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Abstract—Fake identities and identity theft are issues whose
relevance is increasing in the social network domain. This paper
deals with this problem by proposing an innovative approach
which combines a collaborative mechanism implementing a trust
graph with keystroke-dynamic-recognition techniques to trust
identities. The trust of each node is computed on the basis of
neighborhood recognition and behavioral biometric support. The
model leverages the word of mouth propagation and a settable
degree of redundancy to obtain robustness. Experimental results
show the benefit of the proposed solution even if attack nodes
are present in the social network.
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I. INTRODUCTION

Social network profiles whose claimed identity does not
match with the real user are certainly potential security threats
in the Web [1]. This happens in two cases. The first case is that
of fake profiles, in which the owner of a profile intentionally
claims the real-life identity of another individual.

The second case is that of violated profiles, in which an
intruder, permanently or temporarily, uses the profile of a
victim in a fraudulent way.

In both cases, the risk of anomalous behavior with
potential damage of the victim reputation, espionage, or
social engineering attacks towards people connected to
the victim is very high. To give an example, according to
security firm Symantec [2], a growing number of hackers
are targeting professionals on LinkedIn. Through these
connections, attackers can entice users to give up personal
data, hijack them towards infected websites and, once their
email addresses is known, launch spear-phishing campaigns.

The problem has thus a high practical relevance. A number
of studies have been proposed in the recent literature [3], [4]
to contrast this problem. However, all the existing proposals
require a strong effort of analysis done centrally by the social
network provider, which takes into account all the behavioral
and topological information of the profiles.

In this paper, we offer a different approach based on a
collaborative trust mechanism that may operate in principle in
a truly distributed fashion, combined with behavioral biometric

methods to contrast profile compromising. The originality of
our proposal is that it only leverages user-to-user interactions,
and no information that only the social network provider can
have. Moreover, we adopt a conservative approach, because
our goal is to provide assurance that a profile is genuine instead
of detecting fake profiles. The underlying idea exploits the
social structure of our domain: Indeed, the trust model is based
on a robust implementation of a worth of mouth approach and
robustness is obtained by redundancy. In words, we follow
the principle that if a sufficient number of people trust the
identity of a social network profile, we can trust it too. This
way, we obtain a graph of trust, because we propagate trust
under the basic assumption that a fake user (and then fake
behavior) is transitively excluded. We base our assumption on
the consideration that, when the real-life identity is known,
sanctions are facilitated in case of misbehavior (e.g., victims
might sue users who certified the offender), thus misbehavior
is prevented.

Trust is obtained through redundant trust chains in which
any node plays a role similar to an intermediate certifier in
a certificate chain, until a certified profile is reached. In our
model, indeed, the presence of some profiles certified by
a Trusted Third Party is also required. In order to identify
possible intrusions in a legitimate profile, the trust model takes
also into account the behavioral biometric traits of users that
they record and verify in a peer-to-peer fashion (i.e., no storing
of biometric data is required to the social network provider).
In other words, the word of mouth mechanism propagates
the information that the current behavior of a given node is
not compliant with that of the initial safe state, thus reducing
the trust of the community towards that node. We use in this
paper keystroke dynamics as behavioral biometric modality.
This information is very easy to collect on web pages
(e.g., by using a JavaScript code) and allows a simple and
low cost solution to verify the identity of one user [5], [6], [7].

The structure of the paper is the following. In the next
section, we contextualize our proposal in the state of the
art. In Section III, we describe our model and the related
methodology, by giving general principles, the behavioral
biometric modality used in our approach, and the theoretical



support of the trust mechanism. In Section IV, we test our
methodology. Finally, in Section V, we draw our conclusions
and discuss the future work.

II. RELATED WORKS

Identity theft in Online Social Networks (OSNs) is becom-
ing a significantly growing concern [1]. Threats vary from
terrorism to scamming, spear phishing, trolling, and so on.

Typical solutions for identity deception attacks rely on legit-
imate community members and administrators who are called
to manually identify malicious accounts [8]. Whereas, auto-
matic solutions focusing on verbal and non-verbal approaches
for identity deception detection have been proposed in [9],
[10]. In particular, in [9] the authors present a computational
solution of deception prevention that uses social network data
and a common contribution network. This machine learning
based solution can not be applied to our scenario because
it focuses on proactively disabling the ability of a deceiver
to cause disruption in a social media platform preventing
the access only to a sub-community of an OSN. Hence, it
protects only the identity of a user belonging to a given
group of an OSN. In [11], the authors propose two detection
schemes to discover potential faked identities in OSNs. These
schemes help to resist Identity Clone Attacks (ICA), where
the adversary forges the victim’s identity and creates a profile
with the same information and circles as friends of the victim.

The approach described in [12] shows that enhanced
forms of ICA can be carry out, for instance the adversary
can also implement an automated, cross-site profile cloning
attack, if the attacker can forge the identity of the victim
on another OSN site in which the victim is not registered
yet. In [13] the authors propose Safebook, a decentralized
and privacy-preserving OSN. This system provides registered
users with data storage and data management functions
relying on trust relationships that are part of social networks
in real life. A similar system is presented in [14]. In this
platform, users are associated with public keys they exchange
out of band while creating OSN links, and data confidentiality
and privacy are ensured through encryption. These systems
do not protect from identity theft on the original OSN, but
their aim is to provide a tool to anonymously communicate
through hop-by-hop encryption among trusted users.

Our approach is also related to the concept of information
diffusion in OSNs, in the sense that the roots influence the
trust values of other nodes in the network following the rules
of OSN information flow [15], [16]. Most of these works
study how information flows in OSNs and propose strategies
to maximize this diffusion by identifying strategical nodes
for the information propagation. The aim of our paper is
somehow orthogonal to these studies and may exploit these
solutions to improve trust propagation through the OSN.

Moreover, our approach leverages biometric data, which is
a practice not new for social networks applications [17]. Most
of the papers focus on user authentication using biometric data

in order to enhance its security. Some papers in the literature
considered soft biometrics with possible applications to social
networks. Most of the works consider gender recognition
by analyzing the type of images posted or the keystroke
dynamics [18], [19]. To our knowledge, no work considered
keystroke dynamics as solution for continuous authentication
for enhancing trust in social networks.

Several works exploit biometrics to implement continuous
authentication schemes [20], [21], [22], [23]. Indeed, in high-
security environments the typical session level authentication
can be exposed to session hijacking in which an attacker
targets a post-authenticated session. In those scenarios, contin-
uous and real-time verification of user identity may become
mandatory and a lot of research effort has been devoted to
use biometrics as a mean to achieve this objective. However,
the goal of these strategies is very far away from ours.
Indeed, our approach does not aim at proposing a strategy to
continuously verify that an active login session is controlled by
the right user; instead, our approach exploits biometric data as
a feedback to our trust model to measure the trustworthiness
of an online profile.

III. PROPOSED METHOD

A. General principle

The reference scenario is that of a social network. The
approach works by considering trust chains among users. Each
chain starts from a root profile, which is a profile certified
by a Trusted Third Party (TTP). To build a certified profile
(root profile), a user has to register to the social network via
TTP (also by exchanging identification documents or using
a public digital identity system). In this phase, TTP gathers
the biometric (behavioral) parameters of the user to create a
model that will be exploited, in the future interaction with
the user, to verify whether the account is still under this user
control. In the negative case, the profile will be no longer
certified.

We represent a social network as a directed graph G =
〈N,E〉, where N is the set of profiles, and E models friend-
ship among social network profiles. To be general, we use
the notion of directed graphs, so that the case of symmetric
friendship (as Facebook) is simply handled by including two
edges in both directions.
N is thus partitioned into two subsets: the set of certified

nodes (denoted by Nc), and the set of non-certified nodes.
Any node of the social network (both certified and non-
certified) may directly recognize some of its direct contacts.
The underlying idea is that a node recognizes only those
adjacent nodes for which past real-life interactions occurred,
allowing to conclude, also by using external knowledge, that
the claimed identity is not fake (this typically happens for a
significant portion of social network contacts). When a safe
interaction occurs (for example, at the first message exchange
allowing to recognizes the interlocutor) the profile playing the
role of recognizer builds a biometric model of the recognizing
node, in order to detect, in the future, the possible presence



of an intruder. Importantly, only a node already recognized
can play the role of recognizer. The underlying rationale
is that the misbehavior of a user is directly connected to
his/her anonymity in the social network. In other words,
making the recognizing process fully accounted and traced
(and related to a real-life identity), we can increase the trust
about recognized identities, provided that transitively, the
process leads to root nodes. As we cannot give an absolute
value to the principle above, we have to increase the level
of trust by requiring redundancy in the recognizing process,
thus making more improbable the conjunct misbehavior of
identified recognizers. The level of redundancy sets the level
of trust. The biometric model built by any participant, allows
us to detect possible profile compromising, thus including in
the trust also the expectation that an initially identified profile
is still under the exclusive control of the legitimate owner. It
is worth noting that, in principle, the biometric model could
be learned by means of multiple channels (social network
interactions, chats, shared editing, and so on) by associating
the model to the asserted identity.

Before giving into detail, we remark that the proposed
approach is not aimed to define a digital identity system,
since, as already observed, only a level of trust is obtained
and, further, it regards not all identifying data. Indeed, when
a user a recognizes a user b, she/he is stating just that b
is not claiming an identity not belonging to him, not the
veracity of all published information. The number and quality
of information needed to a to reach this conclusion depend
on the social context. Besides name and surname, they may
regard the job, the age, the friends, etc. A detailed study of
these aspects is out of the scope of this paper whose aim is
just to define the basic approach, leaving the detail (also for
example the case of multiple profiles of the same user, that
of social network profiles managed by more people, etc.) to
future work.

B. Keystroke dynamics

Keystroke dynamics is a behavioral biometric modality
consisting in analyzing user’s way of typing on a keyboard.
This biometric information can be computed easily on
Internet using a simple JavaScript code. Keystroke dynamics
has been experimented for the first time in 1980 in a study
where seven secretaries were asked to type three different
texts [24]. The results were promising, but lacked a sufficient
number of users involved in the database. The first patent
on keystroke dynamics was registered in 1986 [25]. Other
methods have been defined during the last twenty years [26].
In previous references such as [27], it has been shown that
keystroke dynamics is invariant to the keyboard type (laptop
or terminal). The use of mobile devices is not considered in
this paper but many methods exist to deal with this type of
capture [28].

The capture process of keystroke dynamics is presented in
Figure 1. It consists in computing several features when the
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Figure 1: Information captured in a keystroke dynamics system
when pressing C and O keys [29].

keys are pressed and released (timestamp of the event, code
of the key, . . . ) provided by any Operating System (OS).
The feature extraction consists mainly in computing different
latencies and duration times between each key. Figure 1
shows an example where the user presses two keys of the
keyboard. The user presses "C" at T1, "O" at T2 and releases
"C" at T3 and "O" at T4. Note that the following relation is
always respected: T3 > T1 and T4 > T2 (we always release
a key after pressing it), while the following condition may not
always be respected: T2 > T3 (because, as in our example, a
user may press another key before releasing the previous one).
We can extract three different types of latencies (T2-T1, T4-
T3,T2-T3) which we call PP (latency between two pressures),
RR (latency between two releases), RP (latency between
one release and one pressure) respectively and one type of
duration (T3-T1 or T4-T2) which we call PR (duration of
a key press). The described process is repeated for all the keys.

Keystroke dynamics can be used either with passwords to
enhance the security of user authentication or on free text.
In this paper, we intend to use it on free text. Subsequently,
we consider the different timing information between two-
character sequences known as digraphs. Digraphs are the la-
tency times between two successive keystrokes. The biometric
template associated to user z is composed of n digraphs
Bz = {b1z, .., bnz }. The considered digraphs could be associated
to one language. We have to build the user reference biometric
template by analyzing keystroke dynamics during a period
of time where we assume only the legitimate user interacts
with the social network. The reference template of user z is
defined by B̃z = {E[Bz], σ[Bz]} where E[.] corresponds to
the average value of biometric templates of user z and σ[.]
the associated standard deviation. To decide if a biometric
template Bx belongs to user z, we need to compare it with
the reference template of user z denoted B̃z as follows [30]:

Score = 1− 1

n

n∑
i=1

e−
|Bx−E[Bz ]|
σ[Bz ]

This score gives a confidence measure the user z is legit-
imate and will be used in the trust model we propose in the
next section.



C. Trust Model

In this section, we describe how our trust model works.
Throughout this section consider given a directed graph
G = 〈N,E〉 representing a social network and a redundancy
parameter t, i.e., a positive integer representing a level of trust.
Let TTP be a Trusted Third Party. Let denote by Nc the set of
certified nodes, that is the nodes whose identity is assured and
monitored by TTP. Given a node u ∈ N we denote by Γ(u)
the set of neighbors of u (i.e., adjacent nodes). Moreover, we
denote by R(u) ⊆ Γ(u) the set of nodes recognized by u.

Definition III.1. We say that a node u ∈ N is t-recognized
(in A ⊆ N ) if either: (i) u ∈ Nc (i.e., is a certified node), or
(ii) there exist t other t-recognized nodes in A that recognize
u.

When the set A of the definition above is not specified,
we intend that a node is t-recognized in N . From the above
definition it immediately follows that nodes in Nc are t-
recognized for any t and in any set A. We define now the
notion of t-closed set.

Definition III.2. A set A ⊆ N of t-recognized nodes in A is
said t-closed, if there is no u ∈ N \A that is t-recognized in
A too.

From the above definition it immediately follows that all
certified nodes must belong to any t-closed set.

Theorem III.1. For any t-closed set A, it holds that Nc ⊆ A.

With the next theorem we state that the operator ⊆ induces
a partial order over the set of t-closed sets, which is a lower
semi-lattice. First, we define this set.

Definition III.3. We denote by N t ⊆ 2N the set of non-empty
t-closed subsets of N .

Now, we are ready to state the following theorem.

Theorem III.2. N t is a lower semi-lattice.

Let denote by N t
b the bottom of the semi-lattice N t. In our

model, the role of N t
b is central, because it includes exactly

all nodes that are t-recognized, but, due to subset minimality,
they do not form clusters whose recognizing is only mutual.
In other words, N t

b is the set of nodes for which trust paths
start from certified nodes. For this reason, we use N t

b to trust
nodes.

Definition III.4. Given a node u ∈ N we say that u is t-
trusted (in N ) if u ∈ N t

b . N t
b is also said the set of t-trusted

nodes (in N ).

To formalize the relationship of t-trustworthiness of a node
with the presence of certified nodes supporting the trust, we
introduce the notion of support and kernel of a t-trusted node
in N t

b .

Definition III.5. A support for a node u ∈ N t
b \ Nc is

any subset Stu ⊆ Nc such that u is t-trusted also in the
transformation of G obtained by restricting the set of certified

nodes to Stu. A kernel Kt
u for u is any subset minimal support

for u.

The next theorem states in which terms we intend the level
of trust represented by t-trustworthiness. Informally, being t-
trusted for a node means that there are at least t trust chains
starting from certified nodes.

Theorem III.3. Given a node u ∈ N t
b \ Nc, any kernel Kt

u

for u is such that |Kt
u| ≥ t.

The above definition of N t
b and, consequently, of t-

trustworthiness of a node, is declarative, so it does not give us
any information about how to compute if a node is t-trusted or
not. Thus, we provide an operational definition of N t

b , based
on the fixpoint of a monotone operator Λt, called t-recognizing
operator. This definition also gives us a more intuitive support
about the property stated earlier, for which the trust of nodes
in N t

b can be directly or indirectly linked to (at least) t certified
nodes.

Definition III.6. We define the t-recognizing operator Λt :
2N → 2N as follows: (i) Λt(∅) = Nc (ii) Λt(A) = {u ∈
N | ∃B ⊆ A s. t. |B| ≥ t ∧ u ∈

⋂
v∈B R(v)}.

Now, we define the following sequence of sets: Λ0
t = Λt(∅);

Λkt = Λt(Λ
k−1
t ), for any k > 0.

By proving first that the operator is monotone, we can obtain
the following results:

Theorem III.4. The operator Λt has a fixpoint, i.e., there
exists k > 0 such that Λkt = Λk−1t . We denote this fixpoint as
Λ∞t .

The next theorem states the equivalence between the declar-
ative definition above and the operational one.

Theorem III.5. The set of t-trusted nodes N t
b coincides with

the fixpoint of the t-consequence operator Λ∞t .

The above theorem provides a direct way to compute the
set of t-trusted nodes N t

b , and thus to establish if a node is
t-trusted or not. Algorithm 1 summarizes this computation
strategy.

The above notion of t-trustworthiness embeds a lossless
propagation of trust, in which the level of assurance of
identity based on recognition of users, does not degrade if
the t redundancy property holds at every step of propagation.
In other words, the t-redundancy property is considered
as a threshold to propagate the trust. The t-redundancy
parameter implicitly represents the assumption that the
multiple identification of a node u done by nodes in turn
identified with the same trust level, and so on, until t certified
nodes are reached, can be considered sufficient to trust the
identity of u. The approach applies the concept of trust chain
used in the context of digital certification to the domain
of identity management in social networks, with the aim
of contrasting the problem of fake identities. It is worth
remarking that the model cannot provide absolute guarantees,



Algorithm 1 Implementation of Operator Λt (Definition III.6)

1: procedure COMPUTE N t
b

2: Variable: n1, . . . , n|N |, array of nodes; . The set of all graph nodes
3: Variable: v1, . . . , v|N |, array of boolean; . The set of already visited nodes
4: Variable: t1, . . . , t|N |, array of integer; . The set of integers representing the computed level of trust of each node
5: Variable: found, boolean; . Used to terminate the algorithm when no change in trust values is found
6: for all nodes ni ∈ N do . Initialization: trust level is 1 for certified nodes, 0 otherwise
7: if (ni ∈ Nc) then
8: vi=true; ti=t;
9: else

10: vi=false; ti=0;
11: found=true;
12: while (not found) do . Iterative computation of node trust level
13: found=false;
14: for all nodes ni ∈ N do
15: if (not vi) and (ti ≥ t) then
16: found=true;
17: vi=true;
18: for all nodes nj ∈ R(ni) do
19: tj = tj + 1;
20: for all nodes ni ∈ N do . Building N t

b to be returned
21: if (ti ≥ t) then
22: add ni to N t

b ;

but only a trust level directly connected with the value t. The
higher t, the higher the trust about identities.

So far, the trust model assumes that, once a user has
recognized another user, no revision of this information must
be done. This assumption would be valid only in absence
of attacks able to give the attacker the access to the user
profile (even temporarily). So we assume a sort of safe state
with regards to fraudulent accesses. In other words, the trust
model above prevents from the risk of fake profiles and fake
identities but not from fraudulent access to legitimate profiles.

To contrast this further case, we introduce a biometric-
based reinforcement to combine with the above trust-chain
mechanism, in order to decrease the trust on a given subject
if the biometric trait is not recognizable and thus managing
also non-safe states. Indeed, the full trust in our mechanism
is obtained by relying on the assumption that the disclosure
of trusted real-life identities prevents from misbehavior of
users in the trust mechanism itself, under the t-redundancy
assumption.

But, if the operating user is not the legitimate one, the above
assumption fails, so the identity of those users whose trust is
based on paths involving the potentially attacked profile should
be not fully trusted. In other words, to take into account this
aspect, we have to enable a gradual level of trust, from 0 to 1
(while before the trust was basically either 0 or 1), and use an
ε-approximation approach to trust identities. The first step is
to modify the notion of t-recognized. Obviously, we keep the

redundancy parameter t in the new definition, but we introduce
the possibility that a user is not fully identified in a given
moment, due to the fact that the biometric support is giving a
warning rate. We require that nodes in Nc (i.e., certified nodes)
loose their state if the biometric support gives a warning rate.
Thus, we can assume that certified nodes are not attacked.
Given a node u, we define the set Rε(u) (where 0 ≤ ε ≤ 1) as
the set of pairs 〈v, br(v)〉 such that v ∈ R(u) (i.e., v is a node
recognized by u in the safe state) and 1−ε ≤ br(v) ≤ 1 is the
current biometric rate (i.e., the score computed as in Section
III-B normalized from 0 to 1), provided that it is higher than a
given threshold 0 < 1−ε ≤ 1 under which v must be currently
considered not recognized. Obviously, for ε = 0 we fall in the
safe state. We say that nodes in Rε(u) are ε-recognized by u.
At this point, we are ready to extend the notion of t-recognized
to a non-safe state.

Definition III.7. We say that a node u ∈ N is 〈t, ε, r〉-
recognized (in N ) if either: (1) u ∈ Nc (i.e., is a certified
node), or (2) there exists a set B of 〈t, ε, r〉-recognized nodes
such that both (i) u /∈ B, (ii) |B| ≥ t, (iii) u ∈ Rε(v), for
each v ∈ B, (iv) 1− ε ≤ r ≤ 1, and (iv)

∑
v∈R br(v)

|B| ≥ r.

It is easy to see that a node is t-recognized, according to
Definition III.1, if and only if it is 〈t, 0, 1〉-recognized, accord-
ing to the above definition. The intended meaning of Definition
III.7 is to take into account warnings triggered by the biometric
support (through the parameter ε), and, at the same time, to
require by means of the parameter r that a possible fault of
trust introduced by ε can be partially recovered by fortifying
redundancy in order to reduce approximation. In words, if we



can trust less nodes because we are not sure they are not
attacked we need a larger set of witnesses to reach a safe
conclusion anyway. This means that r modulates the level of
assurance of trust, so that the higher r, the higher the trust
on the identity of 〈t, ε, r〉-recognized nodes. Actually, to talk
about trust we have to avoid mutual self-sustained cluster of
〈t, ε, r〉-recognized nodes, so we have to proceed as in the
safe state above by requiring the minimality condition. For
brevity we do not give all detail, but it is rather clear that
definitions of N t

b and, consequently, of t-trustworthiness of a
node, can be easily extended to the non-safe case, on the basis
of Definition III.7. We reach thus the definition of N 〈t,ε,r〉b

as the bottom of the semi-lattice of subsets of 〈t, ε, r〉-closed
nodes of N . Therefore, a node is 〈t, ε, r〉-trusted if belongs
to the set N 〈t,ε,r〉b . Also the definition of recognizing operator
can be trivially extended so obtaining the operator Λ〈t,ε,r〉 in
such a way that N 〈t,ε,r〉b coincides with the fixpoint Λ∞〈t,ε,r〉 of
such operator.

IV. EXPERIMENTAL RESULTS

In this section, we conduct a preliminary experimental
analysis of our approach aimed to obtain a first validation.
Even though as future work we plan to contextualize our
method in the related literature also experimentally, we argue
this is not a crucial task in this first assessment because of
the novelty (shown in the introduction and in Section II) of
our approach, which, differently from the existing ones, is
only based on information related to user-to-user interactions
to trust the the identity of the interlocutor.

In our experiments, the parameters and their default value
are: t = 15 is the level of trust, ε = 0.2 is the level of
approximation (system parameter), r = 0.9 is the level of
assurance (system parameter), N = 2.500 is the number of
nodes, C = 250 is the number of certified nodes, and M = 0
is the number of attacked nodes.

Test Bed. The dataset used in this experimental campaign is
a synthetic graph combined with real-life biometric data. It is
well known that the degree of social-network graphs follows
a power-law distribution [31], [32], [33]. This can be obtained
by using the Barabási–Albert model [34], one of the most
famous algorithms for generating random scale-free networks
using preferential attachment. Starting from a single-node
graph, each new node is connected to the existing nodes by
following the law: the more the node degree, the more the
probability to receive new links is. The parameters of the
Barabási–Albert model used in our experiments are the most
commonly adopted in this context.

We started by randomly elect certified nodes (whose number
is denoted by C) among nodes with degree higher than 0,
assuming that isolated nodes do not ask to be certified. We
simulate the interaction among connected nodes and used
biometry to decide if an interacting node is attacked. As for the
biometric component of the experiments, we used a biometric

benchmark database composed of keystroke dynamics [35].
It is composed of biometric template from 110 individuals
typing on two desktop keyboards (French keyboard for users
in France and Norwegian keyboard for users in Norway) i.e.
AZERTY and QWERTY (this is not a classical QWERTY
keyboard, however, we do not use specific Norwegian keys),
respectively.

Giot et al. tested the influence of keyboards on the per-
formances, and noticed no significant differences between a
laptop and a USB keyboard [29].

For this dataset, we considered 14 digraphs: latency of
‘ca’, ‘ic’, ‘ed’, ‘he’, ‘pe’, ‘te’, ‘ch’, ‘li’, ‘ri’, ‘ll’, ‘on’,
‘er’, ‘es’ and ‘st’. The size of the biometric template is 14.
We generated legitimate scores by comparing the reference
template with templates from the same user. In our attack
model, we simulated impostors by replacing the reference
template of the victim user with templates coming from other
users.

Results. The first experiment is devoted to the study of the
performance of our approach when no attack is performed.
Starting from our dataset, we varied the number of certified
nodes C from 0 to 15% nodes (i.e., 375 of 2.500 nodes) and
we measured the overall number of non-certified nodes that
are considered trusted, say Tn. We used as metric CV = Tn

C ,
measuring the gain in the number of trusted nodes with respect
to the number of certified nodes. In Figure 2, we show the
values of CV for three levels of trust, t = 10, 15, and 20.
From the analysis of these results, we observe that there
is a threshold value of certified users, under which the low
number of certified nodes makes ineffective our solution. This
threshold can be quantified in about 6-7 times the level of trust
t: for example, when t = 10, with about 2.5% certified nodes
(i.e., about 62 certified nodes) we are able to classify about
8·62 nodes as trusted. After this threshold, trusted relationships
are established and further increasing in the number of certified
nodes do not any advantages. Observe that the decreasing trend
of all the three curves is due to the fact that C is in the
denominator of CV .

Now, we study the performance of our model when attacks
occur: specifically, we study the strength of trust relationships
when some nodes are compromised. Starting from a trusted
scenario, we computed the fraction TV of trusted nodes which
are yet recognized after M nodes are attacked, with M varying
from 0 to 15% nodes. The result of this experiment is shown
in Figure 3. We consider two cases: in the first one (with
label “random” in the figure legend), compromised nodes
are selected randomly; in the second case (label “level”),
compromised nodes are first selected among those distant one
hop from certified nodes, then among those distant two hops
from certified nodes, and so on. This case is representative of a
collusion attack in which attacker close to a victim collaborate
to compromise its reputation. The fact that attacked nodes are
not trusted anymore is directly entailed by our mechanism,
so we do not report this trivial result. Instead, we studied the
resilience of the global trust graph to analyze the global impact
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Figure 2: The gain in the number of trusted nodes with regards to the number of certified nodes for a trusted scenario

of attacks.
From the analysis of this result, we observe that the system

is robust, even in presence of a not negligible number of
attacked nodes, as the most of the remaining trusted nodes
continue to be classified as trusted. In contrast, the model
performance degrades quickly if attacked nodes can be suit-
able selected: however, it is quite unrealistic to identify and
compromise specific accounts in a large social network.

V. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a collaborative approach based
on user-to-user interaction and keystroke-dynamics to trust
identities in a social network. The peculiarity of our method is
that it only relies on the view a user has of the neighborhood
combined with real-life background information and trust
propagation. We tested our method on a combination of real-
life and synthetic data, by obtaining promising results (a good
coverage with few certified nodes and a good resilience in case
of attacks). The next step of our research will be to complete
the theoretical characterization of the model, to deal with
some detail about user recognition, to deepen the experimental
analysis, and to deal with implementation issues.
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