M. G. Blyth and C. Pozrikidis, A Lobatto interpolation grid over the triangle, IMA Journal of Applied Mathematics, vol.71, issue.1, pp.153-169, 2006.
DOI : 10.1093/imamat/hxh077

G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman, Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, SIAM Journal on Numerical Analysis, vol.38, issue.6, pp.2047-2078, 2001.
DOI : 10.1137/S0036142997329554

URL : https://hal.archives-ouvertes.fr/hal-01010373

R. Cools, An encyclopaedia of cubature formulas, Journal of Complexity, vol.19, issue.3, pp.445-453, 2003.
DOI : 10.1016/S0885-064X(03)00011-6

M. Dubiner, Spectral methods on triangles and other domains, Journal of Scientific Computing, vol.1, issue.1, pp.345-390, 1991.
DOI : 10.1007/BF01060030

G. Gassner, F. Lörcher, C. D. Munz, and J. Hestaven, Polymorphic nodal elements and their application in discontinuous Galerkin methods, Journal of Computational Physics, vol.228, issue.5, pp.1573-1590, 2009.
DOI : 10.1016/j.jcp.2008.11.012

F. X. Giraldo and M. A. Taylor, A diagonal-mass-matrix triangular-spectral-element method based on cubature points, Journal of Engineering Mathematics, vol.131, issue.3, pp.307-322, 2006.
DOI : 10.1007/s10665-006-9085-7

B. T. Helenbrook, On the Existence of Explicit $hp$-Finite Element Methods Using Gauss???Lobatto Integration on the Triangle, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.47-1304, 2009.
DOI : 10.1137/070685439

L. Lazar, R. Pasquetti, and F. Rapetti, Abstract, Communications in Computational Physics, vol.165, issue.14, pp.1309-1329, 2013.
DOI : 10.1002/fld.1650090405

Y. Liu, J. Teng, T. Xu, and J. Badal, Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling, Journal of Computational Physics, vol.336, pp.458-480, 2017.
DOI : 10.1016/j.jcp.2017.01.069

S. Minjeaud and R. Pasquetti, High Order $$C^0$$ C 0 -Continuous Galerkin Schemes for High Order PDEs, Conservation of Quadratic Invariants and Application to the Korteweg-de Vries Model, Journal of Scientific Computing, vol.33, issue.6, 2017.
DOI : 10.1088/0305-4470/33/18/308

W. A. Mulder, NEW TRIANGULAR MASS-LUMPED FINITE ELEMENTS OF DEGREE SIX FOR WAVE PROPAGATION, Progress In Electromagnetics Research, vol.141, pp.671-692, 2013.
DOI : 10.2528/PIER13051308

R. Pasquetti and F. Rapetti, Spectral Element Methods on Unstructured Meshes: Comparisons and Recent Advances, Journal of Scientific Computing, vol.164, issue.1-3, pp.377-387, 2006.
DOI : 10.1007/s10915-005-9048-6

R. Pasquetti, Comparison of some isoparametric mappings for curved triangular spectral elements, Journal of Computational Physics, vol.316, pp.316-573, 2016.
DOI : 10.1016/j.jcp.2016.04.038

URL : https://hal.archives-ouvertes.fr/hal-01307076

M. A. Taylor, B. Wingate, and R. E. Vincent, An Algorithm for Computing Fekete Points in the Triangle, SIAM Journal on Numerical Analysis, vol.38, issue.5, pp.38-1707, 2000.
DOI : 10.1137/S0036142998337247

T. Warburton, An explicit construction of interpolation nodes on the simplex, Journal of Engineering Mathematics, vol.137, issue.3, pp.247-262, 2006.
DOI : 10.1007/s10665-006-9086-6

Y. Xu, On Gauss???Lobatto Integration on the Triangle, SIAM Journal on Numerical Analysis, vol.49, issue.2, pp.541-548, 2011.
DOI : 10.1137/100792263