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We present an analytical tight-binding theory of the optical properties of graphene nanoribbons with zigzag
edges. Applying the transfer matrix technique to the nearest-neighbor tight-binding Hamiltonian, we derive
analytical expressions for electron wave functions and optical transition matrix elements for incident light
polarized along the structure axis. It follows from the obtained results that optical selection rules result from the
wave function parity factor (−1)J , where J is the band number. These selection rules are that �J is odd for
transitions between valence and conduction subbands and that �J is even for transitions between only valence
(conduction) subbands. Although these selection rules are different from those in armchair carbon nanotubes,
there is a hidden correlation between absorption spectra of the two structures that should allow one to use them
interchangeably in some applications. The correlation originates from the fact that van Hove singularities in the
tubes are centered between those in the ribbons if the ribbon width is about a half of the tubes circumference.
The analysis of the matrix elements dependence on the electron wave vector for narrow ribbons shows a smooth
nonsingular behavior at the Dirac points and the points where the bulk states meet the edge states.

DOI: 10.1103/PhysRevB.95.155438

I. INTRODUCTION

Graphene nanoribbons with zigzag edges are quasi-one-
dimensional nanostructures based on graphene [1] that are
famous for their edges states. These states were theoretically
predicted for ribbons with the zigzag edge geometry by
Fujita [2] and for a slightly modified zigzag geometry by
Klein [3], although the history could be dated back to
the pioneering works on polymers [4,5]. Since then, edge
states in zigzag ribbons have been attracting much attention
from the scientific community [6–26], because such peculiar
localization of the states at the edge of the ribbon should
result in the edge magnetization due to the electron-electron
interaction. Although the effect was proved to be sound against
an edge disorder [6], such an edge magnetization had not
been experimentally confirmed until quite recently [27]. A
fresh surge of interest to physics of zigzag nanoribbons is
expected due to the recent synthesis of zigzag ribbons with
atomically smooth edges [28] and a rapid development of the
self-assembling technique [29].

The edge states in zigzag ribbons have been predicted
to be important in transport [24,25,30], electromagnetic
[31], and optical properties [9,13,32]. Although considerable
attention has been given to zigzag ribbons’ optical properties
[9,13,22,26,32–39], including many-body effects [36,40,41],
the effect of external fields [13,36], curvature [26], wave
function overlapping integrals [37,38], the finite length effect
[42], and the role of unit cell symmetry [43], a number of
problems have not been covered yet. In particular, it is known
that the optical matrix element of graphene is anisotropic at the
Dirac point [44,45] due to the topological singularity inherited
from the wave functions [46,47]. However, the fate of this
singularity in the presence of the edge states, i.e., in zigzag
nanoribbons, has not been investigated. This requires analysis
of the optical transition matrix element dependence on the
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electron wave vector, in contrast to the usual analysis limited
solely to the selection rules.

It was obtained numerically by Hsu and Reichl that
the optical selection rules for zigzag ribbons are different
from those in armchair carbon nanotubes [32]. By matching
the number of atoms in the unit cell of a zigzag ribbon
and an armchair tube, it was demonstrated that the optical
absorption spectra of both structures are qualitatively different
[32]. However, a comparison of these structures based on
the matching of their boundary conditions, similar to what
has been accomplished for the band structures [48] and
optical matrix elements [49] of armchair graphene nanorib-
bons and zigzag carbon nanotubes, has not been reported
yet.

The distinctive selection rules of zigzag graphene nanorib-
bons were noticed as early as 2000 by Lin and Shyu
[9]. This remarkable and counter-intuitive result, especially
when compared to the optical selection rules of carbon
nanotubes [44,50–54], was obtained numerically and followed
by a few attempts to provide an analytical explanation
[22,35].

Within the nearest-neighbor approximation of the π -orbital
tight-binding model the optical selection rules for graphene
nanoribbons with zigzag edges is a result of the wave function
parity factor (−1)J , where J numbers conduction (valence)
subbands. This factor has been obtained numerically as a
connector of wave function components without explicit
expressions for the wave functions being presented [22].
Concurrently, the factor (−1)J , responsible for the optical
selection rules, is missing in some papers providing explicit
expressions for the electron wave functions (see Appendix of
Ref. [20]). Although it emerged occasionally in later works
dealing with the transport and magnetic properties of the
ribbons [23,25], its important role was not emphasized and its
origin remains somewhat obscure. At the same time, Sasaki
and co-workers obtained the optical matrix elements which,
although providing the same selections rules, are very different
from those in Ref. [22]. Moreover, despite being reduced to the
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low-energy limit around the Dirac point, the matrix elements
in Ref. [35] remain strikingly cumbersome.

It is the purpose of the present paper to demonstrate a simple
way of obtaining analytical expressions for optical transition
matrix elements in the orthogonal tight-binding model. The
essence of this work is an analytical refinement of the paper
by Chung et al. [22], which provides an alternative explanation
of the selection rules to that given in terms of pseudospin [35].
However, we do not simply derive analytically the results of the
study [22] showing their relation to the zigzag ribbon boundary
condition and secular equation, but extend the approach to the
transitions between conduction (valence) subbands considered
by Sasaki et al. [35]. Unlike both mentioned studies, we go
beyond a “single point” consideration of the optical matrix
elements and analyze the matrix elements as functions of the
electron wave vector. The presence of possible singularities in
these dependencies at k = 2π/3, corresponding to the Dirac
point, and at the transition point kt , where the edge states meet
bulk states, is in the scope of our study. It is also the purpose
of this paper to investigate relations between zigzag ribbons’
and armchair nanotubes’ optical properties by matching their
boundary conditions in lieu of matching the number of
atoms in the unit cells as was done by Hsu and Reichl
[32].

This paper is organized as follows. In Sec. II, we present
the tight-binding Hamiltonian and solve its eigenproblem
by the transfer matrix method, following the original paper
by Klein [3], in this section, many analogies can be drawn
with the treatment of finite length zigzag carbon nanotubes
[55]; optical transition matrix elements are derived within
the so-called gradient (effective mass) approximation, and
optical selection rules are obtained. The analytical results are
discussed and supplemented by a numerical study in Sec. III.
Finally, the summary is provided in Sec. IV. We relegate to the
appendixes some technical details on ribbon wave functions
and supplementary results on matching periodic and “hard
wall” boundary conditions.

II. ANALYTICAL TIGHT-BINDING MODEL

A. Hamiltonian eigenproblem

Let us consider a zigzag ribbon within the tight-binding
model, which is the orthogonal π -orbital model taking into
account only nearest-neighbor hopping integrals. The atomic
structure of a graphene nanoribbon with zigzag edges is
presented in Fig. 1. A ribbon with a particular width can
be addressed by index w, numbering trans-polyacetylene
chains—so-called “zigzag” chains.

For such a ribbon, the tight-binding Hamiltonian can be
constructed in the usual way by putting kx → 0, where kx

is the transverse component of the electron wave vector. We
avoid the procedure described by Klein [3], since it results in
a Hamiltonian for which concerns were raised by Gundra and
Shukla [43]. Thus, for the ribbon with w = 2, it reads

H =

⎛⎜⎝ 0 γ q 0 0
γ q 0 γ 0
0 γ 0 γ q

0 0 γ q 0

⎞⎟⎠, (1)

FIG. 1. The atomic structure of zigzag ribbons consisting of
w = 3 and 4 zigzag chains. The carbon atoms are numbered within
the ribbon unit cells. The two outermost sites, where the electron
wave function vanishes, are labeled by black numbers. The graphene
lattice primitive translations a1 and a2 are shown along with the
two nonequivalent atoms from the A and B sublattices forming
the honeycomb lattice of graphene. The positions of zigzag chains,
including auxiliary ones, where the electron wave function vanishes,
are marked by dashed lines. m labels the dashed dotted line of the
mirror symmetry for even w and the ribbon center for odd w.

where γ is the hopping integral and q = 2 cos(k/2) with
k = kya being the dimensionless electron wave vector and
a = |a1| = |a2| = 2.46 Å being the graphene lattice constant.
The Hamiltonian H has a tridiagonal structure, therefore its
eigenproblem can be solved by the transfer matrix method,
which is a general mathematical approach for analytical
treatment of tridiagonal and triblock diagonal matrix eigen-
problems [56]. This approach was developed and widely used
for investigation of one-dimensional systems [57–60]. An
alternative approach may be based on continuants, which also
have been using for the investigation of conjugated π carbons
such as polyenes and aromatic molecules [61,62] and carbon
nanotubes [63] (see also Refs. [64–66]).

We use H to derive the relations between the eigenvector
components presented in the paper by Chung et al. [22]. In
particular, we pay special attention to the origin of the (−1)J

factor and its relation to the eigenstate parity. In the rest of this
section, we solve the eigenproblem for H .

1. Eigenvalues: proper energy

In this part of the section, we find eigenvalues by the transfer
matrix method [57–60]. The eigenproblem for the Hamiltonian
given by Eq. (1) can be written as follows:

cj−1γ − cjE + cj+1γ q = 0, j = 2p − 1;

cj−1γ q − cjE + cj+1γ = 0, j = 2p; (2)

where p = 1, . . . ,w, w = N/2, and N is the number of atoms
in the ribbon unit cell. Each of the equations above can be
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rewritten in the transfer matrix form [58]:⎛⎜⎝ cj

cj+1

⎞⎟⎠ =
⎛⎝ 0 1

− 1

q

α

q

⎞⎠
⎛⎜⎝cj−1

cj

⎞⎟⎠, j = 2p − 1;

(
cj

cj+1

)
=

(
0 1

−q α

)(
cj−1

cj

)
, j = 2p; (3)

where α = E/γ . Introducing

T1 =
⎛⎝ 0 1

− 1

q

α

q

⎞⎠ , T2 =
(

0 1
−q α

)
, (4)

and substituting j into (3) yield(
c2p−1

c2p

)
= T1

(
c2p−2

c2p−1

)
,(

c2p

c2p+1

)
= T2

(
c2p−1

c2p

)
, (5)

whence the following recursive relation can be readily noticed:(
c2p

c2p+1

)
= T2T1

(
c2p−2

c2p−1

)
, (6)

and the following transfer matrix equation can be obtained:

C2p+1 =
(

c2p

c2p+1

)
= T pC1 . (7)

Thus the transfer matrix in question is

T = T2 T1 =

⎛⎜⎜⎝− 1

q

α

q

−α

q

α2 − q2

q

⎞⎟⎟⎠ . (8)

The characteristic equation for finding the eigenvalues of T ,
det(T − λI ) = 0, is a quadratic one:

λ2 +
(

1

q
+ q − α2

q

)
λ + 1 = 0 . (9)

This equation has the following solution:

λ1,2 = A ±
√

A2 − 1 , (10)

where

A = α2 − q2 − 1

2q
= − cos θ . (11)

A new variable θ has been introduced above to reduce the
eigenvalues λ1,2 to the complex exponent form, which is
favourable for further calculations:

λ1,2 = −e∓iθ , (12)

where the upper (lower) sign is used for λ1 (λ2). We must
note that another choice of variable θ , i.e., A = cos θ , is also
possible, but it results in the inverse numbering of the proper
energy branches. The minus sign is a better choice because it
allows one to avoid a change of the lowest (highest) conduction
(valence) subband index when the ribbon width increases.

Equation (11) allows one to express the proper energy in
terms of θ and q:

α = E

γ
= ±

√
q2 − 2q cos θ + 1 . (13)

Taking into account that q = 2 cos(k/2), for the proper energy,
we obtain

E = ±γ

√
4 cos2

k

2
− 4 cos

k

2
cos θ + 1 , (14)

where θ is to be found from the secular equation for the fixed
ends boundary condition as in the case of a finite atomic chain
[58–60]. The physical interpretation of the parameter θ is to
be given further. We note that Eq. (14) has similar form not
only to the graphene energy band structure [67–69] but also to
the eigenenergies of the finite length zigzag carbon nanotubes
[55] [cf. with Eq. (32) therein].

2. Secular equation

For the fixed end boundary condition, which, in the context
of the electronic properties being considered, is better referred
to as the “hard wall” boundary condition, the general form of
the secular equation is (T w)22 = 0 [60]. This equation can be
obtained by imposing the constraint c0 = cN+1 = 0 on Eq. (7),
where p = w, which physically means the vanishing of the
tight-binding electron wave functions on sites 0 and N + 1,
or equivalently on zigzag chains 0 and w + 1 as illustrated in
Fig. 1. Hence, for the secular equation, the wth power of the
transfer matrix T is needed. The simplest way of calculating
T w is T w = S�wS−1, where � is the diagonal form of T and S

is the matrix making the transformation to a new basis in which
T is diagonal. The eigenvalues of T are given by Eq. (12),
therefore, � can be easily written down. Concurrently, the S

matrix can be constructed from eigenvectors of T written in
columns. By setting the first components of the vectors to be
equal to unity, one can reduce them to

V1 =
(

1
ξ1

)
, V2 =

(
1
ξ2

)
, (15)

where the following notation is used:

ξ1,2 = 1 + qλ1,2

α
. (16)

Then the matrix S and its inverse matrix S−1 can be written as
follows:

S =
(

1 1
ξ1 ξ2

)
, S−1 = 1

ξ2 − ξ1

(
ξ2 −1

−ξ1 1

)
. (17)

Expressions (17) are of the same form as in the atomic ring
problem [59]. Using (17), the T w calculation yields

T w = 1

ξ2 − ξ1

(
ξ2λ

w
1 − ξ1λ

w
2 λw

2 − λw
1

ξ1ξ2
(
λw

1 − λw
2

)
ξ2λ

w
2 − ξ1λ

w
1

)
. (18)

Now by the aid of (16) and (12) from (18), we can find the
explicit form of the secular equation for θ :

sin wθ − 2 cos
k

2
sin[(w + 1)θ ] = 0 . (19)
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FIG. 2. Solutions of the secular equation (19) for zigzag graphene
nanoribbon with w = 6 and the following values of the parameter
q = 2 cos(k/2): (a) 0, (b) w/(w + 1), (c) 3w/2(w + 1), and (d) 2.
The light blue shading signifies the θ intervals to which the secular
equation solutions are confined for q’s ranging from 0 to ∞.

The equation above is very much like that analysed by Klein
[3] for so-called “bearded” zigzag ribbons, therefore, the same
basic analysis can be carried out.

As can be seen from Fig. 2, all nonequivalent solu-
tions of Eq. (19) reside in the interval θ ∈ (0,π ). When
the slope of q sin[(w + 1)θ ] at θ = 0 is greater than
that of sin wθ , i.e., (q sin[(w + 1)θ ])′θ=0 > (sin wθ )′θ=0 ⇒
2 cos(k/2) > w/(w + 1), there are w different solutions in
the interval, which give 2w branches of the proper energy
(14). This is indicated in Figs. 2(a) and 2(b). However, as seen
from Figs. 2(c) and 2(d), when 2 cos(k/2) � w/(w + 1), one
solution is missing and Eq. (14) defines only 2w − 2 branches.
The missing solution can be restored by analytical continuation
θ = iβ, where β is a parameter to be found. In this case,
the secular equation (19) and the proper energy (14) must be
modified accordingly by changing trigonometric functions to
hyperbolic ones. The above introduced parameter θ (β) can
be interpreted as a transverse component of the electron wave
vector and the secular equation (19) can be referred to as its
quantization condition.

3. Eigenvectors: wave functions

Let us now find eigenvectors of the Hamiltonian given by
Eq. (1). To obtain the eigenvector components, we choose
the initial vector C1 = (c0,c1) as a linear combination of
the transfer matrix eigenvectors that satisfies the “hard wall”
boundary condition c0 = 0: C1 = (V1 − V2)/(2i). It is to be

mentioned here that the opposite end boundary condition,
cN+1 = 0, is ensured by Eq. (19). The chosen C1 yields

C2p+1 = T pC1 = 1

2i

(
λ

p

1 V1 − λ
p

2 V2
)

= 1

2i

(
λ

p

1 − λ
p

2

λ
p

1 ξ1 − λ
p

2 ξ2

)
(20)

or, equivalently,

c2p = 1

2i

(
λ

p

1 − λ
p

2

)
, p = 1, . . . ,w;

c2p+1 = 1

2i

(
λ

p

1 ξ1 − λ
p

2 ξ2
)
. (21)

Substituting (12) and (16) into (21) and keeping in mind the
definition of α, one readily obtains

c2p = (−1)p+1 sin pθ, p = 1, . . . ,w; (22)

c2p+1 = (−1)p+1γ

E

{
sin pθ − 2 cos

k

2
sin[(p + 1)θ ]

}
. (23)

It is worth pointing out that for the starting p = 1 from the
equations above one gets components c2 and c3. Although
it may seem strange because of the missing c1, this is how
it should be for c1 has already been specified by the proper
choice of the initial vector C1.

Equation (23) can be further simplified (see Appendix A)
so that for the eigenvector components, one has

c
(j )
2p = (−1)p+1 sin pθj , p = 1, . . . ,w; (24)

c
(j )
2p+1 = ±(−1)p+1(−1)j−1 sin[(p − w)θj ], (25)

where we have introduced the index j to number various values
of θ , which are solutions of Eq. (19). As one may have noticed
the above expressions still have one drawback: p = 1 defines
components c2 and c3, while it would be much more convenient
if p = 1 would instead specify c1 and c2. To obtain desired
dependence of the eigenvector components on the variable
index, one needs to redefine in Eq. (25) the index p → n − 1:

c
(j )
2n−1 = ±(−1)n(−1)j sin[(w + 1 − n)θj ], n = 1, . . . ,w;

c
(j )
2p = (−1)p+1 sin pθj , p = 1, . . . ,w;

and then put n → p. The latter is permissible since n is a
dummy index that can be denoted by any letter. Note that
due to the change of the terms order in the sine function one
(−1) factor in the coefficient c

(j )
2p+1 above cancels, therefore,

j − 1 in the exponent has been replaced by j . Thus, for the
Hamiltonian (1), we end up with the following eigenvectors:

c
(j )
2p−1 = ∓(−1)p(−1)j sin[(w + 1 − p)θj ],

c
(j )
2p = (−1)p sin pθj , p = 1 . . . w , (26)

where we have got rid of (−1) in c
(j )
2p . Since the whole

eigenvector |c(j )〉 = (c(j )
1 ,c

(j )
2 , . . . ,c

(j )
N ) can be multiplied by

any number, one can choose this number to be (−1). Having
multiplied |c(j )〉 by (−1), one has to change ± to ∓ in
the coefficient c

(j )
2p+1, therefore in Eq. (26), the upper “−”
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stands now for the conduction band, while the lower “+”
for the valence band. The (−1)p factor, however, cannot be
eliminated in a similar way because it determines the signs
of various components differently. Nevertheless, this factor is
of no significance, too, for it can be eliminated by a unitary
transform U , which is a diagonal matrix with the main diagonal
defined as

{u2p−1,2p−1,u2p,2p} = {(−1)p,(−1)p}|p=1,...,w . (27)

For w = 2, it reads

U =

⎛⎜⎝−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ . (28)

As follows from (27), U is both a unitary and an involutory
matrix. It can be straightforwardly checked that applying the
unitary transform (27) to the eigenvector of H given by
Eq. (1), i.e., |c̃(j )〉 = U |c(j )〉, we obtain eigenvectors of the
Hamiltonian H̃ = UHU †. For w = 2, the explicit form of the
new Hamiltonian is

H̃ =

⎛⎜⎝ 0 γ q 0 0
γ q 0 −γ 0
0 −γ 0 γ q

0 0 γ q 0

⎞⎟⎠ . (29)

The general form of the eigenvectors of H̃ is the same as (26)
but without (−1)p factor:

c̃
(j )
2p−1 = ∓(−1)j sin[(w + 1 − p)θj ] ;

c̃
(j )
2p = sin pθj , p = 1, . . . ,w . (30)

Equations (30) and (26) present components of non-
normalized eigenvectors |c(j )〉. Normalization constant Nj for
these vectors can be found from the normalization condition
N2

j 〈c(j )|c(j )〉 = N2
j

∑w
p=1 c

(j )∗
2p−1c

(j )
2p−1 + c

(j )∗
2p c

(j )
2p = 1, which

yields

Nj = 1√
w − cos[(w + 1)θj ]

sin wθj

sin θj

. (31)

We do not use “̃ ” two distinguish the two types of eigenvectors
mentioned above because, by definition, unitary transform
preserves the dot product, therefore the normalization constant
is the same in both cases.

As in the case of the secular equation, eigenvectors
and normalization constants for the missing solution θ are
obtained by the substitution θ → iβ, which results in wave
functions being exponentially decaying from the ribbon edges
to its interior. These wave functions describe the so-called
edge states [2,3,6]. In contrast to them, the wave functions
given by normal solutions θj extend over the whole ribbon
width, therefore they describe the so-called extended or
bulk states. It can be shown that normalized eigenvectors’
components for extended and edge states seamlessly match in
the transition point kt defined by 2 cos(k/2) = w/(w + 1) (see
Appendix B).

FIG. 3. The bulk-edge transformation and parity of a zigzag
nanoribbon wave function. The normalized wave functions |J (s)〉
of the zigzag nanoribbon with w = 15 for various bands J (s) and
the Brillouin zone points k = kt + δ: (a) δ = −0.3, (b) 0, and (c)
0.3. The solid lines are used for eye guidance, while the dashed and
dashed-dotted curves represent the envelopes of the 2p − 1 (A) and
2p (B) sites. The horizontal axis is a normalized transverse coordinate
xi/W , with W being the ribbon width. The plots are shifted vertically
by ±0.3 for clarity. The dashed dotted vertical line and thick black
points denote the line of the mirror and centers of the inversion
symmetry, respectively.

The matching of the bulk and edge state wave functions
is shown in Fig. 3, where the wave functions of the zigzag
ribbon with w = 15 are plotted as functions of the atomic
site positions x2p−1 = (

√
3a/2)(p − 1) and x2p = (a/2

√
3) +

x2p−1 normalized by the ribbon width W = x2w. Figure 3
presents wave functions for several energy branches J (s),
where J is the energy branch number and s = c or v refers
to the conduction or valence branch, respectively. As one can
see, a bulk state wave function |1(v)〉, Fig. 3(a), transforms
into a wave function |1(v)〉 predominantly concentrated at
the ribbon edges and decaying towards the ribbon center,
Fig. 3(c), by becoming a linear function of xi/W at k = kt

as shown in Fig. 3(b). One can also see that the parity factor
can be associated with the mirror or inversion symmetry of the
electron wave function. For conduction subbands, if the parity
factor (−1)J is positive, then the wave function is symmetric
with respect to the inversion center denoted by the large black
point as seen for |2(c)〉 and |4(c)〉 in Figs. 3(a) and 3(c). This
means the wave function is odd. However, if (−1)J is negative,
then the wave function is even, i.e., it is symmetric with respect
to the reflection in the dashed dotted line signifying the ribbon
center. This happens for |3(c)〉 in Fig. 3(b). For the valence
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subbands, the behavior is opposite: if (−1)J is negative then
the state wave function is odd, as can be seen from Fig. 3 for
the subband 1(v), but it is even for positive parity factor (−1)J .
Such behavior is in agreement with the general properties of
motion in one dimension [70]. The parity factor attributed
to the mirror symmetry with respect to the line bisecting the
ribbon longitudinally (see Fig. 1) has been discussed in the
literature [4,32,37,38]. In this view, it should be noted that
the unit cells of ribbons with odd w do not have such a
reflection symmetry (see Fig. 1 for w = 3), nevertheless as
we see from Fig. 3, for such ribbons, the wave functions can
still be classified as even or odd in aforementioned sense. This
suggests that the symmetry argument developed in Ref. [43] as
a criterion for the usage of the gradient approximation, which
is to be discussed in the next section, is not complete, since
in that form it applies only to ribbons with even w. Finally,
we notice that the state wave functions can be classified by a
number of twists of the envelope functions presented in Fig. 3
by dashed and dashed dotted curves. The number of such twists
(nodes) is equal to J (c) and J (v) − 1 for the conduction and
valence subbands J (s), respectively. This behavior is similar
to what is expected from the oscillation theorem [70].

B. Optical transition matrix elements

In this section, we study the optical properties of graphene
nanoribbons with zigzag edges. Optical transition matrix
elements are worked out in the gradient (effective mass)
approximation [71–74] and optical selection rules are ob-
tained. However, before moving to the matrix elements of
the ribbons, we shall introduce details of optical absorption
spectra calculations where these matrix elements are to be
used.

Within the first-order time-dependent perturbation theory
the transition probability rate between two states, say |�f 〉
and |�i〉 having energy Ef and Ei , respectively, is given by
the golden rule [75]:

Ai→f = 2π

h̄
|〈�f |Ĥint(t)|�i〉|2δ(Ef − Ei − h̄ω), (32)

where δ(. . . ) is the Dirac delta function, and Ĥint(t) is a
time-dependent interaction Hamiltonian coupling a system
in question to that causing a perturbation, which is periodic
in time with frequency ω. Considering an incident plane
electromagnetic wave as a perturbation, one can show in the
dipole approximation, eik·r ≈ 1, that

〈�f |Ĥint(t)|�i〉 ∼ E0

ω
〈�f |v̂ · ep|�i〉 ≡ E0

ω
Mf,i, (33)

where v̂ is the velocity operator, E0 is the electric field
strength amplitude and ep is the vector of electromagnetic
wave polarization. Thus optical transition matrix elements can
be reduced to the velocity operator matrix elements (VMEs).

The total number of transitions per unit time in solids
irradiated by electromagnetic wave at zero temperature is a
sum of Ai→f over all initial (occupied) states in the valence
band and final (unoccupied) states in the conduction band.
To account for losses such as impurity and electron-phonon
scattering, the delta function in Eq. (32) is replaced by a
Lorentzian. The difference in occupation numbers of the initial

and final states due to the finite temperature is introduced by the
Fermi-Dirac distribution. Then, for the absorption coefficient
due to the interband transitions, one has

A(ω) ∼
∑

n,m,k,s,s ′
Im

[
f (Em,s(k)) − f (En,s ′ (k))

En,s ′ (k) − Em,s(k) − ω − i�

]

× |Mn(s),m(s ′)(k)|2
ω

, (34)

where Em,s(k) is the dispersion of the electron in the m-th
conduction (s = c) or valence (s = v) subband, f (Em,s(k))
is the Fermi-Dirac distribution function, Mn(s),m(s ′)(k) is the
optical transition matrix element being a function of the
electron wave vector, � is the phenomenological broadening
parameter (0.004 γ ) [9]. Note that for nonzero temperature
summation over initial states should also include states in the
conduction band, therefore indices s,s ′ have been introduced
above. The frequency of an incident wave, ω, as well as the
electron energy, is measured in the hoping integral γ .

Similar to Ref. [22], we follow the prescription of the
gradient approximation [71,73] to obtain the velocity operator
right from the system Hamiltonian:

v̂ = i

h̄
[Ĥ ,r̂] = 1

h̄

∂Ĥ

∂k
, (35)

whence for a one-dimensional case,

v = 1

h̄

∂H

∂k
, (36)

with H being the Hamiltonian of the unperturbed system. Note
that the derivative ∂H/∂k is different from ∂H/∂A mentioned
in Ref. [35], where A is the vector potential. The former
has a clear relation to the minimal coupling k → k + (e/h̄)A
via the expansion H (k + (e/h̄)A) = H (k) + (e/h̄)∇kH · A +
. . ., where higher-order terms can be neglected for small A.
Such an approach is equivalent to the effective mass treatment
since the commutator [. . .] in Eq. (35) implies that the crystal
momentum k is an operator:

k = 1

i

∂

∂x
i + 1

i

∂

∂y
j, (37)

which commutes with the position operator in the same way as
real momentum p, i.e., [x,kx] = i. Note, however, that there
is no formal restriction to low energies around the Dirac
point, k = 2π/3, as in the k · p theory with the effective
mass approximation for graphene [76,77], carbon nanotubes
[78,79], or graphene nanoribbons [11,80].

In what follows, we proceed with the calculation and
analysis of the velocity operator matrix elements (VMEs) in
the gradient (effective mass) approximation. Introducing the
following vector:

|ζ (m)〉 = a

h̄

∂H (k)

∂k
|c(m)〉 , (38)

the VME is evaluated as

Mn(c),m(v) = 〈
c(n)
c

∣∣ζ (m)
v

〉
=

w∑
p=1

c
(n)∗
2p−1

c

ζ
(m)
2p−1

v

+ c
(n)∗
2p
c

ζ
(m)
2p
v

, (39)
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where indices “c” and “v” denote the conduction and valence
band, respectively, and the eigenvectors |c(n,m)〉 are meant to
be normalized. In Eq. (38), the graphene lattice constant a

emerged because, in contrast to the general expression (36), the
electron wave vector k is now treated again as a dimensionless
quantity.

Let us calculate VMEs for the Hamiltonian H̃ of the form
presented by Eq. (29). Similar calculations for H results in the
same final expression. Due to the nature of unitary transforms
it is not essential which of the Hamiltonians and corresponding
eigenvectors one uses. The components of vectors |ζ̃ (j )〉 are

ζ̃
(j )
2p−1 = −γ a

h̄
sin

(
k

2

)
sin pθj , p = 1, . . . ,w;

ζ̃
(j )
2p = ±γ a

h̄
sin

(
k

2

)
(−1)j sin[(w + 1 − p)θj ], (40)

with upper “+”(lower “−”) being used for conduction (va-
lence) subbands. Substituting Eqs. (30) and (40) into (39), one
obtains

Mn(c),m(v) = γ a

h̄
sin

(
k

2

)
NnNm[(−1)n − (−1)m]Sn,m , (41)

where Sn,m is a sum. A similar form of the matrix element was
obtained in Ref. [22] but explicit expressions for the sum Sn,m

and normalization constants Nn(Nm) were not provided and
potential singularities in VME due to Nj and Sn,m dependence
on k were not analysed. Such an analysis has not been carried
out elsewhere including Ref. [35].

It is known that the topological singularity in the graphene
wave functions [46,47] leads to anisotropic optical matrix
element and absorption in the vicinity of the Dirac point
[44,45]. This anisotropy is eliminated in the matrix element of
carbon nanotubes [44,51], but the matrix element can exhibit
singular behavior at the Dirac point of the tube’s Brillouin
zone if a perturbation such as strain, curvature [49] or external
magnetic field [81–83] is applied. The sharp dependence of
the zigzag ribbon VME on the electron wave vector around
k = ±2π/3 could be triggered by the presence of the edge
states. This possibility, however, has not been analysed yet.
The VME behavior at the transition point kt has not been
investigated either. Being of practical interest [49] this requires
a thorough analysis of possible singularities in the VME
dependence on k. The Sn,m sum is given by

Sn,m =
w∑

p=1

sin[(w + 1 − p)θn] sin pθm

= sin θm sin[(w + 1)θn] − sin[(w + 1)θm] sin θn

2(cos θn − cos θm)
. (42)

In Eq. (41), normalization constants have been added since
the vectors given by Eq. (30) and used for obtaining Eq. (40)
are not normalized. It is important to allow for normalization
constants in the VMEs because otherwise due to their θj

and therefore k dependency the VME curve’s behavior in the
vicinity of the transition point kt is incorrect. It is also worth
noting that for θn = θm, or equivalently for Sn,n, there is an
indeterminacy of 0

0 type in the summation result of Eq. (42).
This indeterminacy can be easily resolved by L’Hospital’s rule,

which yields

Sn,n = (w + 2) sin wθn − w sin[(w + 2)θn]

4 sin θn

. (43)

In a similar fashion, one can check that for θn → 0, Sn,n → 0.
Note, however, that if θn → 0, then the normalization constant
Nn given by Eq. (31) becomes infinitely large, thereby intro-
ducing indeterminacy into the VME. For transitions between
the valence and conduction subbands this indeterminacy is not
essential for it is multiplied by an exact zero, originating from
the square brackets in Eq. (41), which ensures a zero final
result.

As can be seen from Eq. (41), Mn(c),n(v) is zero, whereas
Mn(c),n+1(v) ∼ NnNmSn,m sin(k/2). Thus optical selection
rules are: if �J = n − m is an even integer, then transitions
are forbidden, whereas if �J = n − m is an odd integer,
then transitions are allowed. The influence of the factor
Sn,m together with the normalization constants Nn and Nm

on the transition probability, omitted in Ref. [22], will be
discussed in detail in Sec. III. In the remainder of this section,
we consider transitions between only conduction (valence)
subbands, which are considered in Ref. [35] but are beyond
the scope of Ref. [22].

If the temperature is not zero, then there is a nonzero
probability to find an electron in the conduction subband
states. Therefore an incident photon can be absorbed due to
transitions between conduction subbands. The same is true for
valence subbands, which are not fully occupied. That is why,
as has been pointed out above, the summation in Eq. (34) is to
be carried out over transitions between conduction (valence)
subbands too. Thus, for the absorption coefficient calculation,
one also needs VMEs for such transitions. Making use of
Eqs. (30) and (40), we obtain

Mn(s),m(s) = 〈
c(n)
s

∣∣ζ (m)
s

〉
= ±γ a

h̄
sin

(
k

2

)
NnNm

× [(−1)n + (−1)m]Sn,m , (44)

where “+” and “−” are used for VME of transitions be-
tween conduction, s = c, and valence, s = v, subbands. For
the specified transitions, the optical selection rules are the
following: transitions are allowed if �J is an even number
and they are forbidden otherwise. These matrix elements
and corresponding selection rules should be important in
spontaneous emission (photoluminescence) calculations [84].

In the case of n = m, VME given by Eq. (44) is nothing else
but the group velocity of an electron in the nth band. If n =
m = 1, then θn = θm → 0 as k approaches the transition point
kt . As a result, in Eq. (44), the indeterminacy arises in precisely
the same manner as discussed above for Eq. (41). In the present
case, however, it is essential since the expression in square
brackets of Eq. (44) is not an exact zero. The indeterminacy
can be resolved by the application of L’Hospital’s rule twice.
This burden, however, can be bypassed by calculating the VME
by the aid of simplified expressions for eigenvectors at the kt

provided in Appendix B. Such a calculation yields

M1(s),1(s) = ∓γ a

h̄
sin

(
kt

2

)
w + 2

2w + 1
, (45)

155438-7



V. A. SAROKA, M. V. SHUBA, AND M. E. PORTNOI PHYSICAL REVIEW B 95, 155438 (2017)

where the upper (lower) sign is used for the conduction
(valence) subband. It is easily seen from the expression above
that in the limit of a wide ribbon the electron group velocity at
kt ≈ 2π/3, i.e., approaching to the Dirac point, is ∓vF /2.

Velocity matrix elements for transitions involving edge
states can be easily obtained from Eqs. (41) and (44) with
Sn,m given by Eq. (42) after θ → iβ replacement being
applied. It should be noticed that the Eqs. (41) and (44)
obtained here are incomparably simpler than their analogues
in Ref. [35] [cf. with Eqs. (18) and (19) therein]. In the next
section, we discuss and investigate numerically the obtained
results.

III. NUMERICAL RESULTS AND DISCUSSION

A. Electronic properties

The physical properties of graphene nanoribbons are often
related to those of carbon nanotubes (CNTs). In particular,
one usually compares the electronic properties of graphene
nanoribbons with those of carbon nanotubes [32,33]. In most
cases, such a comparison is based merely on the fact that
an unrolled carbon tube transforms into a graphene ribbon.
However, this approach is a crude one. Firstly, because only
zigzag (armchair) ribbons with even number of carbon atom
pairs can be rolled up into armchair (zigzag) tubes. Secondly,
because a more relevant and subtle comparison requires the
matching of boundary conditions. It has been shown by White
et al. [48] that periodic and hard wall boundary conditions
can be matched for armchair ribbons and zigzag carbon
nanotubes if the width of the ribbons is approximately equal
to half of the circumference of the tubes. In Fig. 4, we
demonstrate that a similar correspondence of the electronic
properties takes place for zigzag graphene nanoribbons with
w zigzag chains, ZGNR(w), and armchair carbon nanotubes,
ACNT(w + 1,w + 1) and ACNT(w,w) depending on which
parts of the Brillouin zones are matched (see Appendix C). The
impossibility of matching a zigzag ribbon with just one of the
tubes arises from the secular equation (19) linking transverse
wave vector θ with the longitudinal wave vector k. For sure,
due to the presence of the edge states, one should not expect the
transport properties of undoped ribbons to be the same as those
of tubes, but the equivalence of the optical properties seems to
be quite natural thing. However, this is not the case. As was
shown numerically [9,22,26,32] and has been demonstrated
above analytically, the optical selection rules of zigzag ribbons
are different from those of armchair tubes [44,50,51,53,85]
(see also Appendix D). This leads to transitions between the
edge states being forbidden, which should also have important
implications for zigzag ribbon based superlattices [86–88]. A
somewhat similar picture is observed in the bilayer graphene
quantum dots of triangular shape, where the edge states are
dispersed in energy around the Fermi level [89].

B. Optical properties

1. Optical transition matrix elements

To scrutinize the velocity operator matrix elements (VMEs)
for allowed transitions we focus on the zigzag ribbon with
w = 10. In Figs. 5 and 6, we plotted the VMEs given
by Eqs. (41) and (44) as functions of the electron wave

FIG. 4. A zigzag nanoribbon and armchair nanotube band struc-
ture matching. (a) The band structure of an armchair carbon nanotube,
ACNT(7,7), compared to (b) that of a zigzag ribbon with w = 6,
ZGNR(6). (c) and (d) The same as (a) and (b) but for ACNT(6,6).
The dashed gray curves encompass light blue area, which signifies
the region of the graphene band structure. The vertical lines kt

and k′
t mark positions of the transitions points defined by equation

2 cos(k/2) = w/(w + 1) in the vicinity of K and K′ points (i.e.,
k = ±2π/3), respectively. The inverse band numbering for the ribbon
used in Appendix C and direct band numbering for the tube, i.e., for
A = − cos θ , are shown. The corresponding atomic structures are
presented on both sides for clarity.

vector in the first Brillouin zone (BZ). Figure 5 includes
results for an armchair tube for the sake of comparison.
All plots are normalized by the graphene Fermi velocity
vF = √

3aγ /(2h̄). The arbitrary phase factor of the VMEs,
which does not affect their absolute values, was chosen such
that it favours plots’ clarity. As in previous sections, we follow
the adopted two index notation for the ribbon bands: J (s),
where J = 1, . . . ,w is the band number and s = c and v is
the band type with “c” and “v” standing for conduction and
valence bands, respectively. With this notation in mind, one
can see that the VME curves for transitions j (v) → (j + 1)(c)
[(j + 1)(v) → j (c)], where j = 1, . . . ,w − 1 are shown in
Fig. 5(a). The VME curves for transitions 1(v) → 2n(c)
[2n(v) → 1(c)], where n = 1, . . . ,w/2 or (w − 1)/2, and for
transitions between conduction (valence) subbands only, i.e.,
1(s) → (2n − 1)(s), where n = 1, . . . ,w/2 or (w − 1)/2 are
presented in Figs. 6(a) and 6(b), respectively. As one can
see, the VME curves deviate significantly from the previously
reported sin(k/2) behavior [22,35], according to which ex-
trema are to be at k = π , i.e., at the edge of the BZ. The
deviation is due to the Sn,m and Nj given by Eqs. (42) and (31)
[see also Eq. (B4)], respectively. The shift of the VME curve
extrema from the BZ edge is larger for low-energy transitions.
Interestingly enough, the positions of these extrema in BZ do
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FIG. 5. The velocity operator matrix elements of a zigzag
nanoribbon and armchair carbon nanotube with similar k dependence.
(a) The VMEs of ZGNR(10) transitions v → c, �J = 1 within the
first Brillouin zone in comparison with (b) those of ACNT(11,11)
transitions v → c,�J = 0. The labels of the VME curves correspond
to those of vertical arrows presenting the transitions in the right panels.
The index J shows the direct band numbering resulting from Eq. (11)
for the ribbon and inverse numbering for the tube (see Appendix C).
The double degenerate tube’s bands have two labels. Dashed arrows
represent transitions between the bands numbered in round brackets.

not coincide with those of the energy band extrema resulting in
the van Hove singularities in the density of states. The curves
labeled by 1 in Figs. 5(a) and 6(a) represent direct transitions
from the edge states to the closest in energy bulk states. These
curves have the largest magnitudes among the ribbons VMEs.
However, even for them the maximum absolute values are
well below vF , in sharp contrast to what is seen in Fig. 5(b)
for ACNT(11,11) (cf. Refs. [51,81]). Though it is difficult
to ignore the fact that the shapes of the VME curves 2 to
9 in Fig. 5(a) are very similar to those obtained for ACNT
VMEs in Fig. 5(b). The most profound curves in Fig. 6(b)
are also labeled by 1, but they do not have corresponding
transitions depicted in the panel to the right. This is because
these curves are, in fact, the electron group velocities in 1(v)
and 1(c) subbands given by Eq. (44). As can be seen, at
the transition points kt and k′

t marked by vertical lines the
group velocity curves have magnitudes about vF /2. This is in
accordance with Eq. (45). Ignoring the group velocity curve,
one finds that the most prominent magnitudes of VME have
transition 1(c) → 3(c) [3(v) → 1(v)]. The probability rate
described by VMEs of 1(s) → (2n − 1)(s), where n = 2, . . . ,
transitions is comparable to that of transitions 1(v) → 2n(c)
[1(c) → 2n(v)], where n = 2, . . . , labeled by 2, 3, 4, etc.,
in Figs. 6(a) and 6(b). However, these transitions are less
intense compared to 1(v) → 2(c) [2(v) → 1(c)], or majority

FIG. 6. The velocity operator matrix elements for transitions
inherent to zigzag ribbons. The VMEs of the allowed transitions
of ZGNR(10) within the first Brillouin zone: (a) v → c, �J =
1,3,5, . . . and (b) v → v, c → c, and �J = 0,2,4, . . .. The VME
curves and energy band labeling follows the same convention as in
Fig. 5.

of the j (v) → (j + 1)(c) [(j + 1)(v) → j (c)], where j =
1, . . . ,w − 1, transitions presented in Fig. 5(a). A regular
smooth behavior of all matrix elements at the K(K′) and kt

(k′
t ) points is worth highlighting, especially for those including

1(s) subbands. We noticed, however, that for increasing ribbon
width (up to w = 25) the VME curve peaks for transitions
involving 1(s) subbands gain a sharper form, therefore a
singular VME behavior may still be expected for 1(v) → 2(c)
[2(v) → 1(c)] transitions in ribbons with w > 25.

2. Absorption

It follows from Figs. 5 and 6 (see also Appendix E) that
the absorption spectra of zigzag ribbons are mostly shaped
by v → c transitions with �J = 1 presented in Fig. 5(a).
However, other transitions may play an important role at
certain conditions created by interplay of the doping (or
temperature) and ribbon width. To check this, we investigated
optical absorption spectra given by Eq. (34) for narrow ribbons
with w = 2, . . . ,10. In what follows, we discuss ZGNR(6) for
it has the most prominent features and additionally it has been
recently synthesized with atomically smooth edges [28].

Figure 7 compares the absorption spectra of ZGNR(6)
for various positions of the Fermi level, EF . As one can
see, depending on EF the absorption spectrum has 4 or 5
pronounced peaks, which we label in ascending order of their
frequency as A, B, C, D, and E. Peaks D and E are not
sensitive to the doping, whereas peaks A, B, and C are.
In contrast to peaks A and C undergoing suppression with
increasing EF , peak B significantly strengthens. Such different
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FIG. 7. The doping-dependent absorption peaks in zigzag graphene nanoribbons. (a) The absorption spectra of ZGNR(6) for various
positions of the Fermi level: EF = 0, 0.001γ , 0.004γ , and 0.02γ for the curves 1©, 2©, 3©, and 4©, respectively. The frequency ω is measured in
hopping integrals γ . The spectra are shifted vertically for clarity. (b) The VMEs for transitions depicted in (c) the band structure of ZGNR(6).
The vertical lines labeled by encircled numbers mark the positions of the points where the Fermi levels cross the 1(c) subband. The thick black
points signify subband and VME extrema. (d) The partial, i.e., for each subband separately, and total density of states for ZGNR(6). The color
and number of the partial density of states curves correspond to those of the relevant subbands presented in (c); these curves are also offset
horizontally for clarity.

behavior of the three peaks is explained by their different
nature.

Let us start with the most interesting case of the peak B

at ω = 0.9γ , which corresponds to the wavelength of about
400 nm if γ ≈ 3 eV. This peak stems from transitions 1(c) →
3(c). At T = 0 K, the valence subbands are fully occupied,
therefore, we can safely exclude from the consideration
transition 3(v) → 1(v), which must be blocked due to the
exclusion principle. The steep doping dependence of the peak
B observed in Fig. 7(a) has two causes. Firstly, dispersion
of subbands 1(c) and 3(c) and resulting density of states ∼
(∂Ej,s(k)/∂k)−1 presented in Fig. 7(d). Secondly, the nonzero
VMEs for transition 1(c) → 3(c) in the k interval (2π/3,π ),
as shown in Fig. 7(b).

Without doping the peak B is absent in the absorption
spectrum because both subbands 1(c) and 3(c) are empty. The
introduction of doping results in large number of edge states in
the almost flat subband 1(c) being occupied with electrons. If
the point of the Fermi level intersection with the subband 1(c) is
denoted as kF , then one can say that kF rapidly shifts towards
the K point upon ribbon doping. In Figs. 7(b) and 7(c), the
values of kF for EF = 0.001γ , 0.004γ , and 0.02γ are marked
by vertical lines labeled as 2©, 3©, and 4©, correspondingly.
As seen in Fig. 7(b) at EF = 0.001γ , i.e., kF = 2©, VME
of 1(c) → 3(c) transition represented by curve 2 is close to
the maximum magnitude, nevertheless, the intensity of the
peak B in Fig. 7(a) presented by curve 2© is not that large.
The low intensity at such a level of doping is related to the
fact that the subband 3(c) has a dispersion to the right of the
vertical line 2©, which leads to transitions although being strong
contribute into absorption at different frequencies. Upon
further increase of the EF up to 0.02γ , i.e., kF = 4©, the VME
for 1(c) → 3(c) transition decreases in magnitude to about
vF /2. However, due to the flatness of subband 3(c) in the
vicinity of the band minimum [thick black point in Fig. 7(c)],

all the transitions between lines 2© and 4© contribute into
absorption nearly at the same frequency, which corresponds
to the van Hove singularity in the density of states shown in
Fig. 7(d). This results in the sharp enhancement of the peak B.

The filling of the subband 1(c) with electrons affects all the
transitions: 1(c) → 3(c), 5(c), etc. However, in ZGNR(6), the
higher order transition 1(c) → 5(c) is buried in the peak C for
it has lower density of states compared to the subband 4(c).
To observe higher-order transitions, one has to take a wider
ribbon. Any of the ribbons w = 8, 9, and 10 can be chosen
but ribbon with w = 9 is the best choice for there transitions
1(c) → 5(c) results in a clear peak at ω ≈ γ .

According to our calculations, ZGNR(6) and ZGNR(7) are
the best choices for a detection of the tunable peak due to
1(c) → 3(c) transitions. The latter is in agreement with the
results of Sanders et al. [37,38] based on the matrix elements
of the momentum and with the wave function overlapping
taken into account. For wider ribbons, the peak broadens and
loses intensity due to combined effect of the VME and density
of states reduction.

As for peaks A and C at ω = 0.65γ and γ in Fig. 7(a),
they arise from interband transitions 1(v) → 2(c) [2(v) →
1(c)] and 1(v) → 4(c) [4(v) → 1(c)], respectively. Strictly
speaking, many subbands converge into E = ±γ at k = π ,
therefore some other transitions also contribute into the peak
C. By mentioning only one type of transition, we mean the
dominant contribution in terms of density of states as indicated
in Fig. 7(d). The intensity of the peak C decreases with
doping for it results in the subband 1(c) being filled with the
electrons whereby transitions 4(v) → 1(c) are blocked due to
the exclusion principle. The same Pauli blocking also takes
place for transitions 2(v) → 1(c), therefore, intensity of the
peak A decreases too. A more gentle decrease of peak A

intensity compared to that of peak C is due to low doping.
As one can see in Fig. 7(c), for the chosen values of the Fermi
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FIG. 8. The absorption peak correlation in zigzag nanoribbons
and armchair nanotubes. (a)–(d) The absorption spectra of ZGNR(w)
compared to those of ACNT(w + 1,w + 1) and ACNT(w,w) for
various ribbon widths and EF = 0. Absorption spectra are shifted
vertically for clarity. (e) and (f) The band structure and the density
of states for ZGNR(10) (solid) and ACNT(11,11) (dashed). The
density of states curves are offset for clarity. The numbered circles
denote the positions of the van Hove singularities in the tube. The
numbered squares and triangles denote the van Hove singularities
in the conduction and valence subbands of the ribbon, respectively.
Transitions v → c are possible only between the markers of the same
shape.

level the point kF does not reach position of the subband 2(c)
minimum. For larger doping, A-peak intensity decreases as it
happens for peak C, and it totally disappears if the doping is
high enough to attain the 2(c) subband. The effect of the finite
temperature is similar to that of doping discussed above (see
Appendix E).

Finally, let us compare the zigzag nanoribbon absorption
spectra with those of armchair nanotubes. In Fig. 8(a),
the absorption spectra of ZGNR(10) and ACNT(11,11) are
presented together with that of ACNT(10,10). For the sake

of comparison, each spectrum is normalized by the number
of atoms in the unit cell. The first peculiarity, which one
can notice, is that in the ribbon all but the lowest in energy
absorption peaks lose approximately half of their intensity
compared to the peaks in the tubes. The second peculiarity is
that ZGNR(10) and ACNT(11,11) have the same pattern of
absorption peaks in the high frequency range ω > γ , which is
highlighted in the light blue. Both features are not accidental,
as follows from the plots presented in Figs. 8(b)–8(d) for
ribbons and tubes of larger transverse size.

In order to explain the noticed difference and similarity,
we focus on ZGNR(10) and ACNT(11,11). Obviously, a large
difference in peak intensities between the tube and ribbon
cannot be explained only by the velocity matrix elements
being higher in the tube than in the ribbon, as follows from
Fig. 5, therefore the density of states should be accounted
for. Here we do not appeal to the suppression due to the
momentum conservation as in Ref. [35] for we regard all
transitions, even between subbands with different indices, as
direct ones. At the same time, the correlation of the absorption
peaks’ positions is to be related to the van Hove singularities
in the density of states too. Thus we need to have a closer
look at the band structures and density of states of ZGNR(10)
and ACNT(11,11). In Fig. 8(e), the ZGNR(10) band structure
(solid curve) is compared with that of ACNT(11,11) (dashed
curve). Similar comparison is presented for the density of states
in Fig. 8(f). The peaks numbered as 1, 2, 3, and 4 in Fig. 8(a)
result from the transitions between ACNT(11,11) subband
extrema marked by numbered circles in Fig. 8(e). The same
peaks in ZGNR(10) originate from the transitions involving the
subband extrema marked in Fig. 8(e) by the numbered squares
(triangles) for the conduction (valence) subbands. Selection
rules in both structures allow transitions between the markers
of the same shape. Let us be more specific and focus on the
peak 1. In ACNT(11,11), this peak is due to transition between
two van Hove singularities in the density of states. Although
the density of states in the tube is nearly twice as high as than
that in the ribbon due to the double degeneracy of the tube’s
subbands, this cannot explain the difference in the intensities of
the tube and ribbons absorption peaks, since, according to the
selection rules, two type of transitions with the same frequency
are allowed in the ribbon: 3(v) → 2(c)[2(v) → 3(c)]. The
difference in intensities arises due the fact that positions of
the band extrema for adjacent bands in the ribbon are shifted
in the k space, thereby each of the specified in Fig. 8(e) ribbon
transitions happens either from or to the band extrema and not
between them as happens in the tube. In other words, each of
these transitions involves only one van Hove singularity. In
this view, the extremely high intensity of the lowest in energy
absorption peak in ZGNR(10) arises due to the high density of
states originating from the flatness of the 1(c) band dispersion
at E = 0.

As one can notice from Fig. 8(e), the tube subband
extrema take middle positions in energy between extrema
of adjacent ribbons subbands. This leads to the tube’s and
ribbon’s transition energies being very close as illustrated by
a parallelogram in Fig. 8(e). As a result, a correlation between
the absorption peak positions arises. To understand the origin
of this correlation we need to analyze the positions of the van
Hove singularities, which can be derived from the analytical
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TABLE I. The absorption peak positions of ZGNR(10) in the
region ω > γ compared to the estimate ω̃j given by Eq. (46) and
transition energies between the states j (v) → (j + 1)(c) denoted
by �’s and �’s in Fig. 8(e). The index i numbers the peaks in
Fig. 8(a). The last column presents the energy differences between the
numbered subband extrema in Fig. 8(a). All quantities are measured
in the hopping integral γ .

i j ωi ω̃j �v → �c �v → �c �i − �i+1

1 2 1.074 1.081 1.089 1.076 1.058
2 3 1.509 1.511 1.527 1.518 1.491
3 4 1.821 1.819 1.839 1.833 1.799
4 5 1.983 1.980 2.000 1.998 1.959

expression for the band structure. However, for a zigzag
ribbon, such an expression cannot be obtained in a closed-form
from Eq. (14), since the secular equation (19) does not allow
expressing of its solution in such a form; though closed-form
solutions for two specific cases, k = 2π/3 and π , have been
reported for this type of equation [3,23,55]. On the other hand,
since the armchair nanotube band structure has a closed-form
given by Eq. (C6), the positions of the van Hove singularities
and, therefore, the absorptions peak positions can be easily
obtained for them. Then, a simple analytical expression for
ACNT(w + 1,w + 1) peak positions,

ω̃j = 2γ sin[πj/(w + 1)] , (46)

can be used as an estimation of the absorption peak positions
in ZGNR(w), when 5/6 > j/(w + 1) > 1/6. In Fig. 8(a),
the vertical dashed lines denote the peak positions given
by Eq. (46). As one can see, outside the light blue regions
peak positions do not necessarily coincide; the ribbon spectra
also have additional peaks outside these regions resulting
from transitions involving 1(s) subbands and the selection
rule v → c �J = 1,3, . . ., etc. In contrast to this, within the
regions γ < ω < 2γ the above-mentioned correlation takes
place for all ribbons with w > 5. To estimate the reliability of
Eq. (46) in Table I, we compared the numerically calculated
peaks positions in the ZGNR(10) with those resulting from
Eq. (46). We supplemented these results with numerically
evaluated energies of j (v) → (j + 1)(c), where j = 2, 3, 4, 5,
transitions involving one band extremum state, i.e., those
which occur between the states denoted by square (�) and
triangle (�) markers in Fig. 8(e). As seen from Table I, a
deviation of ω̃j from ωi does not exceed 1% of the hopping
integral, i.e., 30 meV for γ ≈ 3 eV. It also follows from the
Table I that the above presented picture is a simplified one.
In reality, the absorption peaks are averages of all transitions
taking place in between the two subband extrema shifted in
the k-space so that peak positions ωi and their estimates ω̃j

are squeezed between the j (v) → (j + 1)(c); (�,�) transition
energies and the energy differences between the corresponding
van Hove singularities, �i − �i+1.

Panels (b)–(d) in Fig. 8 show that the aforementioned
correlation may extend to the low-energy region ω < γ . This
region of a ribbon’s spectrum is dominated by the transitions
originating from the edge states. It is evident that the absorption
peaks originating from these transitions cannot correlate with

FIG. 9. The low-energy absorption peak correlation in zigzag
nanoribbons and armchair nanotubes. Absorption spectra are shifted
vertically for clarity. The roman numbers I and II label spectra with
only the edge states contribution and the part without it. The light
blue region signifies the low-energy region where the correlation is
hidden by the edge states transitions.

the peaks in armchair tubes. In fact, they can only hide this
feature. In order to verify our assumption, in Fig. 9, we split
the ZGNR(20) absorption spectrum into two parts: part I
containing only transitions involving the 1(s) subband, i.e.,
edge states, and part II containing the rest of the transitions.
As can be seen from Fig. 9, it is the latter that correlates
with the tubes’ absorption spectrum. Only the first absorption
peak in ACNT(21,21) does not have a counterpart in the
ribbon spectrum. Thus, Eq. (46) has a broader applicability and
with its help the hidden correlation could be verified even by
absorption measurements in the optical range. Equation (46)
describes zigzag ribbon peak positions when j = 2, . . . ,w/2
(even w) or (w − 1)/2 (odd w).

The revealed correlation of the absorption peak positions
in armchair tubes and zigzag ribbons may be affected by
excitonic effects. Excitons are known to be important in one
dimensional systems due to the enhanced binding energy [90].
However, such effects rarely were a subject of investigation
in the metallic families of graphene nanoribbons [91,92] and
carbon nanotubes [93–95]. Moreover, it seems that attention
has never been paid to the high energy transitions, therefore this
problem requires a thorough study. Yet, a general qualitative
picture says that the positions of the presented peaks should
be redshifted by the amount of the binding energies. These
energies can be linked to the system’s transverse size by an
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analytical phenomenological quasi-one dimensional exciton
model, which has been successfully applied to semiconducting
quantum wires [96–98] and carbon nanotubes [99]. Then, since
the tubes and ribbons in question have comparable widths
and diameters, the binding energies and, therefore, shifts
are expected to be close for both structures (neglecting the
different shapes of their cross-sections), thereby preserving the
unveiled correlation in the absorption spectra. Some excitonic
states may require a magnetic field for their brightening if they
happen to be dark ones [100]. We should also mention that
the correlation reported here can be additionally hidden by a
landscape of absorption peaks originating from σ orbitals.

IV. CONCLUSIONS

In summary, we considered the optical properties of
zigzag graphene nanoribbons within the orthogonal π -orbital
tight-binding model and effective mass approximation for
polarization of the incident radiation parallel to the ribbon axis.
It was analytically confirmed that the selection rules between
valence and conduction subbands, �J = n − m is odd, and
between conduction (valence) subbands only, �J = n − m

is even, stem from the wave function parity factor, (−1)J ,
where J is an integer numbering the energy bands. It was
also shown that this parity factor originates from the ribbon’s
secular equation.

A comprehensive comparison of optical properties between
carbon nanotubes and zigzag nanoribbons shows significant
differences. Most importantly, the concept of cutting lines
[101,102], or even its generalization to cutting curves [23,103],
being unable to explain selection rules fails with respect
to optical properties of zigzag graphene nanoribbons, while
it works well for armchair carbon nanotubes. Nevertheless,
a proper comparison reveals the absorption spectra of a
zigzag nanoribbon and an armchair carbon nanotube have
a correlation between the positions of the peaks originating
from the v → c transitions between the bulk states, if Nt =
2Nr + 4, where Nt,r is the number of atoms in the tube’s
(ribbon’s) unit cell, i.e., when the ribbon width is about half of
the tube circumference. Putting it differently, this correlation
takes place for ZGNR(w) and ACNT(w + 1,w + 1) if w > 5.

The analysis of the velocity operator matrix element
dependencies on the electron wave vector shows that they
have a smooth regular behavior at least up to w = 25 in
the whole Brillouin zone, including the Dirac (k = ±2π/3)
and transition (k = kt ) points. However, the matrix element
behavior deviates significantly from the previous estimation
∼ sin(k/2). For all types of transitions, the magnitude of the
velocity operator matrix elements attain a maximum value for
k ∈ ±(π/2,π ).

A close examination of the absorption spectra of zigzag
ribbons shows they should have temperature and doping
dependent absorption peaks originating from transitions be-
tween only conduction (valence) subbands, �J = 2,4, . . . ,

etc., which could be tuned, for instance, by a gate voltage. In
particular, narrow zigzag ribbons with w = 6 and 7 should
have such prominent temperature and doping dependent
absorption peaks. Although beyond the single electron tight-
binding model the energy bands of zigzag ribbons are known to
be modified by electron-electron interaction [27] and the effect

of the substrate, we believe that experimental observation of
the tunable absorption should be possible as the latter effect,
for instance, can be eliminated by system suspension. Finally,
we point out that the obtained velocity matrix elements of
single electron transitions can be utilized in further study of
excitonic effects via Elliot’s formula for absorption [104,105].
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APPENDIX A: WAVE-FUNCTION PARITY FACTOR

In order to clarify the origin of the wave-function parity
factor, we present in detail the simplification of the eigenvector
component (23). Equation (23) can be further simplified if one
expresses 2 cos(k/2) in terms of the quantized momentum θ

from the quantization condition (19) as

2 cos
k

2
= sin wθ

sin[(w + 1)θ ]
(A1)

and then substitutes the result into the square brackets of
Eq. (23):

sin pθ − 2 cos
k

2
sin[(p + 1)θ ] = sin θ sin[(p − w)θ ]

sin[(w + 1)θ ]
. (A2)

Note that the proper energy E entering Eq. (23) can also be
recasted only in terms of θ by substituting (A1) into Eq. (14):

E(θ ) = ± γ | sin θ |
| sin[(w + 1)θ ]| . (A3)

Now making use of Eqs. (A2) and (A3), one readily obtains
that

c2p+1 = ±(−1)p+1 sin θ

| sin θ |
| sin[(w + 1)θ ]|
sin[(w + 1)θ ]

sin[(p − w)θ ] ,

(A4)

where the upper (lower) sign is applied for the conduction
(valence) band state. The first ratio in the expression above is a
trivial one, sin θ

| sin θ | = 1 for θ ∈ (0,π ). However, the second ratio
deserves special attention because, as we will see next, it is a
clue to the optical properties of zigzag ribbons.

The magnitude of the second ratio is, of course, unity, but
its sign depends upon θ . To determine the sign of the ratio
| sin [(w+1)θ]|
sin [(w+1)θ] one needs to analyze it along with the quantization

condition (19). Since absolute value is always positive the sign
of the ratio is determined by the sign of its denominator defined
by the secular equation solutions.

Let us investigate how secular equation solutions, θj ,
are spread in the range (0,π ). For this purpose, one can
continuously change the parameter q from 0 to ∞ similar
to what is presented in Fig. 2. Varying q between the above
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mentioned limits, one finds that the two values of q determine
the left and right ends of the intervals in each of which one θj is
confined. By putting the parameter q = 0 into Eq. (19), we get
sin wθj = 0 with θj,min = π (j − 1)/w being solutions, while
q = ∞ yields sin [(w + 1)θ ] = 0 with θj,max = πj/(w + 1) as
solutions; in both cases j = 1, . . . ,w enumerates solutions. It
is worth noting that although the upper value of q = 2 cos(k/2)
is limited to 2, we can take a greater value for an estimation
because an increase of q above 2 shifts the initial interval right
boundaries so that the original intervals are contained within
the new θ intervals depicted in Fig. 2. The left boundaries of
the intervals can also be pushed further left to put all the new
intervals within even wider ones:

π (j − 1)/(w + 1) < θj < πj/(w + 1) . (A5)

With inequalities (A5) at hand it is easy to analyze the argument
of sin [(w + 1)θj ] for it is evident that for all θj satisfying
inequalities (A5) the sine function argument (w + 1)θj is
squeezed between π (j − 1) and πj . This leads to positive
and negative signs of sin [(w + 1)θj ] for odd and even j ,
respectively. Therefore the second ratio in Eq. (A4) can be
written as

| sin[(w + 1)θj ]|
sin[(w + 1)θj ]

= (−1)j−1 , (A6)

where j is an integer being interpreted as the band number.

APPENDIX B: EDGE AND BULK STATE EIGENVECTORS
AT THE TRANSITION POINT

Let us obtain the wave functions of the edge states in the
explicit form and show how it reduces at the transition point kt

defined as a solution of the equation 2 cos(k/2) = w/(w + 1).
As has been mentioned above, to do this one needs to use
substitution θ → iβ, which upon application to (30) yields(

c̃
(j )
2p−1

c̃
(j )
2p

)
=

(±i sinh[(w + 1 − p)βj ]
i sinh pβj

)
, (B1)

with p = 1, . . . ,w. Note that j = 1 for bands containing edge
states, therefore the parity factor has been ruled out and ∓ in
(30) has been replaced with ± in (B1). The same substitution
applied to the normalization constant (31) leads to

Nj = 1√
w − cosh[(w + 1)βj ]

sinh wβj

sinh βj

. (B2)

As one can notice, the expression under the square root of (B2)
is negative, therefore the imaginary unit resulting form it must
cancel with that in (B1). Hence, for normalized eigenvector
components, it can be written(

c̃
(j )
2p−1

c̃
(j )
2p

)
= Nj

(± sinh[(w + 1 − p)βj ]
sinh pβj

)
, (B3)

where p = 1, . . . ,w and

Nj = 1√
cosh[(w + 1)βj ]

sinh wβj

sinh βj

− w

. (B4)

Note that the eigenvector (B3) does not contain (−1)J factor
like Eq. (34) in Ref. [23]. Even for inverse band enumeration,
this factor would be (−1)w not (−1)J . At the transition point,
βj → 0, which results in divergence in (B4) if all hyperbolic
functions are expanded to the first order. However, using the
original definition of the constant:

Nj = 1√
2
∑w

p=1 sinh2 pβj

, (B5)

where the factor of 2 is due to the fact that
∑w

p=1 sinh pβj =∑w
p=1 sinh [(w + 1 − p)βj ], the same first order expansion

results in

Nj = 1

βj

√
2
∑w

p=1 p2
. (B6)

Thus, for normalized eigenvectors in the vicinity of the
transition point, one has(

c̃
(j )
2p−1

c̃
(j )
2p

)
= 1√

2Nc

(±(w + 1 − p)
p

)
, (B7)

where

Nc =
w∑

p=1

p2 = w(w + 1)(1 + 2w)

6
. (B8)

The same result can be obtained starting from the eigenvectors
(30) and their normalization constant specified as Nj =
1/

√
2
∑w

p=1 sin2 pθj , therefore wave functions approaching

kt from the left and from the right attain the same value. As
a result of this seamless transition of one type of functions
into another, the VMEs can be obtained as smooth functions
of electron wave vector k for the lowest conduction (higherst
valence) subbands, i.e., for j = 1.

It is to be mentioned here that the edge states can be also
obtained in zigzag carbon nanotubes with finite length [55].
Unlike the case of the infinite ribbon the number of such states
is finite in tubes. Recently, it has been shown that this number
is related to the winding number [102,106]. However, the state
at the transition point, the charge density of which decays
quadratically towards the structure center, seems to be less
likely in the finite tubes.

APPENDIX C: PERIODIC BOUNDARY CONDITIONS

In this part of the Appendix, we demonstrate how the fixed
end (hard wall) boundary condition employed in this paper for
zigzag ribbon investigation is related to the periodic boundary
condition that is used for carbon nanotubes. A carbon nanotube
of the armchair type (see Ref. [69] for tubes classification) is
unrolled into a graphene nanoribbon with zigzag edges. The
tight-binding Hamiltonian of the armchair nanotube differs
from that of the zigzag ribbon by the upper right and lower left
nonzero elements. For instance, for the ribbon Hamiltonian
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given by Eq. (1) an equivalent tube Hamiltonian is

H =

⎛⎜⎝ 0 γ q 0 γ

γ q 0 γ 0
0 γ 0 γ q

γ 0 γ q 0

⎞⎟⎠ . (C1)

Despite these differences the eigenproblem of such a Hamil-
tonian reduces to the same transfer matrix equation as
Eq. (7). The periodic boundary condition, however, requires
CN+1 = C1, whence it follows that the secular equation is
det(T w − I ) = 0. To obtain the explicit form of the secular
equation, one can use (18), but there is a faster way if one uses
the following relation [57]:

det(T w − I ) = det T w + det I − Tr(T w) . (C2)

Using the above relation and taking into account that det T =
1, the secular equation can be recasted as

Tr(T w) = 2 . (C3)

The cyclic property of the trace operation allows further
simplification of the secular equation:

Tr(S−1�wS) = Tr(�wSS−1) = Tr(�w) = 2 , (C4)

where � is a diagonal form of the transfer matrix T with the
diagonal elements given by λ1,2 = e±iθ , i.e., a new variable θ

is defined as A = cos θ [cf. with Eq. (11)], S,S−1 are given
by Eqs. (17). Such treatment is equivalent to that with λ1,2

given by Eq. (11), the difference is in subband enumeration
similar to that mentioned for the hard wall boundary condition.
In Fig. 4, the tube’s band enumeration, we refer to as direct
one, corresponds to A = − cos θ . The above chosen inverse
enumeration, A = cos θ , is shown in the right panel of Fig. 5.
It was chosen to obtain the tube’s energy bands in a form close
to graphene energy bands [67–69]. Thus, for an armchair tube
secular equation, we end up with

λw
1 + λw

2 = 2 cos(wθ ) = 2; ⇔ cos(wθ ) = 1 , (C5)

whence it is evident that θj = 2πj/w with j being an integer
numbering solutions and w = N/2 with N being the number
of carbon atoms in the tube’s unit cell. To obtain the tube energy
bands θj should be substituted into ±γ

√
q2 + 2q cos θ + 1,

which yields

Ej (k) = ±γ

√
4 cos2

k

2
+ 4 cos

k

2
cos

2πj

w
+ 1 , (C6)

where we use j for the band numbering.
In the case of the hard wall boundary condition and variable

θ introduced as above, i.e., with the reverse enumeration of the
ribbon bands, the secular equation has the form

sin wθ + 2 cos
k

2
sin[(w + 1)θ ] = 0 . (C7)

The proper energy is obtained by substituting solutions of
this equation into ±γ

√
q2 + 2q cos θ + 1. Solutions of (C7)

can be found in the zero approximation by setting k = 0;
ideally, one should set q = 2 cos(k/2) → ∞. This leads

to sin [(w + 1)θ ] = 0 with θj = πj/(w + 1) being solution.
Equating θj obtained for a tube and ribbon, one gets

2πj

Nt/2
= πj

Nr/2 + 1
, (C8)

where Nt,r is the number of atoms in the unit cell of the tube
and ribbon, respectively. As follows from (C8) if

Nt = 2Nr + 4 (C9)

then the proper energies are approximately equal at k = 0. It is
also possible to consider the opposite limit when k = π , which
leads to θj = πj/w in the case of the ribbon. The usage of this
θj results in a better match of the ribbon and tube energies
close to the edge of the Brillouin zone, i.e., at k = π , if the
following relation holds between the number of atoms in the
structures: Nt = 2Nr .

APPENDIX D: ARMCHAIR NANOTUBE
SELECTION RULES

In this section, we derive selection rules for transitions in
armchair carbon nanotubes (ACNTs). In spite of being known
for a long time [44,50–54], they have not been derived from the
full tight-binding Hamiltonian. The purpose of this exercise is
to provide deeper understanding of the difference in the optical
properties of zigzag graphene nanoribbons and ACNTs and
also to show their relation to the graphene single layer sheet.

To calculate velocity operator matrix elements, one needs
the wave functions. Substitution of Eq. (C5) solution θj =
2πj

w
into T w − I gives a zero matrix. Hence the boundary

condition CN+1 = C1; → (T w − I )C1 = 0 is fulfilled for any
components of the initial vector C1. We see that for the periodic
boundary condition the initial vector C1 can be an arbitrary one.
The most reasonable choice of C1 is one of the eigenvectors
(15). Let it be V2. Then, with λ1,2 = e±iθ the wave-function
components can be found from Eq. (7) as follows:

c
(j )
2p−1 = ±e−iθj (p−1) fj

|fj | , c
(j )
2p = e−iθj p , (D1)

where p = 1, . . . ,w, fj = 1 + qe−iθj , and we have changed
the order of the components as it was done for Eq. (25).
Introducing new function f̃j = eiθj /3fj into Eq. (D1) and
applying the unitary transform Uj = {u2p−1,2p−1,u2p,2p} =
{eiθj (p−2/3),eiθj p}|p=1,...,w to the vector |c(j )〉, we obtain

c̃
(j )
2p−1 = ± f̃j

|f̃j |
, c̃

(j )
2p = 1, (D2)

where p = 1, . . . ,w. The normalization constant Nj =
1/

√
2w for |c̃(j )〉 and it is independent of θj .

As one can see, the unitary matrix Uj depends on the band
index j , therefore the new Hamiltonian that preserves the
matrix element upon the transfromation of the |c(n,m)〉 vectors
is H̃ = UnHU

†
m. However, such a Hamiltonian satisfies the

time independent Schrodinger equation only if n = m. This
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FIG. 10. The same as Fig. 6(b) but for transitions between
valence (conduction) subbands of lower (higher) energy: v → v,

c → c, and �J = 2. As the plot is symmetric with respect to k = 0,
only half of the BZ is presented. The part of the plot denoted by
a rectangle is zoomed in the right panel followed by the transition
scheme. The VME curves correspond to the transitions labeled with
the same number in the scheme.

is the selection rule for ACNT optical transitions, which also
means all transitions c → c and v → v are forbidden.

For H̃ = UjHU
†
j , the components of the vectors |ζ̃ (j )〉 are

ζ̃
(j )
2p−1 = −γ a

h̄
sin

(
k

2

)
e−2iθj /3 , p = 1, . . . ,w;

ζ̃
(j )
2p = ∓γ a

h̄
sin

(
k

2

)
e−2iθj /3 f̃j

|f̃j |
, (D3)

with the upper “−”(lower “+”) being used for the conduction
(valence) subbands. By putting Eqs. (D2) and (D3) into
Eq. (39) and accounting for the normalization constant Nj ,
for allowed transitions, we have

Mn(c),n(v) = −γ a

h̄
sin

(
k

2

)
f̃ ∗

n e−2iθj /3 − f̃ne
2iθn/3

2|f̃n|
,

= γ a

h̄

f̃ ∗
n (df̃n/dk) − f̃n(df̃ ∗

n /dk)

2|f̃n|
. (D4)

Similarly, calculations for the group velocity yield

Mn(s),n(s) = ±γ a

h̄

f̃ ∗
n (df̃n/dk) + f̃n(df̃ ∗

n /dk)

2|f̃n|
, (D5)

where “+” (“−”) refers to the conduction (valence) subbands.
The same result is obtained from the graphene Hamilto-

nian and eigenvectors: 〈cc|∂H/∂ky |cv〉 with H11 = H22 = 0,

FIG. 11. The absorption spectra of zigzag ribbons with (a) w = 6
and (b) 9 for different temperatures: T = 0, 4, 77, and 300 K for
curves 1©, 2©, 3©, and 4©, respectively. Absorption spectra are shifted
vertically for clarity.

H12 = H ∗
21 = γ (eikxa/

√
3 + 2e−ikxa/2

√
3 cos(kya/2)) and kx =

2πj/Ch, where Ch is the tube circumference and a = 2.46 Å
is the graphene lattice constant. If θj = √

3kxa/2, k = kya,
and the tube chiral index is w/2, then kx = 4πj/(

√
3aw) =

2πj/Ch. Hence, Eq. (D4) can be restored by cutting graphene’s
optical transition matrix elements along the lines specified
by the quantization of kx . Finally, we note that a calculation
of the matrix elements with the eigenvectors (D1) and the
Hamiltonian (C1) also provides straightforward justification
of the selection rules for it results in zero matrix elements
when n �= m.

APPENDIX E: SUPPLEMENTARY RESULTS

For the sake of completeness, in Fig. 10, we present VME
curves obtained for transitions between the lower (higher)
energy valence (conduction) subbands. These transitions can
be referred to as j (s) → (j + 2)(s), where j = 1, . . . ,w − 2.
Noticing that the curve labeled by 1 in Fig. 10 is the same as
the curve labeled by 2 in Fig. 6(b), one easily sees that the
transitions labeled from 2 to 7 are much weaker compared to
the transitions in Fig. 6. Unlike the VME curves in Figs. 5(a)
and 6, all curves of j (s) → (j + 2)(s) transitions converge to
zero at the edge of the BZ and have extrema decreasing in
magnitude and shifting from the K(K′) point towards the BZ
edge for greater j ’s.

Figure 11 shows that temperature has a similar influence
on the absorption spectra to doping. The observed changes are
explained in the same way as presented for Fig. 7. The peak
due to the transitions 1(c) → 3(c) is weaker and broader for
ZGNR(9) compared to that in ZGNR(6). At the same time, the
peak at ω = γ due to transitions 1(c) → 5(c) is quite intense.
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