Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

E.B. Graham 1 J.E. Knelman 1 A. Schindlbacher 2 S. Siciliano 3 M. Breulmann 4 A. Yannarell 5 J.M. Beman 6 G. Abell 7 L. Philippot 8 J. Prosser 9 A. Foulquier 10 J.C. Yuste 11 H.C. Glanville 12 D.L. Jones 12 R. Angel 13 J. Salminen 14 R.J. Newton 15 H. Burgmann 16 L.J. Ingram 17 U. Hamer 18 H.M. Siljanen 14 K. Peltoniemi 19 K. Potthast 20 L. Baneras 21 M. Hartmann 22 S. Banerjee 23 R.Q. Yu 24 G. Nogaro 25 A. Richter 26 M. Koranda 26 S.C. Castle 27 M. Goberna 28 B. Song 29 A. Chatterjee 30 O.C. Nunes 31 A.R. Lopes 31 Y. Cao 32 A. Kaisermann 33 S. Hallin 34 M.S. Strickland 35 J. Garcia Pausas 36 J. Barba 37 H. Kang 38 K. Isobe 39 S. Papaspyrou 40 R. Pastorelli 41 A. Lagomarsino 42 E.S. Lindstrom 42 N. Basiliko 43 D.R. Nemergut 1
Abstract : Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.
Type de document :
Article dans une revue
Frontiers in Microbiology, Frontiers Media, 2016, 7, pp.214. 〈10.3389/fmicb.2016.00214〉
Liste complète des métadonnées

Littérature citée [62 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01588095
Contributeur : Import Ws Irstea <>
Soumis le : vendredi 15 septembre 2017 - 10:02:29
Dernière modification le : mardi 20 novembre 2018 - 18:32:01
Document(s) archivé(s) le : samedi 16 décembre 2017 - 12:47:16

Fichier

ly2016-pub00052492.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

E.B. Graham, J.E. Knelman, A. Schindlbacher, S. Siciliano, M. Breulmann, et al.. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?. Frontiers in Microbiology, Frontiers Media, 2016, 7, pp.214. 〈10.3389/fmicb.2016.00214〉. 〈hal-01588095〉

Partager

Métriques

Consultations de la notice

297

Téléchargements de fichiers

62