Invariant Kalman Filtering for Visual Inertial SLAM

Abstract : Combining visual information with inertial measure- ments is a popular approach to achieve robust and autonomous navigation in robotics, specifically in GPS-denied environments. In this paper, building upon both the recent theory of Unscented Kalman Filtering on Lie Groups (UKF-LG) and more generally the theory of invariant Kalman filtering (IEKF), an innovative UKF is derived for the monocular visual simultaneous localiza- tion and mapping (SLAM) problem. The body pose, velocity, and the 3D landmarks’ positions are viewed as a single element of a (high dimensional) Lie group SE 2+p (3), which constitutes the state, and where the accelerometers’ and gyrometers’ biases are appended to the state and estimated as well. The efficiency of the approach is validated both on simulations and on five real datasets.
Type de document :
Communication dans un congrès
21st International Conference on Information Fusion, Jul 2018, Cambrige, United Kingdom. 2018, 21st International Conference on Information Fusion. 〈https://fusion2018.eng.cam.ac.uk/〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01588669
Contributeur : Martin Brossard <>
Soumis le : samedi 14 juillet 2018 - 11:51:07
Dernière modification le : lundi 12 novembre 2018 - 11:02:43
Document(s) archivé(s) le : mardi 16 octobre 2018 - 01:16:08

Fichier

final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01588669, version 2

Collections

Citation

Martin Brossard, Silvère Bonnabel, Axel Barrau. Invariant Kalman Filtering for Visual Inertial SLAM. 21st International Conference on Information Fusion, Jul 2018, Cambrige, United Kingdom. 2018, 21st International Conference on Information Fusion. 〈https://fusion2018.eng.cam.ac.uk/〉. 〈hal-01588669v2〉

Partager

Métriques

Consultations de la notice

166

Téléchargements de fichiers

464