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Jérémy Besson1,2, Céline Robardet3, and Jean-François Boulicaut1

1 INSA Lyon, LIRIS CNRS FRE 2672, F-69621 Villeurbanne cedex, France
2 UMR INRA/INSERM 1235, F-69372 Lyon cedex 08, France
3 INSA Lyon, PRISMA, F-69621 Villeurbanne cedex, France

{Jeremy.Besson,Celine.Robardet,Jean-Francois.Boulicaut}@insa-lyon.fr

Abstract. We are designing new data mining techniques on boolean
contexts to identify a priori interesting bi-sets (i.e., sets of objects or
transactions associated to sets of attributes or items). A typical impor-
tant case concerns formal concept mining (i.e., maximal rectangles of true
values or associated closed sets by means of the so-called Galois connec-
tion). It has been applied with some success to, e.g., gene expression
data analysis where objects denote biological situations and attributes
denote gene expression properties. However in such real-life application
domains, it turns out that the Galois association is a too strong one when
considering intrinsically noisy data. It is clear that strong associations
that would however accept a bounded number of exceptions would be
extremely useful. We study the new pattern domain of α/β concepts,
i.e., consistent maximal bi-sets with less than α false values per row and
less than β false values per column. We provide a complete algorithm
that computes all the α/β concepts based on the generation of concept
unions pruned thanks to anti-monotonic constraints. An experimental
validation on synthetic data is given. It illustrates that more relevant
associations can be discovered in noisy data. We also discuss a practical
application in molecular biology that illustrates an incomplete but quite
useful extraction when all the concepts that are needed beforehand can
not be discovered.

1 Introduction

One of the most popular data mining techniques concerns transactional data
analysis by means of set patterns. Transactional data can be represented as
boolean matrices. The lines denotes transactions or objects and the columns are
boolean attributes that enable to record item occurrences within transactions
or properties of objects. For instance, in the toy example r1 from Figure 1,
object o2 satisfies properties i1 and i2 or, alternatively, transaction o2 contains
items i1 and i2. Many application domains can lead to such boolean contexts.
For instance, beside the classical basket analysis problem where transactions
denote the items purchased by some customers, we made many experiments
on boolean gene expression data sets that encode gene expression properties in
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some biological situations (see, e.g., [4]). In this kind of application, the raw
data is a collection of numerical values that quantify the activity of each gene in
each studied situation. Gene expression properties, for instance over-expression,
are then computed by means of discretization techniques (see, e.g., [1, 13]). For
example, given r1, we might say that all the studied genes are considered over-
expressed in situation o1.

Items

i1 i2 i3
o1 1 1 1
o2 1 1 0
o3 1 0 1
o4 1 0 0
o5 0 1 0

Fig. 1. A boolean context r1

Given eventually huge transactional data sets, hundreds of research papers
have considered the efficient computation of a priori interesting association rules
from the so-called frequent sets of attributes. Also, the multiple uses of (fre-
quent) closed sets of transactions and/or attributes have been studied a lot. In
this paper, we consider bi-set mining from transactional data. More precisely, we
want to compute sets of objects T and sets of attributes G that are strongly as-
sociated within the data. An interesting case concerns formal concept discovery,
i.e., the computation of maximal rectangles of true values [18]. For instance, in
r1, ({o1, o2}, {i1, i2}) is a formal concept or concept for short. In boolean gene
expression data sets, concepts can be considered as putative transcription mod-
ules, i.e., maximal sets of genes that are co-regulated associated to the maximal
set of situations in which they are co-regulated. Their discovery is an important
step towards the understanding of gene regulation networks. It is the major ap-
plication domain which motivates our research. Collections of concepts can be
used, e.g., for conceptual clustering or as condensed representations for associa-
tion rules. Efficient algorithms enable to compute concepts [8, 2, 10]. When the
extraction task is too hard, it is also possible to compute concepts under con-
straints. It can be based on (frequent) closed set computation (see, e.g., [11, 5,
12, 19, 6, 7, 15] and [9] for a recent survey). It is also possible to use an algorithm
that directly mine concepts under constraints on both set components [3].

The aim of concept extraction is to identify objects and properties which
are strongly associated. Within a concept, we have a maximal set of objects
(i.e., a closed set) which are in relation with all the elements of a maximal set
of properties and vice versa. This degree of association is often too strong in
real-life data. This is typical in life sciences where we can not avoid error of
measurement or when discretization methods are used and can easily lead to
some wrong values. Indeed, once a discretization threshold has been computed
(say 34.5) for deciding of over-expression of a given gene, assigning false (and



thus not over-expression) for a situation whose raw expression value is 34 might
be or not an error. What is clear, is that concepts that would accept exceptions
could be extremely useful. Assume that in a boolean context, we have a bi-set
(T, G) (with, e.g., |T | = 12 and |G| = 25) such that each property from G
is not shared by at most one object from T and each object from T does not
have at most two properties from G. Our thesis is that it is extremely useful
to extract such a bi-set for further post-processing by data owners. Indeed the
presence of erroneous false values in the data set leads to the multiplication of
concepts from which it might be hard to identify the relevant associations. As an
illustration, in Figure 1, the bi-set ({o1, o2, o3}, {i1, i2, i3}) is not a concept but
has at most 1 false value per row and at most 1 false value per column. It appears
to be the union of 4 concepts which are ({o1}, {i1, i2, i3}), ({o1, o2, o3}, {i1}),
({o1, o2}, {i1, i2}), and ({o1, o3}, {i1, i3}).

Therefore, the contribution of this paper is to propose a new kind of patterns
called the α/β concepts, i.e., concepts with exceptions or, more precisely, maxi-
mal consistent bi-sets of true values with a bounded number of false values per
row (α threshold) and per column (β threshold). Therefore, we specify the de-
sired patterns within a constraint-based mining framework. The constraint Cαβ

is used to enforce a bounded number of exceptions. The consistency constraint
denoted Ccons is important: only relevant patterns such that there is no row (resp.
column) outside the bi-set which is identical to an inside one w.r.t. the bi-set
columns (resp. rows) have to be mined. Finally, we also use maximality con-
straints (denoted Cmax) w.r.t. the collections specified by the other constraints
and our specialization relation on bi-sets. We studied how to compute α/β con-
cepts. This is indeed a difficult problem since we loose the Galois connection
properties in this new setting. Our main theoretical result concerns the formal-
ization of a constraint-based mining framework that can be used for computing
every α/β concept. For that purpose, we start by computing every concept and
then we perform unions of concepts while “pushing” the constraints Cαβ , Ccons,
and Cmax to reduce the search space. Doing so, the complete collection of α/β
concepts can be computed. We provide two experimental validations. First, we
consider a synthetic data set. This data set has been designed such that it “con-
tains” a given collection of formal concepts. We then introduced some noise and
we show that α/β concept mining enables to discover the original associations
(i.e., the concepts that were existing before noise introduction) provided that the
noise is not too important. Then, we discuss a practical application in molecu-
lar biology. It illustrates an incomplete but quite useful extraction when all the
α/β concepts can not be discovered: instead of computing the whole collection
of α/β concepts we compute a subset of them obtained from large enough con-
cept unions. By this application we demonstrate that large α/β concepts can be
computed that contain a rather small number of exceptions.

The paper is organized as follows. In Section 2, we provide the needed defini-
tions and the formalization of the α/β concept mining task. Section 3 sketches
the algorithm and discuss its properties. Section 4 concerns the experimental
validation of our approach. Finally, Section 5 is a short conclusion.



2 Formalizing α/β concept mining

Let O denotes a set of objects and P denotes a set of properties. The transac-
tional data or boolean context is r ⊆ O×P. (oi, ij) ∈ r denotes that property j
holds for object i. A bi-set is an element of L = LO × LP where LO = 2O and
LP = 2P .

Definition 1 (1-rectangle). A bi-set (T,G) is a 1-rectangle in r iff ∀t ∈ T
and ∀g ∈ G then (t, g) ∈ r. We say that it satisfies constraint C1R(T, G). When
a bi-set (T,G) is not a 1-rectangle, we say that it contains 0 values.

Definition 2 (Concept). A bi-set (T, G) is a concept in r iff (T, G) is a 1-
rectangle and ∀T ′ ⊆ O\T, (T ∪ T ′, G) is not a 1-rectangle and ∀G′ ⊆ P\G,
(T, G ∪G′) is not a 1-rectangle. A concept (T, G) is thus a maximal 1-rectangle.

Example 1 ({o1}, {i1, i3}) is a 1-rectangle in r1 but it is not a concept. An
example of a concept in r1 is ({o1, o3}, {i1, i3}).

By construction, concepts are built on two so-called closed sets that are
associated by the Galois connection.

Definition 3 (Galois connection [18]). If T ⊆ O and G ⊆ P, assume
φ(T, r) = {i ∈ P | ∀o ∈ T, (o, i) ∈ r} and ψ(G, r) = {o ∈ O | ∀i ∈ G, (o, i) ∈ r}.
φ provides the set of items that are common to a set of objects and ψ provides the
set of objects that share a set of items. (φ, ψ) is the so-called Galois connection
between O and P. We use the classical notations h = φ ◦ ψ and h′ = ψ ◦ φ to
denote the Galois closure operators. A set T ⊆ O (resp. G ⊆ P) is said closed
iff T = h′(T ) (resp. G = h(G)).

An important property of the Galois connection is that each closed set on one
dimension is associated to a unique closed set on the other dimension. It explains
why any algorithm that computes closed sets can be used for concept extraction
(see, e.g., [15] for a discussion when using a frequent closed set computation
algorithm in the context of gene expression data analysis).

Example 2 ({o1, o2}, {i1, i2}) is a concept in r1. We have h({i1, i2}) = {i1, i2},
h′({o1, o2}) = {o1, o2}, φ({o1, o2}) = {i1, i2}, and ψ({i1, i2}) = {o1, o2}.

The aim of concept extraction is to gather properties and objects which
are strongly associated. In many boolean contexts, either every concept can be
extracted or we have to use further constraints like, for instance, a minimal size
for each set component.

On another hand, we already motivated the interest of relaxing the maximal
1-rectangle constraint. A simple idea is to consider all the maximal bi-sets with
less than α false values per row and less than β false values per column.

Definition 4 (αβ-constraint). A bi-set (T,G) satisfies Cαβ in r iff
∀o ∈ T, |{i ∈ G such that (o, i) 6∈ r}| ≤ min(β, |G| − 1) and
∀i ∈ G, |{o ∈ T such that (o, i) 6∈ r}| ≤ min(α, |T | − 1).



Example 3 Given r1 and α = β = 1, the two bi-sets ({o1, o2, o3}, {i1, i2})
and ({o1, o2, o4}, {i1, i2}) satisfy the αβ-constraint. However, o3 and o4 have
the same values on i1 and i2. It turns out that these objects can not be added
simultaneously on ({o1, o2}, {i1, i2}) in order to satisfy Cαβ.

To ensure consistency and avoid this problem, we decided either to add all
identical properties (w.r.t. the set of objects) or all identical objects (w.r.t. the
set of properties) in the bi-set when Cαβ is satisfied, or to exclude all of them
when it is not the case. As for concepts, α/β concepts can differ from each other
either on the object component or on the property component. This is formalized
by the use of the consistency constraint denoted Ccons.

Definition 5 (Consistency constraint). A bi-set (T, G) satisfies Ccons iff

– ∀i ∈ G, 6 ∃j ∈ P \G such that ψ(i) ∩ T = ψ(j) ∩ T
– ∀o ∈ T, 6 ∃w ∈ O \ T such that φ(o) ∩G = φ(w) ∩G

On our way to the extraction of bi-sets with few 0 values, it is interesting to
reformulate the definition of formal concepts.

Definition 6 (Specialization relation). Our specialization relation on bi-sets
from LO × LP is defined by (T1, G1) ¹ (T2, G2) iff T1 ⊆ T2 and G1 ⊆ G2. As
usual, ≺ is used to denote strict specialization (i.e., using ⊂ instead of ⊆).

Definition 7 (Maximality constraint). A bi-set (T, G) is maximal w.r.t. a
constraint C and is said to satisfy Cmax|C(T,G) iff 6 ∃(T ′, G′) such that C(T ′, G′)∧
(T, G) ≺ (T ′, G′).

Definition 8 (New definition of formal concepts). A bi-set (T, G) is a
formal concept iff

– (T, G) satisfies C1R

– (T, G) is maximal w.r.t. C1R, i.e., (T, G) satisfies Cmax|C1R
.

Notice that by construction, a concept satisfies the constraint Ccons. Let us
now define α/β concepts.

Definition 9 (α/β concept). A bi-set (T,G) is an α/β concept iff

– (T, G) satisfies Cαβ

– (T, G) satisfies Ccons

– (T, G) is maximal w.r.t. Cαβ ∧ Ccons, i.e., (T, G) satisfies Cmax|Cαβ∧Ccons
.

Let us notice that, looking for an α/β concept (T, G), it makes sense that |T | À α
and |G| À β. The αβ-constraint is an extension of the 1-rectangle constraint
for bi-sets with 0 values. Then, α/β concepts appear to be a simple extension
of concepts by changing the 1-rectangle constraint into the αβ-constraint in
conjunction with the Ccons constraint. This is one of the important results of
this work.

Example 4 ({o1, o2, o3}, {i1, i2, i3}) is an α/β concept in r1. ({o1, o2}, ∅) and
({o3, o4, o5}, {i1, i2}) are not α/β concepts because they do not satisfy respectively
Cmax|Ccons∧Cαβ

and Cαβ constraints.



3 Mining α/β concepts

The computation of every α/β concept from a given data set r is done in two
steps. First, we compute all the concepts, i.e., a collection denoted K. Then we
search the maximal (w.r.t. a specialization relation on bi-sets) unions of concepts
which satisfy the αβ-constraint Cαβ .

Definition 10 (Union of bi-sets). Let B1 = (T1, G1) and B2 = (T2, G2) be
two bi-sets from LO×LP . The union of B1 and B2 is B1tB2 = (T1 ∪ T2, G1 ∪G2).
It can be applied on concepts that are special cases of bi-sets. By construction,
unions of concepts are not concepts.

Theorem 1. Let U = {⊔i∈K′ i | Cαβ and K′ ⊆ K} where K is the collection of
concepts, the collection of α/β concepts is equal to

Kαβ = {s ∈ U |6 ∃s′ ∈ U s ¹ s′}
Proof. We show that the collection of bi-sets which satisfy Ccons (Kcons) is equal
to the collection of the unions of concepts (Kt). In other terms, the use of unions
enforce the Ccons constraint.

– Kt ⊆ Kcons

Let (X, Y ) be an element of Kt. Let us assume that ¬Ccons(X, Y ). We con-
sider j ∈ P \ Y such that ∃i ∈ Y, ψ(i) ∩ X = ψ(j) ∩ X. It exists at least
one concept (L,C) ∈ K such that (L,C) ¹ (X, Y ) and i ∈ C ((X, Y ) is a
union of concepts). However, ∀` ∈ L, (`, i) ∈ r and L ⊆ ψ(j), thus (`, j) ∈ r.
Consequently, as (L,C) is a concept, j ∈ C ⊆ Y . We have a contradiction
and Ccons is satisfied.
Reciprocally, we consider w ∈ O\X such that ∃v ∈ X, φ(v)∩Y = φ(w)∩Y .
It exists at least one concept (L, C) ∈ K such that (L, C) ¹ (X, Y ) and v ∈ L
((X, Y ) is a union of concepts). However, ∀c ∈ C, (v, c) ∈ r and C ⊆ φ(w),
thus (w, c) ∈ r. Consequently, as (L,C) is a concept, w ∈ L ⊆ X. We have
a contradiction and thus Ccons is satisfied.

– Kcons ⊆ Kt
Let (X, Y ) be a bi-set which satisfy Ccons. ∀i ∈ Y, ψ(i) ∩X 6= ∅ and 6 ∃j ∈
P \ Y such that ψ(i) ∩ X = ψ(j) ∩ X consequently φ(ψ(i) ∩ X) ⊆ Y . As
ψ(i) ∩ X ⊆ ψ(i) and φ is a decreasing operator, φ(ψ(i)) ⊆ φ(ψ(i) ∩ X)
consequently φ(ψ(i)) ⊆ Y .
On the other side, ψ(i) ∩ X 6= ∅. Let v ∈ ψ(i) ∩ X. It does not exist w ∈
O \ψ(i)∩X such that φ(v)∩ Y = φ(w)∩ Y consequently ψ(φ(v)∩ Y ) ⊆ X.
As φ(v) ∩ Y ⊆ φ(v) and ψ is a decreasing operator, ψ(φ(v)) ⊆ ψ(φ(v) ∩ Y )
consequently ψ(φ(v)) ⊆ X.
We can conclude that for each (v, i) ∈ (X,Y ) and (v, i) ∈ r, it exists a
concept (ψ(φ(v)), φ(ψ(i)) included in (X, Y ). (X,Y ) is the union of these
concepts and thus belongs to Ct.

It means that we can compute α/β concepts by generating the unions of
concepts which satisfy Cαβ and Cmax|Cαβ

.



Property 1. Cαβ is anti-monotonic w.r.t. our specialization relation on bi-sets.

Consequently, when considering candidate unions of concepts, we can use
the anti-monotonicity of Cαβ to prune the search space. It is also possible to
push Cmax|Cαβ

to prune the search space. This can be done by adapting known
efficient algorithms which compute maximal frequent sets (see, e.g., [9] for a
recent survey), where sets are sets of concepts and the anti-monotonic minimal
frequency constraint is replaced by the Cαβ constraint.

Given K the collection of formal concepts and two parameters α and β,
we compute the following collection of sets of concepts {ϕ ∈ 2K | Cαβ(ϕ) ∧
Cmax|Cαβ

(ϕ) is satisfied}.
The concepts in r1 are:

c1 = ({o1}, {i1, i2, i3}) c2 = ({o1, o2}, {i1, i2})
c3 = ({o1, o3}, {i1, i3}) c4 = ({o1, o2, o5}, {i2})

c5 = ({o1, o2, o3, o4}, {i1})

We consider the search for α/β concepts in r1 when α = 1 and β = 1.

C5C4C1 C3

C1C2 C1C3 C1C4 C1C5 C2C3 C2C4 C2C5 C3C4 C3C5 C4C5

C1C2C3

C2

Fig. 2. Search space of α/β concepts (α = β = 1) in context r1.

Figure 2 illustrates how the collection of 1/1 concepts are extracted from r1:
it provides {{c1, c2, c3}, {c2, c4}, {c5}}. The circled elements form the solution
space. Stripped elements do not satisfy Cαβ . Their supersets are not generated.
The three α/β concepts are here c1∪c2∪c3, c2∪c4, and c5. They correspond re-
spectively to the following bi-sets: ({o1, o2, o3}, {i1, i2, i3}), ({o1, o2, o5}, {i1, i2})
and ({o1, o2, o3, o4}, {i1}).

4 Experimentation

4.1 Synthetic data

To show the relevancy of α/β concept mining in noisy data, we first designed
a synthetic data set. Our goal was to show that α/β concept mining enables



to discover concepts that have been introduced before the introduction of some
noise. Therefore, we have built a boolean data set made of 20 non-overlapping
concepts containing each 5 items and 5 objects. Secondly, we introduced a uni-
form random noise by modifying with the same probability (5% in Figure 3 top
and 10% in Figure 3 bottom) some of the boolean values (i.e., transforming some
true values into false values and vice versa). We produced 10 data sets (with 100
lines and 100 columns) for each noise probability. When considering first concept
mining phase, we extracted between 169 and 225 concepts (resp. between 289
and 373 concepts) in the 5% noise data sets (resp. in the 10% noise data sets).
Figure 3 provides the average and standard deviation of the number of α/β
concepts (Y-coordinate) w.r.t. their minimal number of objects and properties
(X-coordinate). Each curve stands for a different value of α and β between 0
and 2. For example, on Figure 3 bottom, we have 126 α/β concepts in average
with at least 3 objects and 3 items when α = 2 and β = 1.

On the data sets with 5% noise, we have in average 196 concepts (see the
curve with α = β = 0) among which 48 have at least 3 properties and objects and
5 of them have at least 5 properties and objects. With 10% of noise, we got 317
concepts in average among which 60 have at least 3 properties and objects and
2 of them have at least 5 properties and objects. In this extracted collection of
concepts, it is difficult to find the 20 original concepts that were occurring before
noise introduction. When α and β are not null, the collection of extracted α/β
concepts is roughly speaking the 20 original concepts. For example, considering
α = β = 1, we got 20.2 (resp. 22.1) α/β concepts of size greater than 4 in the 5%
(resp. the 10%) noise data set. Even when the percentage of noise increases, the
collection of α/β concepts has “captured” the embedded concepts. Nevertheless,
the number of α/β concepts can increase with α or β. A lot of α/β concepts
with a number of objects close to α and a number of properties close to β leads
to the computation of many unions. However, when several unions have been
performed, it is more and more difficult to merge concepts. α/β concepts whose
the minimal number of lines and columns is large w.r.t. α and β are dense in
terms of true values and considered relevant. In other terms, it is interesting
not to consider small α/β concepts (w.r.t. α and β) and thus eliminate lots of
meaningless α/β concepts.

4.2 Post-processing an incomplete collection of concepts on real
gene expression data

In many real data sets, it is not possible to extract the whole collection of
concepts. In these cases, additional constraints can be pushed deeply into the
concept extraction algorithms like, for instance, enforcing a minimal size for both
set components when using our D-Miner algorithm [3, 4]. We could also limit
the search to the so-called frequent concepts which use such a constraint on only
one set component (see, e.g., [17, 14]).

Even in the case where we can not have the whole collection of concepts K,
we can still extract α/β concepts from a subset of K. Doing so, we compute more
relevant patterns as a post-processing of some concepts.
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Fig. 3. Number of α/β concepts with respect to their size (both dimensions greater or
equal than the X-coordinate value) with 5% (top) and 10% (bottom) of noise

A concrete application concerns the analysis of gene expression profiles in
Type 2 diabetes disease. As we already pointed out, molecular biologists are
interested in discovering putative transcription modules, i.e. sets of genes that are
co-regulated and the associated sets of situations where this co-regulation occurs.
In the following experiment, situations corresponds to transcription factors, i.e.
biological objects which are known to activate or repress the genes. We derived
a boolean data set from the data in [16]. It contains 350 genes (in rows) which
are in relation with some transcription factors (150 columns) known to regulate
(activate or repress) them. This data set is dense since 17% of the values are
true values.

We are interested in large α/β concepts that associate many genes to many
transcription factors. We were not able to extract the collection of α/β concepts



from the whole collection of concepts (more than 5 millions). We decided to look
at the merging of large concepts containing at least 25 genes and 10 transcrip-
tion factors. Using D-Miner, we extracted 1 699 concepts satisfying these size
constraints. Then we computed the collections of α/β concepts with small α and
β values. Table 1 provides the number of α/β concepts (for 4 values of αβ) per
number of merged concepts.

n α = β = 1 α = β = 2 α = β = 3 α = β = 4
1 1450 1217 927 639
2 54 49 61 95
3 31 57 75 73
4 8 40 50 64
5 2 8 25 58
6 1 3 11 29
7 0 0 6 11
8 0 0 1 12
9 0 0 0 2
10 0 0 1 6
11 0 0 0 0
12 0 0 0 3
13 0 0 0 1
14 0 0 1 0
15 0 0 0 1

Total 1546 1374 1158 994

Table 1. Number of α/β concepts produces by the union of n concepts

Interestingly, even though we merged only large concepts with small α and β
values, large α/β concepts have appeared. For example, at most 6 concepts are
merged when α = β = 1 whereas 15 concepts are merged when α = β = 4. In
this data set, we have large bi-sets with few 0 values. Typically, the α/β concept
(α = β = 4) resulting from the merge of 15 concepts is made of 36 genes and 12
transcription factors and contains only 3.7% of false values (see Table 2 where
each line stands for a transcription factor and the value is the number of false
values in the α/β concept).

The 12 transcription factors of this α/β concept have been checked as re-
ally similar with respect to the genes which are associated. It seems useful for
biologists to consider such α/β concepts with very few exceptions instead of
post-processing by themselves huge collections of concepts.

5 Conclusion

We have considered the challenging problem of computing formal concepts with
exceptions from transactional data sets. This is extremely important in many
application domains where strongly associated sets of objets and properties can
provide interesting patterns. Closed sets associated via the Galois connection are
indeed strongly associated but we miss interesting associations when the data
is intrinsically noisy, for instance because of measurement errors or some crispy
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Table 2. α/β concept (36×12) resulting from the union of 15 concepts with α = β = 4
(number of false values for each transcription factor of the α/β concept)

discretization procedures. The same reasoning has lead few years ago to the
computation of almost-closure [5] when looking for condensed representations of
frequent itemsets. The difficulty here has been to design a complete method for
computing the so-called α/β concepts. Our formalization in terms of union of
concepts that satisfy Cαβ and Cmax|Cαβ

is complete. We experimentally validated
the added-value of the approach on both synthetic data and a real application in
molecular biology. Further experiments are needed for a better understanding of
the difference between collections of concepts and collections of α/β concepts.
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