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In this Comment we point out some shortcomings in two papers [N. Laskin, Phys. Rev. E 62, 3135 (2000); 66,
056108 (2002)]. We prove that the fractional uncertainty relation does not hold generally. The probability
continuity equation in fractional quantum mechanics has a missing source term, which leads to particle
teleportation, i.e., a particle can teleport from a place to another. Since the relativistic kinetic energy can be
viewed as an approximate realization of the fractional kinetic energy, the particle teleportation should be an
observable relativistic effect in quantum mechanics. With the help of this concept, superconductivity could be
viewed as the teleportation of electrons from one side of a superconductor to another and superfluidity could be
viewed as the teleportation of helium atoms from one end of a capillary tube to the other. We also point out how
to teleport a particle to an arbitrary destination.
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I. INTRODUCTION16

Historically quantum mechanics based on a non-New-17

tonian kinetic energy has been studied widely [1]. In18

Refs. [2,3], standard quantum mechanics [4] was generalized19

to fractional quantum mechanics. The Schrödinger equation20

was rewritten as21

i�
∂

∂t
ψ(r,t) = Hαψ(r,t),

Hα = Tα + V = Dα|p|α + V (r). (1)

As usual, ψ(r,t) is a wave function defined in the three-22

dimensional space and dependent on time t , Dα is a constant23

dependent on the fractional parameter 1 < α � 2, r and p24

are the position and momentum operators, respectively, �25

is the Plank constant, and m is the mass of a particle. The26

fractional Hamiltonian operator Hα is the sum of the fractional27

kinetic energy Tα and the potential energy V (r). When α = 2,28

taking D2 = 1/(2m), the fractional kinetic energy becomes29

the classical kinetic energy30

T2 = p2

2m
= T (2)

and the fractional Schrödinger equation becomes the standard31

Schrödinger equation. When 1 < α < 2, the fractional kinetic32

energy operator is defined by the momentum representation33

[2]. However, there exist three shortcomings in this recent34

quantum theory.35

(i) The Heisenberg uncertainty relation was generalized to36

the fractional uncertainty relation [2]37

〈|�x|μ〉1/μ〈|�p|μ〉1/μ
>

�

(2α)1/μ
, μ < α, 1 < α � 2. (3)

It seems unsuitable to call this inequality fractional uncer-38

tainty relation and this inequality does not hold mathemati-39

cally.40

*yuchuanwei@gmail.com

(ii) The fractional probability continuity equation obtained 41

by Laskin [3] was 42

∂

∂t
ρ + ∇ · jα = 0, (4)

where the probability density and current density were defined 43

as 44

ρ = ψ∗ψ,

jα = −iDα�
α−1[ψ∗(−∇2)α/2−1∇ψ − ψ(−∇2)α/2−1∇ψ∗].

(5)

In fact, a source term was missing, which indicates another 45

way of probability transportation, probability teleportation. 46

(iii) The relationship between fractional quantum mechan- 47

ics and the real world was not given and it was almost 48

impossible to find the applications of this theory. Here we will 49

point out that the relativistic kinetic energy can be viewed as an 50

approximate realization of the fractional kinetic energy, which 51

makes the probability teleportation a practical phenomenon. 52

Now we will discuss these shortcomings in order. For the 53

convenience, please be reminded that the symbol H+ in [2,3] 54

should be H. 55

II. FRACTIONAL UNCERTAINTY RELATION 56

A. The uncertainty relation is independent of wave equations 57

For simplicity, we do not consider wave functions that 58

are not square integrable. Suppose that ψ(x) is a normal- 59

ized square-integrable wave function defined on the x axis. 60

Heisenberg’s uncertainty relation says [4] 61√
〈(�x)2〉

√
〈(�p)2〉 � �

2
, (6)

where 62

�x = x − 〈x〉, �p = p − 〈p〉. (7)

As usual, x and p stand for the one-dimensional position 63

and momentum operators and 〈x〉 and 〈p〉 stand for their 64

averages on the wave function ψ(x), for example, 65

〈p〉 =
∫ ∞

−∞
ψ∗(x)

(
−i�

∂

∂x

)
ψ(x)dx. (8)
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This relation holds for all the square-integral functions and66

it is a property of the space of square-integrable functions. A67

complete mathematical proof can be seen in [5].68

As a kinetic equation, the Schrödinger equation69

i�
∂

∂t
ψ(x,t) = Hψ(x,t) (9)

tells us how to determine the wave-function–time relation70

ψ(x,t) by the Hamiltonian operator H given the initial wave71

function ψ(x,0). From the viewpoint of geometry, Eq. (9) de-72

fines a curve in the space of square-integrable functions, which73

passes a given point at time t = 0. Heisenberg’s uncertainty74

relation and the Schrödinger equation are independent. Laskin75

generalized the Schrödinger equation, but wave functions76

remains square-integrable functions. In other words, the used77

function space remains the space of the square-integrable78

functions, so the Heisenberg uncertainty relation remains true,79

regardless of the standard or fractional quantum mechanics.80

In addition, suppose that there is an uncertainty relation81

that holds for all the solutions of the fractional Schrödinger82

equation (1) with certain α, e.g., α = 1.5. Since the initial wave83

function ψ(x,0) is an arbitrary square-integrable function,84

we know that this uncertainty relation holds for the whole85

space of square-integrable functions. Therefore, there does86

not exist a so-called fractional uncertainty relation. Generally87

speaking, a generalization [1] of the Schrödinger equation does88

not generate new uncertainty relations if the wave functions89

remain square-integrable functions.90

B. Fractional uncertainty relation does not hold in mathematics91

Even with the Levy wave packet [Eq. (35) in [2]],92

the uncertainty relation (3) does not hold in the sense of93

mathematics. We prove it by contradiction. There are two94

steps.95

(i) Let us consider the case μ = 1 and α = 1 first. The96

Levy wave packet with ν = 1 at t = 0 is97

ψL(x,0) = 1

2�

√
l

π

∫ ∞

−∞
exp

(
−|p − p0|l

2�

)
exp

(
i
p

�
x

)
dp

= 1

2

√
l3

π

1

x2 + (l/2)2 exp

(
i
p0

�
x

)
. (10)

The letters L denotes the Levy wave packet and l is a98

reference length. The related quantities can be calculated as99

〈x〉 = 0, 〈p〉 = p0,

〈|�x|〉 = 〈|x|〉 =
∫ ∞

−∞
|x|ψ∗

L(x,0)ψL(x,0)dx = l

π
,

〈|�p|〉 = 〈|p − p0|〉

= l

2�

∫ ∞

−∞
|p − p0| exp

(
−|p − p0|l

�

)
dp = �

l
.

(11)

Therefore, we have the inequality100

〈|�x|〉〈|�p|〉 = l

π

�

l
= �

π
<

�

2
. (12)

(ii) At t = 0, keep μ = 1 as a constant and let α → 1+.101

Since the parameter of the Levy wave packet ν = α, the two102

sides of the inequality (3) are continuous functions about 103

α. Taking the limα→1+ of the both sides of the fractional 104

uncertainty relation (3), we get 105

〈|�x|〉〈|�p|〉 � �

2
, (13)

which contradicts inequality (12). Therefore, the fractional 106

uncertainty relation (3) does not hold mathematically. 107

Further, once the fractional uncertainty relation does not 108

hold for certain α at t = 0, we know that there exists a 109

small time neighborhood [0,δ) for which the relation does 110

not hold either since the wave packet has not expanded very 111

much. In short, the fractional generalization of the Heisenberg 112

uncertainty relation does not hold generally. 113

We would like to explain why we can take α = 1, which 114

was not included in [2,3]. The case α = 1 is just a step of 115

our proof, like an auxiliary line used in geometry problems. 116

Here we add two points. (i) There exist papers that allow 117

0 < α � 2. In [6], Jeng et al. claimed that Laskin’s solutions 118

for the infinite square-well problem were wrong by means of 119

the evidence from the case 0 < α < 1. In fact, the evidence 120

from the case α = 1 is more straightforward [7]. (ii) The 121

fractional Schrödinger equation with α = 1 has many closed- 122

form solutions [8], which is an easy starting point for the study 123

of the fractional Schrödinger equation with 1 < α < 2. 124

III. PROBABILITY CONTINUITY EQUATION 125

A. Correct probability continuity equation 126

In this section we present the correct probability continuity 127

equations in the fractional quantum mechanics and reveal a 128

different phenomenon of the probability transportation. From 129

the fraction Schrödinger equation (1) we can get 130

i�
∂

∂t
(ψ∗ψ) = ψ∗Tαψ − ψTαψ∗. (14)

According to Laskin’s definitions of the probability density 131

and the current density (5), the correct probability continuity 132

equation 133

∂

∂t
ρ + ∇ · jα = Iα (15)

has an extra source term 134

Iα = −iDα�
α−1[∇ψ∗(−∇2)α/2−1∇ψ

−∇ψ(−∇2)α/2−1∇ψ∗]. (16)

Specifically, if Iα(r,t) > 0, there is a source at position r 135

and time t , which generates the probability; when Iα(r,t) < 0, 136

there is a sink at position r and time t , which destroys the 137

probability. 138

It is easy to find cases where the source term is not zero. 139

For example, take the wave function 140

ψ = ψ1 + ψ2,

ψ1(x,t) = exp(ik1x) exp(−iE1t), (17)

ψ2(x,t) = exp(ik2x) exp(−iE2t),

with k1 > k2 > 0, E1 = Dα(�k1)α , and E2 = Dα(�k2)α , 141

which is a superposition of two solutions to the fractional 142

006100-2
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Schrödinger equation for a free particle. We have143

Iα = −iDα�
α−1[∇ψ∗(−∇2)α/2−1∇ψ − ∇ψ(−∇2)α/2−1∇ψ∗]

= −iDα�
α−1[(ψ∗

1 + ψ∗
2 )′(−∇2)α/2−1(ψ1 + ψ2)′ − (ψ1 + ψ2)′(−∇2)α/2−1(ψ∗

1 + ψ∗
2 )′]

= −iDα�
α−1[ψ∗′

1 (−∇2)α/2−1ψ ′
2 + ψ∗′

2 (−∇2)α/2−1ψ ′
1 − ψ ′

1(−∇2)α/2−1ψ∗′
2 − ψ ′

2(−∇2)α/2−1ψ∗′
1 ]

= −iDα�
α−1

(
k1k

α−1
2 ψ∗

1 ψ2 + kα−1
1 k2ψ

∗
2 ψ1 − k1k

α−1
2 ψ1ψ

∗
2 − kα−1

1 k2ψ2ψ
∗
1

)
= −iDα�

α−1
(
k1k

α−1
2 − kα−1

1 k2

)
(ψ∗

1 ψ2 − ψ1ψ
∗
2 )

= 2Dα�
α−1

(
k1k

α−1
2 − kα−1

1 k2

)
sin[(k2 − k1)x − (E2 − E1)t/�], (18)

which is not zero unless α = 2.144

The source term indicates that the probability is no longer145

locally conserved. As Laskin proved in [9], the total proba-146

bility in the whole space is conserved. Here the probability147

transportation in the fractional quantum mechanics becomes148

unusual: Some probabilities can disappear at a region and149

simultaneously appear at other regions, but the total probability150

does not change. In other words, some probabilities can151

teleport from one place to another. Furthermore, if the particle152

has mass and charge, probability teleportation will imply mass153

teleportation and charge teleportation. We need to pay close154

attention to this phenomenon as mass teleportation contradicts155

our life experience and charge teleportation contradicts the156

classical electrodynamics.157

B. The case Iα(r,t) = 0158

When α = 2, it is easy to see that I2(r,t) = 0. The fractional159

continuity equation recovers the standard continuity equation.160

Proposition. For 1 < α < 2, we have Iα(r,t) = 0 for a free161

particle with a definite kinetic energy.162

Proof. Since V (r) = 0, the fractional Schrödinger equation163

is164

i�
∂

∂t
ψ(r,t) = Tαψ(r,t). (19)

For a definite energy E, its solution is165

ψ(r,t) =
∫




C(θ,φ) exp(ik · r) sin θdθdφ exp(−iEt/�),

(20)

E = Dα(�k)α, (21)

where 
 is the unit sphere, (k,θ ,φ) is the spherical coordinate166

of the wave vector k, and C(θ,φ) is an arbitrary function. Thus167

we have168

(−∇2)α/2−1ψ(r,t) = kα−2ψ(r,t), (22)

(−∇2)α/2−1ψ∗(r,t) = kα−2ψ∗(r,t). (23)

In this case the source term vanishes169

Iα = −iDα�
α−1[∇ψ∗(−∇2)α/2−1∇ψ−∇ψ(−∇2)α/2−1∇ψ∗]

= −iDα�
α−1[∇ψ∗∇(−∇2)α/2−1ψ−∇ψ∇(−∇2)α/2−1ψ∗]

= −iDα�
α−1kα−2(∇ψ∗∇ψ−∇ψ∇ψ∗) = 0 (24)

and the continuity equation has a sourceless form170

∂

∂t
ρ + ∇ · jα = 0, (25)

with 171

ρ = ψ∗ψ,

jα = −iDα�
α−1kα−2(ψ∗∇ψ − ψ∇ψ∗). (26)

This completes the proof. 172

We emphasize that in scatter problems the source term 173

I1<α<2(r,t) 	= 0 at the detector’s location, though the potential 174

at the detector may be zero. There are two reasons for this: 175

(i) The particle is not free so the relation (22) does not hold and 176

(ii) the kinetic energy of particles from the scattering source 177

may not be exactly the same, i.e., they may not be strictly 178

monoenergetic. How to develop a scattering model based on 179

the correct continuity equation (15) is an important problem 180

in quantum mechanics. 181

IV. SCHRÖDINGER EQUATION WITH RELATIVISTIC 182

KINETIC ENERGY 183

In Refs. [2,3], the relationship between the fractional 184

quantum mechanics and the real world was not given. A natural 185

question is which particle has a fractional kinetic energy. If 186

there are no fractional particles in our world, why do we 187

need fractional quantum mechanics? To relate the fractional 188

quantum mechanics to the real world, we regard relativistic 189

quantum mechanics [1,10–12] as an approximate realization 190

of fractional quantum mechanics. 191

According to the special relativity, the relativistic kinetic 192

energy is 193

Tr =
√

p2c2 + m2c4, (27)

where the subscript r means special relativity. For the case of 194

low speed, the relativistic kinetic energy is approximately the 195

summation of the rest energy and the classical kinetic energy 196

(α = 2) 197

Tr ≈ mc2 + p2

2m
= mc2 + T2, (28)

and for the case of extremely high speed, where the rest energy 198

can be neglected, the relativistic kinetic energy is the fractional 199

kinetic energy with α = 1, 200

Tr ≈ |p|c = T1. (29)

Generally speaking, if the speed of a particle increases 201

from low to high, the relativistic kinetic energy Tr will 202

approximately correspond to a fractional kinetic energy Tα , 203

whose parameter α changes from 2 to 1. Therefore, the 204

relativistic kinetic energy is an approximate realization of the 205

fractional kinetic energy. 206
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The Hamiltonian function with the relativistic kinetic207

energy is [10,11]208

Hr =
√

p2c2 + m2c4 + V (r). (30)

Historically, using this Hamiltonian function, Sommerfeld209

calculated the relativistic correction to Bohr’s hydrogen energy210

levels, and the fine structure in the hydrogen spectrum was211

explained exactly [4].212

The relativistic Schrödinger equation is [1,10,11]213

i�
∂

∂t
ψ(r,t) = Hrψ(r,t). (31)

Using the perturbation method, we recently calculated the214

relativistic correction to the hydrogen energy levels obtained215

from the Schrödinger equation. The resultant energy levels216

contain an α5 term, which can explain the Lamb shift at an217

accuracy of 41% [13,14].218

The continuity equation can be expressed as [1]219

∂

∂t
ρ + ∇ · jr = Ir , (32)

with the current density and the source term220

jr = − 1

i�
(ψ∗Tr∇−2∇ψ − ψTr∇−2∇ψ∗),

Ir = − 1

i�
(∇ψ∗Tα∇−2∇ψ − ∇ψTα∇−2∇ψ∗). (33)

Again, the probability is not locally conserved, but the total221

probability in the whole space is conserved [1]222

i�
∂

∂t

∫
R3

ψ∗ψd3r =
∫

R3
ψ∗Trψd3r −

∫
R3

ψTrψ
∗d3r = 0.

(34)

Similarly, for a free particle with a definite kinetic energy,223

we have Ir = 0.224

Since the relativistic kinetic energy is true and the classical225

kinetic energy is approximate, the probability continuity226

equation with the source term (32) can be true and the227

popular probability continuity equation in standard quantum228

mechanics [4] is approximate. Therefore, we need to base our229

scattering model on the continuity equation with the source230

term, i.e., Eq. (32), calculate the variation between the present231

model and the traditional model, and design experiments to232

observe the phenomenon of the probability teleportation.233

Since the relativistic Schrödinger equation (31) is not234

relativistically covariant [10,11], violates the causality [15],235

and is nonlocal [16] and complicated [10], the research on this236

equation has been criticized since the early days of quantum237

mechanics. A positive experimental result on the probability238

teleportation will end this situation ultimately.239

V. CONCLUSION240

We proved that the fractional uncertainty relation does241

not hold generally. The missing source term in the fractional242

probability continuity equation leads to particle teleportation.243

According to the special relativity, the classical kinetic energy244

is just an approximation in the low-speed case, so it would245

be a hopeful direction to study particle teleportation in246

scattering theory and experiments. Furthermore, the concept 247

in this Comment offers a very intuitive explanation for 248

superconductivity and superfluidity. We also point out how 249

to teleport a particle to an arbitrary destination. 250
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APPENDIX A: INTUITIVE EXPLANATION FOR THE 257

SUPERFLUIDITY AND SUPERCONDUCTIVITY 258

BASED ON TELEPORTATION 259

In [17] Tayurskii and Lysogorskiy applied the fractional 260

quantum mechanics to explain some property of the superfluid 261

4He. From fractional Schrödinger equation, they correctly 262

obtained the fractional probability continuity equation 263

∂

∂t
ρ + ∇ · jα = Iα, (A1)

where ρ was viewed as the density of the superfluid, jα as the 264

mass current density, and Iα as extra sources. In order to keep 265

consistent with the well-known fluid continuity equation 266

∂

∂t
ρ + ∇ · j = 0, (A2)

Tayurskii and Lysogorskiy claimed that in the superfluid 267

Iα ≈ 0, since the wave function describing the He atoms could 268

be assumed to be 269

ψ(r) =
∑

p

Cp exp(ip · r/�), (A3)

where the summation goes over the momentums with approx- 270

imately equal |p|. 271

This is very difficult to understand. First, we do not know 272

why the atoms are on such a special state. Second, since the 273

potential V (r) is not zero or a constant [see Eq. (13) in [17]], 274

the wave function (A3) is not an eigenfunction of the fractional 275

Hamiltonian operator Hα , so even if at t = 0 the momentum 276

magnitudes |p| are the same, they will become different soon. 277

On the contrary, we should suppose that the source term Iα or 278

Ir is not zero generally. 279

Here is our superfluid model based on Eq. (A1) or (32). 280

When the superfluid 4He is still, moving atoms sometimes can 281

disappear at one place and appear at another distant place. This 282

explains why heat can be conducted easily by the superfluid. 283

When the superfluid flows, some superfluid moves forward 284

normally, which has friction, and some teleports from one 285

place to another, which has no friction. Thus we do not need 286

to artificially divide the superfluid into a normal component 287

and a superfluid component. 288
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Now it becomes an urgent task to observe whether the mass289

teleportation really exists in the superfluid experiment. An easy290

way is to measure the velocity of the superfluid in the capillary291

tube and the mass coming out from the tube to check whether292

they are consistent.293

Similarly, based on the concept of teleportation, the super-294

conductivity can be viewed as such a phenomenon in which295

some electrons teleport from one side of the superconductor296

to the other side; of course they do not dissipate energy.297

Currently, physicists say that the superconducting electrons298

pass through the Josephson junction by quantum tunneling,299

but an open question is why the supercurrent can flow through300

the nonsuperconducting metal in an SNS (superconductor—301

normal metal–superconductor) junction without dissipation.302

(How can one drive through a toll tunnel without payment?)303

The reasonable explanation should be that electrons teleport304

from one side of the junction to the other.305

APPENDIX B: PARTICLE TELEPORTATION306

BASED ON WAVE-FUNCTION COLLAPSE307

In current quantum teleportation, the state of a particle is308

transferred from one place to another while the particle itself309

does not move at all. Here we provide a procedure for particle310

teleportation based on wave function collapse in quantum311

mechanics.312

Suppose that a particle is located in an interval on the 313

negative half of x axis, described by a wave function 314

ψ(x) =
{

nonzero x ∈ [−b,−a]

0 x /∈ [−b,−a].

Here a < b are two positive real numbers. Obviously, this wave 315

function is neither even nor odd. Technically, the function is 316

not an eigenfunction of the parity operator, but a superposition 317

of two eigenfunctions 318

ψ(x) = [ψeven(x) + ψodd(x)]/2

with 319

ψeven(x) = ψ(x) + ψ(−x), ψodd(x) = ψ(x) − ψ(−x).

Now we measure the parity of the state. The wave function 320

ψ(x) will collapse into either ψeven(x) or ψodd(x). In either 321

case, the probability of the particle appearing on the positive 322

half of the x axis is 1
2 . Now we detect the particle in the region 323

[a, b]. If we find it, the teleportation is over. If we do not 324

find it, we know that the particle remains in the region [−b, 325

−a] and we measure the parity of the wave function ψ(x) 326

and detect the particle in the region [a, b] again. We repeat 327

until we find it. In addition, we point out that the spin state 328

of the particle remains the same after this teleportation. This 329

procedure reminds us that wave function collapse in quantum 330

mechanics can cause a particle to run faster than light. 331
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