The complex case of Schmidt's going-down Theorem

Abstract : In 1967, Schmidt wrote a seminal paper [10] on heights of subspaces of R n or C n defined over a number field K, and diophantine approximation problems. The going-down Theorem – one of the main theorems he proved in his paper – remains valid in two cases depending on whether the embedding of K in the complex field C is a real or a complex non-real embedding. For the latter, and more generally as soon as K is not totally real, at some point of the proof, the arguments in [10] do not exactly work as announced. In this note, Schmidt's ideas are worked out in details and his proof of the complex case is presented, solving the aforementioned problem. Some definitions of Schmidt are reformulated in terms of multilinear algebra and wedge product, following the approaches of Laurent [5], Bugeaud and Laurent [1] and Roy [7], [8]. In [5] Laurent introduces in the case K = Q a family of exponents and he gives a series of inequalities relating them. In Section 5 these exponents are defined for an arbitrary number field K. Using the going-up and the going-down Theorems Laurent's inequalities are generalized to this setting.
Type de document :
Article dans une revue
Monatshefte für Mathematik, Springer Verlag, 2017, 〈10.1007/s00605-017-1084-4〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger
Contributeur : Anthony Poels <>
Soumis le : jeudi 14 septembre 2017 - 13:35:08
Dernière modification le : jeudi 11 janvier 2018 - 06:12:19


Fichiers produits par l'(les) auteur(s)




Anthony Poels. The complex case of Schmidt's going-down Theorem. Monatshefte für Mathematik, Springer Verlag, 2017, 〈10.1007/s00605-017-1084-4〉. 〈hal-01587583〉



Consultations de la notice


Téléchargements de fichiers