waveguides
(wires being substructures). Of particular interest in this
paper is the transfer of energy that occurs between sub-
structures. More precisely, the goal of this paper is to
theoretically investigate how the energy transfers from a
given wire, directly excited, to the other wires in order to
identify some localization of energy, if any, inside a single
wire as the waves propagate along the waveguide. To this
end, the theory presented in Ref. 8 is extended to account
for acoustic sources in the SAFE formulation, which only
requires the discretization of the two-dimensional cross-
section of the waveguide and enables an efficient compu-
tation of the forced response based on a modal approach.

In this paper, we will focus our attention on the so-
called seven-wire strand, constituted by one central cylin-
drical wire surrounded by six helical peripheral ones (see
Fig. 1). Such a structure is widely used in modern
bridges. It should be noticed that the method devel-
oped in this paper can be applied to any multi-wire heli-
cal structures composed of several layers of helical wires
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FIG. 1: Geometry of a seven-wire strand.

wrapped with the same twisting rate around a straight
axis. Yet, the method is not applicable to the case
of crosslay strands (involving both positive and nega-
tive torsion) or double helical structures (composed of
one central strand wrapped by several helical peripheral
strands)7.

Section 2 briefly reviews the main theoretical results
for implementing the SAFE method with twisting coor-
dinates, prestress and contact width effects. In Section
3, the forced response of twisted prestressed waveguides
is calculated thanks to a modal approach by taking ad-
vantage of a biorthogonality relation. The power flow of
the excited field is then theoretically investigated and an
energy transfer parameter is proposed in order to evalu-
ate the level of energy localization inside a specific wire.
Section 4 finally gives numerical results obtained for sev-
eral kinds of excitation, applied to the central wire or
to a peripheral wire, and highlights how the energy may
localize, spread or change in the cross-section as waves
travel along the axis far from the source.

II. THEORETICAL BACKGROUND

A. Dynamics of prestressed structures

The analysis of the dynamics of prestressed structures
requires a non linear theory. It can be decomposed into
a static problem, solved independently, and a linearized
dynamic problem superimposed on this prestressed state.
Three configurations must be distinguished: the initial
configuration (without initial stress), the static prestress
configuration and the final configuration (including dy-
namics). Subscripts i and 0 will be used to distinguish
variables in the initial and in the prestress configurations
respectively.

In this paper, one will assume small strain both in
statics and dynamics so that material non linearities are
neglected and the material remains linearly elastic. The
account for prestress on dynamics yet requires geometri-
cal non linearities of the predeformed configuration.

One assumes small displacements superimposed onto
the prestressed static state, with a time harmonic e−iωt

dependence. Expressing variables in the prestress config-
uration, the equilibrium equations of elastodynamics un-

der prestress are given in the frequency domain by16,17:

∇0 · (σ +∇0u · σ0) + ρ0ω
2u = fv (1)

with the natural boundary condition:

(σ +∇0u · σ0) · n0 = fs on ∂V0 (2)

where u, σ = C0 : ǫ and ǫ = (∇0u+∇0u
T )/2 denote the

small dynamic perturbations of the displacement vector,
stress tensor and strain tensor respectively. C0 and ρ0
denote the elasticity tensor and the material density. σ0

is the Cauchy prestress, i.e. the stress tensor associated
with the prestressed state. ∇0 refers to the gradient op-
erator with respect to the prestressed configuration. fv
represents acoustic sources inside the prestressed struc-
tural volume V0. fs is the traction vector applied on the
boundary ∂V0 of the structure of unit outward normal
n0.

B. Semi-analytical finite element method

The analysis of guided waves inside helical strands
requires a specific curvilinear coordinate system, called
twisting coordinate system. Such a system has con-
stant non zero torsion but zero curvature, and hence
corresponds to a particular case of helical system. In
Ref. 6, it has been shown that a twisting system allows
to preserve translation invariance in seven-wire strands,
which hereby yields a theoretical proof for the existence
of guided waves in such structures. With this kind of sys-
tem, the cross-section plane remains perpendicular to the
straight axis but rotates around this axis by following pe-
ripheral wires. Provided that the central wire is circular
and isotropic, the cross-section of the whole structure and
its material properties remain translationally invariant in
a twisting system. The torsion of the twisting system is
given by τ0 = 2π/L0, with L0 denoting the helix pitch of
prestressed peripheral wires. This section brielfy reviews
the main equations of the SAFE method written in a
twisting system and including prestress effects. Further
details can be found in Refs. 7 and 8.
Let us denote z the straight axis of the waveguide, fixed

to the Cartesian system, (x, y) the cross-section twisting
coordinates, k the axial wavenumber. The application of
a SAFE method consists in assuming an eikz dependence
of acoustic fields before finite element (FE) discretiza-
tion. Therefore, only the two-dimensional cross-section
in the (x, y) plane of the structure has to be meshed.
One points out that the eikz field dependence implies
that axial variables must be separable from transverse
variables in the governing equations of motion (this sep-
aration of variable is actually possible thanks to the proof
of translational invariance along the z-axis that holds in
a twisting system6,18).
The application of the SAFE method can be summa-

rized as follows. First a spatial Fourier Transform is
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applied to Eqs. (1) and (2), here written in the twist-
ing system. Then, the weak form is derived by inte-
grating the equations on the cross-section, denoted as
S0. The boundary of S0 is denoted as ∂S0. Finally,
the cross-section is discretized by standard 2D FE. The
SAFE method finally leads to the following matrix sys-
tem governing wave propagation inside prestressed heli-
cal strands:

{K1σ−ω2M+ik(K2σ−KT
2σ)+k2K3σ}Ũ = F̃v+F̃s. (3)

For paper self-containedness, the expressions of element
matrices involved in the left hand side are recalled in
Appendix A. The element vectors involved in the right
hand, corresponding to acoustic sources, are given by:

F̃e
v =

∫

Se

0

NeT f̃vdxdy, F̃e
s =

∫

∂Se

0

NeT f̃sds (4)

The tilde notation is used to denote spatial Fourier trans-
form of acoustic fields, with the following convention:

f̃(k) =
∫ +∞

−∞
f(z)e−ikzdz. For clarity, the finite element

approximation of the displacement vector ũ is given on
one two-dimensional element e by: ũ(x, y) = Ne(x, y)Ũe,

where Ne is the matrix of the shape functions and Ũe is
the vector of nodal displacements, with 3 degrees of free-
dom per node, written in the orthonormal Serret-Frenet
basis associated with the twisting system.
Equations (3), (4) and (A1) can be viewed as the so-

called linearized updated Lagrangian formulation of non-
linear mechanics (see e.g. Ref. 19), here extended to
twisting coordinates and adapted to a SAFE formulation.

C. Static prestress state and contact modeling

The first step of the analysis consists in computing the
static prestress state of the seven-wire strand loaded by
a constant tensile strain. The rotational strain of the
strand is set to zero. One assumes that the influence of
static non-linearities can be neglected on dynamics and
the static prestress state will hence remain linear. Its
computation can be achieved efficiently using a homog-
enization method specifically written in twisting coordi-
nates7. This allows to exploit the translational invari-
ance property, and hereby, to restrict the problem to the
cross-section.
It can be shown that the prestressed state subjected to

a prescribed axial strain, denoted as ǫ, can be determined
by a linear static computation: K0U0 = F0, where U0 is
the static nodal displacement vector, F0 is the external
load vector corresponding to an applied axial strain and
the expressions ofKe

0 and Fe
0 are recalled in Appendix A.

More details can be found in Ref. 7.
Then, the Cauchy prestress σ0 necessary for the calcu-

lation of SAFE matrices can be post-processed from the
solution of the linear static computation.
However, it must be emphasized that the helical ge-

ometry of peripheral wires yields a radial compression

of the central wire when a tension is applied in the ax-
ial direction. As a consequence, the interwire contact
width tends to increase as the tensile load increases. This
phenomenon is neglected when the linear static problem
K0U0 = F0 is solved in a unique step. Instead, an itera-
tive procedure must be used in order to account for the
mechanics of contact, which is inherently non linear.
The contact modeling approach used in this paper is

based on a node-to-node contact procedure together with
a direct elimination method20. Matching meshes are used
inside each interfacial zones where the central wire and
each helical wire can possibly come into contact. Note
that no contact occurs between peripheral wires7,8. For
the 2D cross-section FE model used in this paper, the
computation starts with single point contacts between
wires. Then as the axial load is incremented, contact
pairs of nodes are successively formed: once the gap be-
tween a pair of nodes is closed, the continuity of displace-
ment is enforced at these nodes by the direct elimination
method. Stick contact conditions are assumed (infinite
friction), so that the displacement continuity at contact
nodes is enforced along the three directions.
The iterative procedure can be summarized by the fol-

lowing linear incremental equation for each incremental
load step j:

K
j
0∆U =

∆ǫ

ǫ
PjTF0, K

j
0 = PjTK0P

j (5)

where Pj denotes the projection matrix which reduces
the displacement degrees of freedom that are in contact
at step j, ∆U and ∆ǫ are the incremental displacement
and incremental axial strain respectively. The static dis-
placement U0 for a prescribed strain ǫ is finally obtained
by the sum of the incremental displacement.

III. INTERWIRE ENERGY TRANSFER OF THE

FORCED RESPONSE

A. Free response

The free response problem is considered in order to
compute the propagation modes. Setting k to a fixed
value, the homogeneous SAFE system (3) is a linear
eigenproblem for finding the eigenvalue ω. However since
the forced response will be given as a function of z and
ω (see next subsection), the eigenproblem (3) must nec-
essarily be solved for each frequency instead. Setting the
frequency ω to a fixed value, Eq. (3) is a quadratic eigen-
problem for the eigenvalue k.
For an eigenvalue k, −k is also an eigenvalue. This

property results from the symmetry of K1σ, K3σ and M.
Hence, the eigenproblem has then two kinds of eigenso-
lutions: (km,U+

m) and (−km,U−

m), m = 1, ...,M , repre-
senting M modes traveling in the positive direction and
M modes in the negative direction.
Quadratic eigenproblems are more difficult to han-

dle with standard numerical eigensolvers. A rather
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well-known procedure consists in recasting the quadratic
eigenproblem as a linear one21. In this paper, the follow-
ing linear form is adopted:

(A− kB)Û = F̂ (6)

with:

A =

[

0 I

−(K1σ − ω2M) −i(K2σ −KT
2σ)

]

,

B =

[

I 0

0 K3σ

]

, Û =

{

Ũ

kŨ

}

, F̂ =

{

0

−F̃

} (7)

Assuming a lossless material (i.e. real coefficients in C0),
an interesting property with the linear form (6) is that
the matrix B is Hermitian, which can be used to improve
the numerical treatment by eigensolvers22.
In this paper, the dispersion curves will be plotted for

the energy velocity as a function of frequency. The energy
velocity of the mth mode can be post-processed from
SAFE matrices as follows8:

vem =
2ωIm

{

U∗

m(KT
2σ + ikmK3σ)Um

}

Re
{

U∗

m(K1σ + ω2M + ikm(K2σ −KT
2σ) + k2mK3σ)Um

} (8)

where the superscripts T and ∗ are used for the matrix
transpose and the matrix complex conjuguate transpose
respectively.

B. Forced response

The solution Ũ = Ũ(k) of the problem under excita-
tion is now expanded as a sum of the guided modes com-
puted from the free response. As detailed in Ref. 23 for
straight and unprestressed waveguides, the modal coeffi-
cients can be calculated by taking advantage of biorthog-
onality relations and applying the Cauchy residue theo-
rem to obtain the solution in the z domain. The SAFE
biorthogonality relations are actually the discretized ver-
sion of Auld’s biorthogonality relations24.
Here despite the twist of the geometry and the presence

of prestress, it must be emphasized that the SAFE ma-
trices K1σ, K3σ and M remain symmetric as in the stan-
dard case of straight and unprestressed waveguide prob-
lems (note that the additional terms due to the geometric
stiffness obey such symmetry). On the other hand, the
symmetry of these matrices is the only requirement for
the results of Ref. 23. This amounts to say that Auld’s
biorthogonality relations can be extended to twisted and
prestressed waveguides.
Therefore from Ref. 23, it can be shown that the solu-

tion as a function of z > 0 can be expanded as follows:

U(z) =
M
∑

m=1

αm

Um√
Pmm

eikmz (9)

with:

αm =
iω

4
√
Pmm

U∗

mF̃(km) (10)

where the summation in Eq. (9) is performed over
positive-going modes and Pmm denotes the power flow
of the mth mode, which will be explicitly defined in the
next subsection. The above solution is restricted to prop-
agating modes (k ∈ R) and neglects the contribution of
non-propagating modes as well as any viscoelastic effect
(C0 must be real). Thus, M should be understood as
the number of propagating modes excluding those non-
propagating.
In this paper, attention is restricted to the far field.

Given that the power flow of a non-propagating mode
is equal to zero, the near-field region, where non-
propagating modes may have non-negligible contribution,
is indeed of less interest for the present study.
As a side remark, it should be mentioned that twisting

coordinates strongly modify the operators (see Eq. (A2))
and induce anisotropy in the equilibrium equations. As
shown previously, Auld type relations are still applicable
in this case. Yet other orthogonality relations of the lit-
erature may be not applicable with twist. For instance,
Fraser type biorthogonality relations25,26 do not seem to
exist in case of general anisotropic materials. Up to the
author’s knowledge, Fraser’s relation has only been ex-
tended to particular anisotropy having at least one plane
of elastic symmetry22,27.

C. Power flow of the excited field

Let us consider a subregion Γ of the waveguide cross-
section S0 (Γ ⊂ S0). The time averaged power flow of
the acoustic field through the surface Γ is defined by28:

ΠΓ = − iω

4

∫

Γ

(u∗t− t∗u)dxdy (11)
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where t is the traction vector acting on Γ. In the present
work, the expression of t must account for prestress and
is given as follows8: t = (σ +∇0u · σ0) · ez.
After FE discretization, the above formula takes the

following form:

ΠΓ = − iω

4
(U∗

ΓTΓ −T∗

ΓUΓ) (12)

where the subscripts Γ on FE vectors denote their restric-
tion to the degrees of freedom belonging to the subsurface
Γ.
From the modal expansion (9), the power flow of the

response generally depends on the propagation distance
z and can be rewritten as:

ΠΓ(z) = q(z)∗PΓq(z) (13)

where the modal components of q(z) and of the matrix

PΓ are given by:

qm(z) =
αm√
Pmm

eikmz (14)

and:

PΓmn
= − iω

4
(U∗

Γm
TΓn

−T∗

Γm
UΓn

) (15)

The modal vector Tm is the so-called modal force associ-
ated to the modal displacement of the mth mode and can
be readily post-processed from the following formula8,18:
Tm = (KT

2σ + ikmK3σ)Um.

Expanding Eq. (13) and taking into account the Her-
mitian property of the matrix PΓ and k ∈ R yields the
following result:

ΠΓ(z) =

M
∑

m=1

PΓmm

Pmm

|αm|2 − 2

M
∑

m=1

∑

n<m

Re

(

PΓmn√
PmmPnn

α∗

mαne
i(kn−km)z

)

(16)

Now let us consider the case of an integration over the
whole cross-section: Γ = S0, UΓ = U and TΓ = T. For
conciseness of notations, PS0

will be denoted as P. The
notation Pmm, as used in the previous equations, indeed
denotes the power flow of the mth mode integrated over
the complete cross-section. The matrix P obeys the fol-
lowing fundamental property:

(km − k∗n)Pmn = 0 (17)

Eq. (17) shows that Pmn = 0 if km 6= k∗n, i.e. modes m
and n are not multiple eigenvalues (note that the complex
conjugate of wavenumbers is here extraneous as k ∈ R).
As shown in Ref. 23, this property can be viewed as the
FE discretized form of Auld’s complex biorthogonality
relation24.

Using Eq. (17) and assuming that no multiple eigen-
values occurs, the last term of Eq. (16) vanishes and the
power flow simplifies into the well-known expression:

Π =

M
∑

m=1

|αm|2 (18)

The power flow integrated over the whole cross-section
is the sum of each individual modal power flows. As
expected, it does not depend on z because the power
flow of a propagating mode is independent of position
along the path of propagation in a lossless medium29,30.

D. Energy transfer parameter

One is interested in the transfer of energy from a given
wire, directly excited, to the other wires, only excited
through interwire contact. The former will be referred to
as the active wire. The latter will be called the passive
wires. Thus, one considers an excitation localized inside
a specified wire and investigates how the energy trans-
fers from this wire to the others. We define the energy
transfer parameter η, equal to the ratio of the power flow
inside the six passive wires to the power flow of the whole
seven-wire strand:

η(z) = 1− ΠΓ(z)

Π
(19)

where Γ will now denote the cross-section of the active
wire in the remainder. A small value of η thus means a
weak energy transfer from the active wire to the others
and conversely. Typically, the parameter η will be equal
to:

• 0 when the energy remains totally confined inside
the active wire;

• 1 when there is no energy inside the active wire;

• 6/7≃0.86 if there is equipartition of energy inside
the whole strand;

• 5/6≃0.83 if, in the case of an active peripheral wire,
there is equipartition of energy inside the six pe-
ripheral wires and no energy inside the central one.
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FIG. 2: Cross-section FE mesh of the seven-wire strand.

As opposed to the power flow Π (integrated over
the whole cross-section S0), the last term of ΠΓ in
Eq. (16) does not vanish for a substructure constituting
the complete waveguide because Auld’s biorthogonality
relation (17) only holds for the complete system. This
term depends on z, and as a consequence, so does the
energy transfer parameter η.
Yet, it can be noticed that the z dependence of the last

term in (16) is in ei(kn−km)z, corresponding to an oscil-
lating term whose average along the z direction vanishes.
In order to simplify the analysis of energy transfer, we
define in this paper the z-averaged energy transfer pa-
rameter, denoted as η, given by:

η = 1− ΠΓ

Π
(20)

with the z-averaged power flow through the surface Γ:

ΠΓ =

M
∑

m=1

PΓmm

Pmm

|αm|2 (21)

IV. RESULTS

A. Preliminary results: free response

Computations are performed for the following param-
eters: rp/rc=0.967, φ=7.9◦, ν=0.28. rc and rp denote
the radius of the central and peripheral wire respec-
tively. The helix lay angle φ is defined from the rela-
tion tanφ = 2π(rc + rp)/Li and the torsion of the twist-
ing system is τi = 2π/Li, with Li denoting the length
at rest of one helix pitch along the z-axis of periph-
eral wires. Normalized results will be presented. When
specified, some dimensional results will be provided with:
rc=2.7mm, E=2.17e11Pa, ρ=7800kg/m3 (material prop-
erties of steel).
The cross-section of the seven-wire strand has been

meshed with Gmsh31 and is shown in Fig. 2. Six-node
triangles are used yielding 12369 dofs. The mesh is re-
fined near contact regions.
Before considering the interwire energy transfer of the

response under excitation, the main results found for the
free response in previous works6,8 must be recalled.

ωrc/cs
0 0.5 1 1.5 2

v e
/
c s

0

0.5

1

1.5
L(0,1)bL(0,1)a

L'(0,1)

L'(0,1)

(a)

ωrc/cs
0 0.5 1 1.5 2

v e
/
c s

0

0.5

1

1.5
L(0,1)bL(0,1)a

L'(0,1)

L'(0,1)

(b)

FIG. 3: Dispersion curves of the unloaded seven-wire
strand, (a) unloaded (ǫ=0) and (b) loaded (ǫ=0.6%).

Figure 3 shows the normalized energy velocity disper-
sion curves for the seven-wire strand, unloaded and sub-
jected to an axial strain of ǫ=0.6%. The normalized fre-
quency is given by ωrc/cs, with cs =

√

E/2ρ(1 + ν) de-
noting the shear wave velocity. As for the static com-
putation, 13 contact node pairs were necessary for each
interwire region.
Due to the multi-wire nature of the waveguide, many

modes are found compared to a single wire, for which
only three modes are propagating in the frequency range6

(these modes are the first longitudinal, torsional and flex-
ural modes, often labeled L(0, 1), T (0, 1) and F (1, 1) re-
spectively).
A particular phenomenon occurs for the first longitu-

dinal mode. Instead of a single continuous curve in a
single wire, this mode splits into two curves in a seven-
wire strand, denoted as L(0, 1)a and L(0, 1)b in Fig. 3.
This split indeed corresponds to a curve veering phe-
nomenon6. This veering phenomenon is centered around
the frequency ωrc/cs=0.32 for ǫ=0, increasing to 0.42 for
ǫ=0.6%.

B. Note on model validation

The implementation of the SAFE method, in twist-
ing coordinates and with prestress, has been checked in
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Ref. 8 for springs, that is to say single wires of large he-
lix angle subjected to large elongation. Close agreement
has been found between the numerical dispersion curves
and results obtained from a Timoshenko helical beam
approximation.

In addition to twisting and prestress effects, the case
of seven-wire strands leads to another difficulty: the me-
chanics of interwire contact must be included in the anal-
ysis. The fundamental assumption used in the SAFE
model is infinite friction (perfectly stick contact condi-
tions). This assumption has shown to give satisfying re-
sults for the so-called notch frequency, experimentally
observed in the literature. As previously mentioned, the
normalized curve veering frequency obtained from the
SAFE model significantly increases, roughly from 0.32
for ǫ=0 to 0.42 for ǫ=0.6% (in this paper, this yields di-
mensional frequency of 62 kHz and 82 kHz respectively).
These values are in agreement with the notch frequency
of experiments1,2,6. This provides a preliminary experi-
mental validation of the model.

More precisely, numerical tests have shown that a
loaded strand model neglecting contact, i.e. with only
one contact node pair at each interwire region, leaves the
curve veering frequency of the unloaded case unchanged8.
This means that the increase of the notch frequency is
mainly caused by the increase of the interwire contact
width, rather than prestress itself. Yet, the computation
of the contact width has not been checked. Its validation
turns out to be necessary and is performed in the present
paper.

To this end, both the contact half-width a and the nor-
mal contact force N0 are post-processed from the numer-
ical solution computed from Sec. II C when the applied
strain varies from ǫ=0 to ǫ=0.6%. Figure 4 shows a as a
function of N0 computed from the model as well as the
theoretical solution obtained from Hertz theory for paral-
lel cylinders32. Close agreement is found, which validates
the contact iterative process described in Sec. II C. Note
that one can conclude that the effect of helical geometry
on the contact width is almost negligible here. However,
accounting for the helical geometry is essential for the
computation of N0 (if parallel wires were considered, the
contact force would remain equal to zero).

Further experimental works will be needed to assess
the limitations of the stick contact assumption in the
SAFE model. For a given displacement amplitude, the
acoustic stress tends to increase with frequency. In the
interwire region, an increase of the shear stress may lead
to imperfect contact involving stick-slip phenomena and
friction. A perfect contact assumption implies that the
acoustic shear stress is small enough in the contact width,
that is to say below the normal stress times the friction
coefficient from Coulomb’s law. In practice, tensile loads
in cables are huge and lead to large static contact stresses
in the normal direction. These static contact stresses can
be assumed far greater than acoustic shear stresses, at
least up to a certain frequency limit, so that perfectly
stick contact conditions appear reasonable as a first ap-

N0/Eπrc ×10 -5
0 2 4 6

a
/
r c

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

FIG. 4: Normalized contact half-width as a function of
the normal contact force. Circles: numerical results,

continuous lines: Hertz solution.

proximation.
In the static model, the applied axial strain of 0.6%

gives a tension of 190 kN, that is to say a mean axial
stress of 1.26 GPa in the cross-section of the strand. This
stress level corresponds an operational load of about 60%
of the ultimate tensile strength, as considered in experi-
ments1,2,13. From Fig. 4 at the maximum load (ǫ=0.6%),
the dimensional static normal force N0 at each interwire
contact is equal to 97.7 kN/m, that is to say a mean nor-
mal stress of 1.32 GPa (the contact width 2a being equal
to 74 µm). As far as the tangential component of the
static contact force is concerned, the model gives a value
that remains small compared to the normal component.

C. Results for longitudinal excitation

One considers an excitation F(z), of volume type, lo-
calized inside the central wire. Peripheral wires are not
excited. The excitation is oriented along the guiding
direction in order to mainly excite compressional-like
modes. The excitation profile is distributed over the
cross-section of the active wire as a radial cosine function
vanishing at its boundary, as depicted in Fig. 5. One yet
emphasized that the results presented in this paper are
little sensitive to the excitation profile (actually, using
point source excitations instead yields nearly identical
results).
The excitation is concentrated at z = 0, which means

that its z dependence is the Dirac function, so that the
space Fourier transform of the excitation F̃(k) does not
depend on k. The excitation is assumed to be constant
with frequency. In the remainder of this paper, only
the loaded case will be considered (ǫ = 0.6%). The un-
loaded case is somehow purely theoretical since the con-
tact width tends to zero (only one interwire contact node
pair).
Figure 6a shows the averaged energy transfer param-

eter η as a function of frequency for a loaded strand
(ǫ=0.6%). As expected, the energy transfer to peripheral
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FIG. 5: Excitation profiles as a function of the local
radial coordinate of the active wire. Continuous line:

excitation of longitudinal and flexural type (oriented in
the z and x direction respectively). Dashed line:
excitation of torsional type (oriented in the local

azimuthal direction).

wires is high in a low frequency range (ωrc/cs ∈ [0; 1]).
This is due to the global behavior of the L(0, 1)-like mode
in this frequency range: the strand moves as a whole in
the longitudinal direction6. This global motion is con-
firmed by a value of η close to 6/7, due to equipartition
of energy inside wires. Note that a local decrease of η can
be observed around the veering frequency owing to the
sudden change of mode shapes associated to the L(0, 1)-
like modes.
In the frequency range [1; 2], the energy transfer be-

comes weak with a sharp decrease of η for ωrc/cs ∼ 0.88.
This suggests that the motion of the strand tends to be
localized inside the central wire. This sudden change is
attributed to the excitation of another compressional-like
mode, denoted as L′(0, 1), whose motion is localized in
the central wire. This particular mode is identified in
Fig. 3. Its cut-off frequency occurs at ωrc/cs = 0.88,
which coincides with the sudden drop of energy transfer.
Figure 6b plots the modal coefficient modulus of all prop-
agating modes. It can be seen that the amplitude of the
localized L′(0, 1) mode after its cut-on is clearly greater
than the other modes. Figure 7 shows the mode shape of
the L′(0, 1) mode at the frequency ωrc/cs = 1.5, which
confirms that this mode implies a negligible motion of
peripheral wires.
This type of local mode has also been found in the

numerical investigation of dispersion curves of strands
embedded into a solid matrix33. Due to weak motion in
peripheral wires, such a local mode is less sensitive to the
loss induced by the exterior medium and can be of po-
tential interest for NDE and structural health monitoring
applications. As can be observed from Fig. 3, another in-
teresting feature of this mode could be its sensitivity to
contact, and hereby to applied loads.
It should be mentioned that the transfer of energy from

the central wire to the peripheral ones has also been
found to decrease with frequency in experiments34.
Figure 8 illustrates the dependence of the power flow

of a substructure by plotting the non-averaged energy
transfer parameter η(z) as a function of the propaga-
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FIG. 6: (a) Averaged energy transfer parameter η for
an excitation localized in the central wire and (b)

modulus of modal coefficients |αm| as a function of the
normalized frequency for a strand subjected to a 0.6%

tensile strain.

FIG. 7: Mode shape of the L′(0, 1) mode for
ωrc/cs = 1.5.

tion distance, the frequency being set to a fixed value
ωrc/cs = 1.5. The value of η(z) oscillates around an av-
eraged value η ≃0.16. These oscillations occur with non-
negligible amplitudes but the energy transfer remains
low.

Let us now consider a longitudinal-like excitation local-
ized inside a peripheral wire. No matter which peripheral
wire is excited due to the rotational symmetry of the ge-
ometry. Figure 9a exhibits the averaged energy transfer
parameter η. The value of η is nearly constant and large
over the whole frequency range, which means that the
energy does not remain localized inside the active wire
as the waves propagate along the axis.

Indeed, the non-averaged parameter η(z) can strongly
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FIG. 8: Non-averaged energy transfer parameter η(z) as
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FIG. 9: (a) Averaged energy transfer parameter η for
an excitation localized in a peripheral wire, (b) η(z) for

ωrc/cs = 1.5.

differs from its averaged value. As an example, η(z) is
plotted in Fig. 9b for the frequency ωrc/cs = 1.5. This
means that the strand response strongly depends on the
propagation distance z from the source, as clearly illus-
trated by Fig. 10. Depending on z, the response can be
localized in the active peripheral wire (for instance, at
z/rc = 50, which is close to the source), spread over dif-
ferent wires at greater distance, or even be localized into

(a) (b)

(c) (d)

FIG. 10: Modulus of the axial displacement field
excited by a peripheral wire source for ωrc/cs = 1.5 at:
(a) z/rc = 50 (η = 0.21), (b) z/rc = 1000 (η = 0.87), (c)
z/rc = 2000 (η = 0.98), (d) z = 6400 (η = 0.34) (Color

online).

passive wires only.
This phenomenon confirms and highlights some exper-

imental results of the literature35 found on the energy
transfer variation with respect to the actuator distance
when exciting a peripheral wire. In the context of NDE,
such a phenomenon is likely to complicate the interpreta-
tion of measurement as well as the identification of dam-
aged wires, as experimentally observed in Ref. 36.
Figure 11a gives further insight by plotting colored

dispersion curves indicating modal amplitudes |αm| for
a peripheral excitation. Up to a normalized frequency
roughly equal to 0.3, the excited mode is mainly the
L(0, 1)a mode. The motion is hence of global type and η
is close to 6/7 (see Fig. 9a). Then above this frequency,
the motion changes due to the cut-on of several modes
of longitudinal type (Fig. 11a), which most contribute to
the response. These modes are mainly peripheral and
involve a weak motion of the central wire. The value
of η thus tends to 5/6 because the motion of the cen-
tral wire becomes negligible. These peripheral modes
are quite close to each other and strongly combine under
excitation in the forced response: this multimodal prop-
agation gives rise to a significant oscillatory contribution
in Eq. (16)(see second term of the expansion of ΠΓ(z)).
Figure 11a can be compared to Fig. 11b, obtained for

the excitation of the central wire. In the latter case,
the modal contribution of the group of cut-on peripheral
modes observed earlier is negligible.
As observed from Figs. 9a and 10, note that a large

value of η does not necessarily imply a global motion of
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FIG. 11: Energy velocity dispersion curves with their
modal amplitude for the excitation of (a) a peripheral

wire and (b) the central wire (color online).

the strand: a large energy transfer can also occur with a
multimodal propagation involving a group of non global
modes.

D. Other types of excitation

Figure 12 presents the results obtained with an exci-
tation of flexural type localized inside the central wire
(see profile in Fig. 5). The excitation has been oriented
along the x-direction but changing the polarization to
the y-direction almost does not change the results.
Up to ωrc/cs ∼ 0.54, the motion is global (η is close to

6/7). The mode labeled as F (1, 1) is strongly excited and
behaves as a global flexural modes by analogy with cylin-
ders. The normalized frequency of 0.54 coincides with the
cut-on of two flexural modes, labeled as F ′(1, 1), that
tend to be localized in the central wire as the frequency
increases. Then from ωrc/cs ∼0.6, the energy param-
eter starts to decrease. Nevertheless, the non averaged
value of η(z) oscillates with strong amplitude, even for
the highest frequency (ωrc/cs=2) as shown by Fig. 13a,
for the same reasons as for the longitudinal excitation of a
peripheral wire (i.e. multimodal propagation of a group
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FIG. 12: (a) Averaged energy transfer parameter η for a
flexural-like excitation localized in the central wire, (b)
energy velocity curves with modal amplitudes (color

online).

of non-global modes). This phenomenon is also likely to
explain the variation with distance of the F (1, 1) trans-
mission ratio observed in some experiments15. Hence, no
clear localization in the central wire occurs and the en-
ergy travels in every wire as the waves propagate in the
z-direction.

Around the normalized frequency of 0.6, it can be ob-
served that the value of η is nearly equal to 1. This could
a priori mean that the whole energy has been transferred
to peripheral wires at this particular frequency. However,
it should be recalled that the power flow, while positive
when integrated over the whole cross-section, can possi-
bly be negative in some subregion. Figure 13b depicts
the non averaged energy transfer parameter η as a func-
tion of z for ωrc/cs=0.6. Depending on the distance, its
value can be slightly greater than one, which implies that
the power flow inside the central wire can be weakly neg-
ative. Similar reverse energy fluxes occurs in stratified
waveguides37 for instance.

Finally, Fig. 14 shows results obtained for an excitation
of torsional type (see dashed line profile in Fig. 5) local-
ized inside the central wire. The excitation is oriented
along the angular direction of the wire in order mainly
excite torsional modes. In this case, the interpretation
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FIG. 13: Non-averaged energy transfer parameter as a
function of the propagation distance z/rc for a

flexural-like excitation localized in the central wire for
(a) ωrc/cs = 2, (b) ωrc/cs = 0.6.

of results is similar to the longitudinal excitation of cen-
tral wire. Up to a certain frequency, a global motion is
observed corresponding to the global torsional mode, de-
noted as T (0, 1) by analogy with cylindrical bars (η tends
to 6/7). Here, this frequency is roughly equal to 1.5 and
coincides with the cut-off frequency of a torsional mode
of local type, confined in the central wire and labeled
as T ′(0, 1). However, this localization of torsional type
appears to be of less interest for NDE purpose because
the T ′(0, 1) mode is quite dispersive (see Fig. 14b) in the
frequency range where localization occurs.
As for the excitation of peripheral wires (results not

shown for conciseness), their excitation based on a flex-
ural or torsional polarization leads to the same kind of
results and interpretations as those obtained with a longi-
tudinal excitation: no localization is observed, the value
of η remains quite large (greater than 0.8) over the whole
frequency range.

V. CONCLUSION

In this paper, the transfer of energy inside a multi-
wire cable has been investigated with a SAFE method.
The forced response of the structure has been calcu-
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FIG. 14: (a) Averaged energy transfer parameter η for a
torsional-like excitation localized in the central wire, (b)
energy velocity curves with modal amplitudes (color

online).

lated thanks to a modal approach and a biorthogonal-
ity relation. This biorthogonality relation indeed cor-
responds to a discretized version of Auld’s complex re-
lation, which turns out to extend both to twisted and
prestressed waveguides.

An energy transfer parameter has been proposed in or-
der to simplify the interpretation of the power flow dis-
tribution inside the cable and the exchange of energy
between wires. This parameter is equal to the ratio of
the z-averaged power flow of passive wires to the total
power flow.

Based on this parameter, a compressional mode mainly
localized inside the central wire has been found. This
mode can be strongly excited with an axial excitation of
the central wire. This type of local mode could be of
interest for NDE applications. In the frequency range
considered, no similar localization has been found with
an active peripheral wire.

It has also been shown that the strand response and
its energy distribution generally strongly depend on the
propagation distance from the source. Due to multi-
modal propagation phenomena, the energy inside a spe-
cific wire may indeed strongly oscillate along the axis of
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the waveguide. Depending on the distance, the response
can be localized inside the active wire, spread over one
or several wires at greater distance, or even be localized
into passive wires only. Such a phenomenon complicates
the interpretation of measurements and the analysis of
guided wave scattering by defects, and is likely to high-
light experimental results available in the literature.

Owing to the complex pattern of dispersion curves in-
side multi-wire structures, the analysis of the forced re-
sponse under several polarizations and locations of exci-
tation helps to identify the nature of modes (longitudinal,
flexural or torsional).

Further works should deal with experiments to high-
light the effects of interwire stick-slip and friction phe-
nomena, neglected in the present numerical model.

Appendix A: Expressions of FE matrices

The element matrices involved in Eq. (3) are given by:

Me =

∫

Se

0

ρ0N
eTNedxdy,

Ke
1σ = Ke

1 +

∫

Se

0

NeTGT
xyΣ0GxyN

edxdy,

Ke
2σ = Ke

2 +

∫

Se

0

NeTGT
xyΣ0GzN

edxdy,

Ke
3σ = Ke

3 +

∫

Se

0

NeTGT
z Σ0GzN

edxdy,

Ke
1 =

∫

Se

0

NeTLT
xyC0LxyN

edxdy,

Ke
2 =

∫

Se

0

NeTLT
xyC0LzN

edxdy,

Ke
3 =

∫

Se

0

NeTLT
z C0LzN

edxdy.

(A1)

The matrix C0 denotes the matrix of elastic properties
relating stress and strain in their vector form by σ =
C0ǫ, with: ǫ = [ǫxx ǫyy ǫzz 2ǫxy 2ǫxz 2ǫyz]

T and σ =
[σxx σyy σzz σxy σxz σyz ]

T . The expressions of Σ0, Lxy,

Lz, Gxy and Gz are given by:
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(A2)

where Λ = τ0(y∂/∂x−x∂/∂y). In Eqs. (A1), the integral
terms in Σ0 correspond to the so-called geometric stiff-
ness, related to the presence of a prestress field (σ0 6= 0).
Note that the element matrices (A1) must be expressed

on the prestressed cross-section S0. In practice, this
means that the initial FE mesh should be updated to the
prestressed geometry before the computation of SAFE
matrices. Under the assumption of small strain, which
is used in this paper, mechanical properties can be con-
sidered as independent of strain so that the following
equalities hold19: C0 = Ci and ρ0 = ρi, where the sub-
script i refers to the initial configuration (undeformed,
unprestressed).
The element matrix and vector involved in the static

computation of the prestressed state (Sec. II C) are:

Ke
0 =

∫

Se

i

NeTLT
xyCiLxyN

edxdy,

Fe
0 = −

∫

Se

i

NeTLT
xyCiǫMdxdy

(A3)

where ǫM = [0 0 ǫ 0 0 0]T . Note that K0 and F0 are
integrated on Si (undeformed cross-section). In these
expressions, the operator Lxy should be understood as
the expression given in Eq. (A2) replacing τ0 with τi, the
torsion of the undeformed geometry. The torsions τi and
τ0 are linked by: τ0 = τi/(1 + ǫ).
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