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Deep Representation based feature extraction and
recovering for Finger-vein verification

Huanfeng Qin and Mounim A. El Yacoubi

Abstract—Finger-vein biometrics has been extensively investi-
gated for personal verification. Despite recent advances in finger-
vein verification, current solutions completely depend on domain
knowledge and still lack the robustness to extract finger-vein
features from raw images. This paper proposes a deep learning
model to extract and recover vein features using limited a priori
knowledge. Firstly, based on a combination of known state of
the art handcrafted finger-vein image segmentation techniques,
we automatically identify two regions: a clear region with high
separability between finger-vein patterns and background, and an
ambiguous region with low separability between them. The first
is associated with pixels on which all the segmentation techniques
above assign the same segmentation label (either foreground or
background), while the second corresponds to all the remaining
pixels. This scheme is used to automatically discard the ambigu-
ous region and to label the pixels of the clear region as foreground
or background. A training dataset is constructed based on the
patches centered on the labeled pixels. Secondly, a Convolutional
Neural Network (CNN) is trained on the resulting dataset to
predict the probability of each pixel of being foreground (i.e. vein
pixel) given a patch centered on it. The CNN learns what a finger-
vein pattern is by learning the difference between vein patterns
and background ones. The pixels in any region of a test image
can then be classified effectively. Thirdly, we propose another
new and original contribution by developing and investigating
a Fully Convolutional Network (FCN) to recover missing finger-
vein patterns in the segmented image. The experimental results on
two public finger-vein databases show a significant improvement
in terms of finger-vein verification accuracy.

Index Terms—Hand biometrics, Finger-vein verification, Deep
Learning, Convolutional Neural Network, Convolutional Autoen-
coder, Representation learning.

I. INTRODUCTION

W ITH the tremendous growth in the demand for secured
systems, automatic personal verification using biomet-

rics has drawn increasing attention and has become one of the
most critical and challenging tasks. Physical and behavioral
modalities such as face, fingerprint, signature and gait have
been widely applied for the identification of criminals in law
contexts, for securing access to sensitive facilities, and for
granting access to electronic devices. A number of biometric
modalities have been employed for the verification task; these
can be broadly categorized in two categories: (1) extrinsic
modalities, i.e. face [1], fingerprint [2], and iris [3], and (2)
intrinsic modalities, i.e. finger-vein [4], hand-vein [5] and
palm-vein [6]. Extrinsic biometric modalities are susceptible
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Fig. 1: Vein pattern in the finger and palm skin [11]

to spoof attacks because fake face images [7], fingerprints [8],
and iris [9], [10] can successfully cheat the verification system.
Therefore, the usage of extrinsic biometrics generate some
concerns on privacy and security in practical applications.
On the other hand, intrinsic biometrics modalities are much
harder to forge as they are difficult to acquire without user’s
knowledge. In particular, vein verification provides higher
security and privacy for the user.

A. Motivation and Related Work

The main three components of the skin, the outermost
epidermis, dermis, and subcutaneous layers, contain fat and
blood. The veins and arteries are located inside the subcuta-
neous layer. The finger-vein pattern extends from finger root
to fingertip, showing clear network and good connectivity (as
shown in Fig.1). In general, the finger-vein pattern is not easily
observed in visible light. Different skin layers have different
responses to infrared light, so the vein pattern can be captured
by infrared light. In current works [4], [12], [13], infrared
illumination with wavelength of 850 nm is typically employed
to capture finger-vein images with high contrast.

Finger-vein verification is still a challenging task because
the acquisition process is inherently affected by a number of
factors: environmental illumination [14]–[16], ambient tem-
perature [4], [16], [17], light scattering in imaging finger
tissues [18], [19]. In practical applications, these factors are
not controlled, so many acquired finger-vein images contain
ambiguous regions where the separability between the vein
and non-vein patterns is poor. In general, matching from
ambiguous regions associated with noise and irregular shadow
regions will ultimately compromise the performance of the
authentication system. To perform effective verification, a lot
of approaches have been proposed to extract the vein network
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from finger-vein images, showing promising performance on
different databases. They can be broadly classified into two
categories:

1) Finger-vein extraction approaches based on detecting
valley features: In clear regions of the finger-vein image,
the pixel values in vein patterns are lower than those in
background, so the cross-sectional profile of a vein pattern
shows a valley shape. Therefore, various approaches have
been proposed to detect the valley. For example, repeated
line tracking methods [20]–[22] extract the vein pattern by
computing the difference between the center value and the
neighboring ones in the Cross-sectional profile. In region
growth-based approaches [23], a Gauss template is designed
to compute the valley’s depth and symmetry. In addition, as
curvature is sensitive to the valley, curvature-based measures
have been shown to be powerful for extracting finger-vein
features [16], [17], [24].

2) Finger-vein extraction approaches based on detecting
line-like features: In this category, a vein pattern is supposed
to be a line-like texture in a predefined neighborhood region.
This assumption has been supported by many works based
on Gabor filters [4], [18], [25], matched filters [26], wide
line detector [15] and neural networks [27]. Gabor wavelets
have been applied for ridge and edge detection to enhance
the finger-vein image. The enhanced vein pattern is further
segmented using a threshold to obtain a binary image for
identification. For the matched filters [26], different templates
are considered to search vein segments along all possible
directions. In wide line detection [7], the vein patterns are
detected by comparing the value of the center pixel to the
values of the other pixels within the mask. In [27], the finger-
vein image, by contrast, is enhanced based on curvelets, and
then a local interconnection neural network with a linear
receptive field is employed to learn straight-line vein features
based on labeled patches. The network is trained to detect a
horizontal line and the receptive field of the neural network is
further rotated by an angle to extract other lines. Unfortunately,
no details on the experimental setup are given and the pixels
seem to be manually labeled.

The approaches above extract finger-vein patterns based on
attribute assumptions such as valleys and straight-lines. As a
result, they suffer from following problems:

A) These assumptions are not always effective to detect the
finger vein patterns. Compared to background pixels, the vein
pixel values from clear regions do correspond to valleys or
straigth-line attributes (shown in Fig.2), so, in this case, the
approaches above can distinguish vein from non-vein pixels.
However, they cannot work well for ambiguous regions (as
shown in Fig.3), because noise can comprise some valley
structures in the vein region (Fig.3(b) ) while creating false
valleys in the background (Fig.3(c)).

B) As the pixel values can create different distributions
(as shown in Fig.3 and Fig.4), it is impossible to model all
attributes which are related to finger-vein features. Most of
attributes used in current state of the art are those which
are easy to observe and model, such as valleys or straight
lines. Considering as many existing attributes as possible may
alleviate the problem but is costly intensive, beside requiring
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Fig. 2: (a) Two pixels and their 30 × 30 neighborhood; Left:
Patch centered on background pixel; Right: Patch centered on
vein pixel; (b) distribution of gray values in the patch centered
on background pixel; and (c) distribution of gray values in the
patch centered on vein pixel. The color scale from blue to red
indicates increasing gray-scale values.
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Fig. 3: (a) Two pixel in ambiguous regions and their 30 × 30
neighborhood; Left: Patch centered on vein pixel; Right: Patch
centered on background pixel; (b) distribution of gray values
in the left patch; and (c) distribution of gray values in the right
patch

heavy manual inspection.

C) It is not easy to propose a mathematical model to
effectively describe the distributions shown, for instance, in
Fig.2(c), Fig.3(b) and Fig.4, assuming the attributes are related
to finger-vein patterns. The distributions are very complicated
to model accurately by a mathematical model, as this is
illustrated by the lack of modeling approaches on this problem.

Therefore, the performance of previous works has been
limited owing to the issues above. How to learn a good
representation of the vein patterns is still an issue for finger-
vein feature extraction. This has motivated us to investigate a
robust feature extraction approach for real-world finger-vein
verification.
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Fig. 4: (a) Two vein pixels in the intersection region. and their
30 × 30 neighborhood; (b) distribution of gray values in the
left patch; and (c) distribution of gray values in the right patch

B. our work

In recent years, deep learning-based approaches have been
successfully applied for computer vision and object tracking
[7], [8], speech recognition [28] and handwriting recognition
[29]. In the light of their powerful capacity for feature rep-
resentation, some researchers brought them into biometrics.
Several Deep learning models such as in [30]–[32] have been
built for face verification and have shown great success on
the LFW face dataset, for instance. Deep neural networks
(DNN) have also been employed recently in several medical
images segmentation tasks [33]–[36]. In their work, the DNN
is trained for segmentation using a ground truthed database.
Many experimental results in prior work have shown that deep
learning based approaches outperform handcrafted feature-
based approaches.

Inspired by this idea, we propose, in this paper, a deep
learning model for finger-vein verification. Our approach aims,
first, at segmenting foreground (vein) pixels from background
pixels by predicting the probability of a pixel to belong
to a vein pattern given limited knowledge, and, second, at
recovering missing vein patterns. Compared to current state
of the art segmentation and recovering approaches, that are
based on image processing techniques, our approach does
not segment or recover an image based only on its pixels
and their correlations, but it does so by relying also on rich
statistics on nonlinear pixels correlations, through a hierarchi-
cal feature representation learned by a deep neural network
from a large training set. This is a major advantage over
traditional approaches as relying only on noisy input images
for segmentation or vein recovery may lead to severe errors.
The main paper contributions are summarized as follows:
1) We propose an automatic scheme to label pixels in vein
regions and background regions, given very limited human
knowledge. We employ several existing baselines approaches
to extract (segment) the vein network from an image and use
their combined output automatically to assign a label for each
pixel. Such a scheme avoids the heavy manual labeling and
may also reduce label errors, especially for ambiguous pixels.

2) A CNN-based scheme is employed to automatically learn
features from raw pixels for finger-vein verification. First, a
dataset is constructed based on patches centered on the labeled
pixels, and we take the patches as input for CNN training.
Secondly, in the test phase, the patch of each pixel is input
into CNN the output of which is taken as the probability of
the pixel to belong to a vein pattern. Then, the vein patterns
are segmented using a probability threshold of 0.5. Compared
to existing approaches, our CNN automatically learns robust
attributes for finger-vein representation. Experimental results
on large public datasets show that the proposed model is able
to extract the vein patterns from raw images in a robust way,
which leads to a significant improvement in finger-vein veri-
fication accuracy. 3) This paper investigates a new approach
for recovering vein patterns in the extracted finger-vein image.
As finger-vein patterns may be missing by corruption during
the imaging stage and the inaccurate estimation of parameters
during the preprocessing stage (i.e. alignment and feature
extraction), we develop a robust finger-vein feature recovering
scheme based on a Fully Convolutional Network (FCN). In
this context, we perform a rigorous experimental analysis that
shows that our scheme does succeed in recovering missing
patterns which further improves the verification performance.

II. CNN BASED FINGER-VEIN EXTRACTION

Existing approaches extract vein patterns by assuming that
they generate distributions such as valleys and line segments.
In this section, a CNN is directly trained to model the
distribution of vein pixels without any attribute distribution
assumption. First, we label each pixel of a training image as
either vein or background based on the combined output of
several baseline verification systems. For each labeled pixel,
a window centered on it is input to CNN for training. If
a window extends outside the image boundary, the missing
pixels are synthesized by mirroring. The output of the last
CNN layer is interpreted as the probability of the patch center
pixel to belong to a vein pattern. Applying CNN to all the
pixels in this way, the vein patterns are extracted based on
a probability threshold. The resulting binarized images are
subsequently used for finger vein verification.

A. Labeling finger-vein pattern

In several image segmentation tasks [33]–[36], the pixels
are labeled manually to train a neural network for feature
representation. Such a labeling, however, is costly intensive
and is prone to errors. To overcome this problem, we propose
an automatic labeling scheme. Given an image f (Fig.5(a)), we
segment it into vein pattern and background by seven baseline
algorithms, namely Repeated line tracking [20], Gabor filter
[4], Region growth [23], Maximum curvature point [17],
Mean curvature [16], Difference curvature [24] and Wide line
detector [15]. Fig.5(b) shows an example of the extracted
patterns by the various approaches. Given a pixel (x, y) in
each binary image, its value can be treated as its label. As
shown in Fig.5(b), the value of vein pixel (white region) is
1 and the value of background pixel (black region) is 0. Let
f i (i = 1, 2, . . . , I = 7) be vein pattern maps (Fig.5(c)) from
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(a)

(b)
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Finger-vein

Ambiguous 

region

(c) (d)

Clear region

Fig. 5: Labeling the vein and background pixels: (a) Original
image; (b) Extracted vein features (patterns) from various
approaches; (c) Probability map from (c); and (d) pixels
with label (clear region) and pixels without label (ambiguous
region, in cyan).
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Fig. 6: Architecture of CNN

the seven methods above, respectively. The probability of each
pixel (x, y) being finger-vein feature P(x, y) is approximately
computed by

P(x, y) =

I∑
i=1

f i (x, y)

I
(1)

As a result, we assign the label L(x, y) of pixel (x, y) as
follows

L(x, y) =



1 i f P(x, y) = 1
0 i f P(x, y) = 0

(2)

Fig.5(d) shows the labeled pixels (0 and 1 denote back-
ground and vein pixels respectively) from clear regions in a
finger-vein image. Based on the labels, we can divide an image
into different patches with size of N × N which are taken as
the input of CNN to learn to extract vein features. For the
ambiguous regions (the cyan colored region in Fig. 5(d)), these
pixels are not labeled and the corresponding patches are not
considered for CNN training.

B. CNN Architecture

Recently, CNN has shown a powerful capacity for feature
representation and has been successfully applied in computer
vision. In this section, we develop a CNN to learn the finger-
vein feature representation based on automatically labeled

patches from clear regions. Our CNN consists of two convolu-
tional layers to extract features, followed by two max-pooling
layers, two local normalization layers, one fully-connected
layer and a Softmax output layer. Fig.6 depicts the CNN
architecture for finger-vein feature extraction.

C. Convolutional Layer

The Convolutional layer performs a two-dimensional convo-
lution between the input map and a filter to extract the features.
Let xlm be the m-th input map of layer l. The n-th output map
yln of layer l is computed as

yln = max(0,
M l−1∑
m

wl
n,m ∗ xlm + bln ) (3)

where wl
n,m is the convolution kernel between the m-th input

and the n-th output maps, ∗ is the convolutional operation,
M l−1 is the number of input maps, and bln is the bias of the n-
th output map. The concept of Rectified Linear Units (RELUs)
(y = max(0, x)) is used as activation function in Eq.(3).

D. Pooling

Pooling can reduce the filter responses to a lower dimension
and produces a compact input representation. As shown in
Fig.6, we employ max-pooling after computing the ReLU
output. In the max-pooling layer, the output is given by the
maximum activation over non-overlapping square regions with
size of 3 × 3.

E. Local Response Normalization

Local Response Normalization is employed to prevent the
network from saturating. Let H l

n (x, y) be the activity of output
yln (x, y) by applying max pooling at position (x, y). The
response-normalized activity Bl

n (x, y) is computed as

Bl
n (x, y) = H l

n (x, y)/*.
,
γ + α

min (M l ,n+p/2)∑
n=max (0,n−p/2)

H l
n (x, y)2+/

-

β

(4)

where the sum is over p “adjacent” maps at the same spatial
position and M l is the total number of kernels in layer l. The
parameters γ, p, α and β are set to γ = 2, p = 5, α = 0.0001,
and β = 0.75 by optimization on a validation set. We apply
the normalization after two convolutional layers.

F. Dropout

Dropout is applied for our CNN to prevent overfitting.
The dropout technique allows to reduce training parameters
and obtain a huge number of different networks by randomly
omitting the hidden neurons from the network with probability
0.5. Therefore, it enables the CNN to learn more robust
features. Note that we use dropout only in the fully-connected
layers.
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G. Output layer

In the last layer, a Softmax classifier is employed to predict
the probability of the center pixel in the input patch to belong
to a vein pattern. Let xm be m-th the input map of the output
layer and zn the linear combination given by

zn =
M∑

m=1

(wn.m ∗ xm + bn ). (5)

where M = 100 (as shown in Fig.6). The probability distribu-
tion of the input data over C different classes is predicted by
the following softmax function.

ym =
exp(zm )
C∑
n=1

exp(zn )
(6)

Assume that the label of input data is q. All the weight ma-
trices are updated by minimizing the following loss function
of reconstruction error.

L = − log (yq ) (7)

H. Parameter Update

In this work, we use stochastic gradient descent to train our
CNN with a batch size of 128. The update rule for weight wk

in the k-th iteration is

wk+1 = ∆k+1 + wk (8)

∆k+1 = 0.9 · ∆k − 0.004 · λ · wk − λ ·
∂L
∂wk

(9)

where ∆ is the momentum variable, λ is the learning rate, and
∂L
∂wk

is the derivative of the objective w.r.t wk . The constants

0.9 and 0.004 are the momentum and weight decays which
can reduce the training errors [25]. The weights in each layer
are initialized using a zero-mean Gaussian distribution with
standard deviation 0.001. The neuron biases in each layer is
set to be constant 1. We employ a fixed learning rate of 0.0002.

I. Training and test of CNN

For CNN training, the input data consist of patches with size
N × N . When the input size changes, the width and height
of map in each layer will change accordingly. The output
dimension is decided according to the number of classes to
predict. After forward propagation through the network layers,
an image is represented effectively. After training, given a
patch either from a training or a test image, the CNN computes
the probability of its center to belong to a vein pattern, and
labels it according to the winning class (based on a probability
threshold of 0.5). When labeling all pixels in an image using
the trained CNN, the vein network is extracted and stored
in a binary image. In our experiments, we build a database
consisting of 30000 patches for each class to train the CNN.
The detailed training process is depicted in algorithm 1.

Algorithm 1 Deep representation for finger-vein pattern ex-
traction.
Input: Original finger-vein image f (x, y) and dataset Ω;
Output: Finger-vein enhanced image F (x, y);

Step 1: Extract the finger-vein pattern based on 7 baselines
and compute the probability map (as shown in Fig.5(c)).
Step 2: Assign a label for each pixel based on the
probability map, and select some patches centered on the
vein pixels as positive samples and patches centered on
the background pixels as negative samples to form the
training set A.
Step 3: Train CNN by stochastic gradient descent.
Step 4: Input image f (x, y) into CNN to obtain enhanced
image F (x, y).

Return F (x, y);

(a) (b)

Fig. 7: Corrupted images. (a) Corrupted gray scale image; (b)
Binary image obtained from (a).

J. Feature encoding

After enhancing the vein pattern, we encode it for matching.
In our experiments, the vein and background pixels are labeled
as 1 and 0, so the output of CNN F (x, y) is the probability
of pixel (x, y) to belong to a vein pattern. Therefore, the
pixels are effectively encoded using the following binarization
scheme.

R(x, y) =



1 i f F (x, y) > 0.5
0 i f F (x, y) ≤ 0.5

(10)

III. FULLY CONVOLUTIONAL NETWORK-BASED
FINGER-VEIN FEATURE RECOVERING

Based on the anatomy of finger skin (as shown in Fig.1),
the vein network patterns are clear and connective. However,
the vein patterns are prone to corruption because finger-vein
image quality is affected by many factors during the capturing
process. On the other hand, in most finger-vein verification
systems, several image preprocessing approaches such as
normalization, enhancement and segmentation are employed
to extract the vein pattern. Therefore, some vein patterns from
gray scale images may be further corrupted by inaccurate pa-
rameter estimation during the preprocessing stage. In general,
these corrupted images show poor connectivity (as shown in
Fig.7), and matching them may degrade discrimination among
different classes and create variations within the same class.
To alleviate this problem, we propose a new and original
method based on a Fully Convolutional Network (FCN) to
recover missing vein patterns in order to reduce finger-vein
mismatching and thus improve verification accuracy. Our deep
model consists of four layers: an input layer, two convolutional
layers, and an output layer. Fig.8 shows the architecture of
our FCN. In the training stage, for each input finger image,
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C1:

64 maps×39×146 

9×9

Convolution

C2:

32 maps×39×146 

1×1

Convolution

5×5

Convolution

Ouput layer

1×39×146 
Pad：4 Pad：2

R0 E 3 (R0) R
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Fig. 8: Architecture of FCN

we generate a corrupted image by randomly cropping some
few pixels from the vein patterns. We provide to the FCN the
corrupted image as input and the original image as output , and
let the FCN learn how to recover the missing vein patterns,
by learning an internal feature representation that minimizes
the reconstruction error between the corrupted and original
(ground truth) images. In the test phase, given a possibly
corrupted finger-vein image R0, the FCN provides as output
the finger-vein image with recovered missing patterns E3(R0).
Both input and output images (layers) have 39 × 146 = 5691
dimensions for database A and 50 × 150 = 7500 dimensions
for database B described in section V.

In the first layer, the input image is transformed to n1 feature
maps by Eq.(3) which can be reformulated into a matrix form

E1(R0) = max(0,W1 ∗ R0 + B1) (11)

where E1 is a mapping function that extracts features from the
input image, and W1 and B1 represent the weight and bias.
Here, W1 contains n1 kernels [w1

1,m1
,w1

2,m1
, ...,w1

n1,m1
], where

m1 is the number of channels in the input image, and B1 is a
vector [b1

1, b
1
2, ..., b

1
n1

]. The first layer extracts a n1-dimensional
feature for each input image.

In the second layer, we map each of these n1-dimensional
vectors into an n2-dimensional one by the function E2:

E2(R0) = max(0,W2 ∗ E1(R0) + B2) (12)

where W2 corresponds to n2 kernels [w2
1,n1

,w2
2,n1

, ...,w2
n2,n1

]
and B2 is a n2-dimensional vector [b2

1, b
2
2, ..., b

2
n2

]. Based on a
nonlinear mapping, each of the output n2-dimensional vectors
is conceptually a representation of a connective finger-vein
image that will be used for reconstruction.

In the output layer, the n2-dimensional vector E2(R0) is
transformed to reconstruct a finger-vein image by generating
possibly missing patterns using the following reconstruction
function E3:

E3(R0) = W3 ∗ E2(R0) + B3 (13)

where W3 = [w3
1,n2

,w3
2,n2

, ...,w3
n3,n2

] and B3 = [b3
1, b

3
2, ..., b

3
n3

].
The size of weight kernels in each layer is set to 9×9, 1×1 and
5×5, and the dimensions of the network layers are respectively
n1 = 64, n2 = 32 and n3 = 1 as shown in Fig.8 (the selection
of FCN architecture is detailed in section V-C). We pad the
output in each layer such that the reconstructed image and
the Ground truth have the same size. All the weight matrices
are updated by minimizing the loss function of reconstruction
error, and then a end-to-end mapping function E is obtained
to recover possibly missing vein patterns in the corrupted

input image. Let Ri
0 be a corrupted finger-vein image and its

corresponding ground truth image, denoted by Ri . The loss
function is defined by the mean squared error (MSE):

L(W, B) =
n∑
i=1

‖E(Ri
0; W ; B) − Ri ‖

2
(14)

where W = [W1,W2,W3] and B = [B1, B2, B3].
Similar to the parameter update rule in section II-H, we

use stochastic gradient descent with standard backpropagation
to minimize the loss function and then update the weight
Wl (l = 1, 2, 3) by Eqs.(8) and (9). The batch size is 128. The
kernels of each layer are initialized by drawing randomly from
a Gaussian distribution with zero mean and standard deviation
0.001, and the biases are set to 0. The momentum and weight
decays are set to 1 and 0.0005. The learning rate is set to
0.0001.

IV. FEATURE MATCHING

After extracting the Region of Interest (ROI), we apply
preprocessing to normalize translation and rotation variations.
As some variations remain due to inaccurate localization and
normalization, a matching method is employed to compute
the non-overlapping region between two images with possible
spatial shifts. Let R and T denote registered (reference tem-
plate) and test binarized feature maps with size of m × n. The
template R̄ is an expanded image of R that is obtained by
extending its width and height to 2w + m and 2h + n; R̄ is
expressed as:

R̄(x, y) =



R(x − w, y − h) if 1 + w ≤ x ≤ m + w,

1 + h ≤ y ≤ n + h

−1 otherwise
(15)

The matching score between R and T is computed by

φ(T, R) =

min
0≤i≤2w,0≤ j≤2h

∑m
x=1
∑n

y=1 Θ(R̄(x + i, y + j),T (x, y))∑m
x=1
∑n

y=1 	(R̄(x + i, y + j),−1)
(16)

where

Θ(X,Y ) =



1 i f X − Y = 1
0 otherwise

(17)

and

	(X,Y ) =



1 i f X , Y

0 otherwise
(18)

φ(T, R) basically computes the amount of overlap between
R and T excluding the pixels located in the expanded
region. The parameters w and h are employed to control the
translation distance over horizontal and vertical directions
and are heuristically set to 20 and 60.
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V. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the proposed ap-
proach for finger-vein verification, we carry out experiments
on two realistic databases, collected at different times using
a contactless device and a device with contact respectively.
Some classical approaches such as Repeated line tracking [20]
and Maximum Curvature points [17] have shown promising
results on private databases. Also, the extraction of finger-vein
features using Mean curvature [16], Different Curvature [24],
Region growth [23], Wide line detector [15], and Gabor filter
[4] achieved high performance for finger-vein verification.
Based on the encoding scheme in Eq.(19), we extract the
finger-vein patterns from the probability map P(x, y) com-
puted by combining the segmentation outputs of the seven
approaches above (as shown in Eq.(1)). The corresponding
performance is shown in the following experiments. To sim-
plify the description, we denote it as the combination scheme.
We compare all the finger-vein extraction approaches men-
tioned above and the combination scheme with )the one we
prin Eq.(19))opose on the two databases described below. All
approaches are tested on a high performance computer with
8 Core E3-1270v3 3.5 GHz processor, 16GB of RAM, and a
NVIDIA Quadro K2000 graphics card. We train the proposed
approach with Caffe [16] on a single GPU of NVIDIA Tesla
K20c and the remaining experiments are implemented with
Matlab on CPU.

G(x, y) =



1 i f P(x, y) > 0.5
0 i f P(x, y) ≤ 0.5

(19)

A. Database

1) Database A: The Hong Kong Polytechnic University
finger-vein image database [4] consists of 3132 images ac-
quired from 156 subjects using an open and contactless
imaging device. The first 2520 finger images were captured
from 105 subjects in two separate sessions with an average
interval of 66.8 days. In each session, each of the subjects
provided 6 image samples from index finger and middle finger
respectively. Therefore, there are 12 images for each subject
in one session. The remaining 51 subjects only provided 612
images in one session. To test our approach, we select the sub-
database with 2520 finger images (105 subjects × 2 fingers × 6
images × 2 sessions) of the first 105 subjects because it is more
realistic. As images are acquired using a contactless imaging
device, there exists more variations such as translation, rota-
tion, scale and uneven illumination. Therefore, the acquired
finger vein images are firstly subjected to pre-processing steps
before feature extraction. In our experiment, the region of
interest (ROI) image is extracted, and then translation and
orientation alignment are carried out using the method in [4].
As the image background will contribute a lot of errors and
computation cost during the matching stage, all images are
cropped and resized to 39×146. Fig.9(a) and Fig.9(b) show the
original finger-vein image and normalized finger-vein image.

2) Database B: The finger-vein images in Finger Vein
USM database [13] were captured from 123 volunteers with
83 males and 40 females using a closed and contacted imaging

(a) (b) (c) (d)

Fig. 9: (a) Original image from database A; (b) Normalized
gray image from (a); (c) Original image from database B; (d)
Normalized gray image from (c)
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Fig. 10: Data partitioning and training set construction process
on (a) Datbase A and (b) Database B

device. Each subject provided index and middle fingers from
two hands resulting in a total of 492 finger class. The cap-
tured finger images are collected in two sessions, separated
by more than two weeks’ duration. In each session, each
finger provided 6 images and thus 2952 images are obtained.
Therefore, there are a total of 5904 images for two sessions.
Original images have the spatial resolution of 640 × 480. In
their work, a preprocessed dataset consisting of ROI images
with size of 300 × 100 is provided for finger-vein recognition.
Since the focus of our work is on finger-vein verification, the
preprocessed images are normalized to 50 × 150 and used in
following experiment. The original image and preprocessed
image are shown in Fig.9(c) and Fig.9(d).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 11: (a) Original finger-vein image; (b) finger-vein image
obtained by filtering the isolate regions from (a); Corrupted
samples when (c) θ = 0o and s = 5; (d) θ = 22.5o and s = 5;
(e) θ = 45o and s = 5; (f) θ = 67.5o and s = 5; (g) θ = 90o

and s = 5; (h) θ = 112.5o and s = 1; (i) θ = 135o and s = 3;
(j) θ = 157.3o and s = 7;

B. Experiments setting

To test the proposed approach, we split the two public
databases into three sub-datasets for training, validation and
testing, respectively. Fig.10 shows the data partition and
training set construction schemes for databases A and B. For
database A, there are 105 subjects associated with 210 fingers
to provide the images in two sessions. The different fingers
of the same hand are treated as different classes, based on
which we divide the dataset into three subsets: training dataset
with 660 (55 fingers × 12 images) images, validation dataset
with 600 (50 fingers × 12 images) images and test dataset
with 1260 (105 fingers × 12 images) images. To simplify the
description, the three datasets are denoted as dataset A1, A2
and A3, respectively. For database B, there are 123 subjects
associated with 492 fingers. Similarly, there are 1476 images
(123 fingers × 12 images) in the training dataset, 1476 images
(123 fingers × 12 images) in the validation dataset, and 2952
images (246 fingers × 12 images) in the test dataset, which
are represented as dataset B1, B2, and B3. To extract finger-
vein features, the CNN is trained as follows: First, the vein
and background image pixels from the training and validation
sets are labeled using the scheme described in subsection II-
A. To train the CNN, we then select patches centered on vein
pixels as positive samples and patches centered on background
pixels as negative ones. In our experiments, for each image in
datasets A2 and B2, we use about 50 and 25 vein pixels as
positive examples, respectively, and the same amount of pixels
randomly sampled (without repetition) from the background
pixels. This results in 60000 training examples in total (30000
positive examples and 30000 negative examples) which are
generated from each training dataset (A1 or B1) for CNN
training. The validation sets A2 and B2 are used to select the
model hyper parameters, and datasets A3 and B3 are employed
for verification.

To recover missing finger-vein patterns, we construct a train-
ing set for FCN training (as shown in Fig.11). First, to obtain
the ground truth image, we filter some isolated regions that
have fewer pixels than a threshold from the finger-vein image
(as shown in Fig.11(a)) and the resulting finger-vein image
is selected as ground truth image (as illustrated in Fig.11(b)).
Second, to generate corrupted images, we randomly crop the
vein pattern image along a straight line in the orientation

θ (θ = 0o, 22.5o, 45o, 67.5o, 90o, 112.5o, 135o, 167.5o) with
four widths (s = 1, 3, 5, 7 pixels), and at different locations,
as shown in Figs.11(c)-(j). We obtain, in this way, 100800
corrupted (cropped) images (with missing patterns) and their
corresponding ground truth images in the training set. For each
ground truth image, there are about 200 and 100 corrupted
images for datasets A1 and B1. The FCN is trained by
minimizing the distance between the corrupted image and its
ground truth image.

C. Parameter selection
Our approach consists of applying extensively deep neural

networks on finger vein images. For instance, the CNN is
applied pixelwise on each image pixel centered on a patch. It is
therefore, of paramount importance, to optimize the architec-
ture of the DNNs in order to obtain an optimal accuracy-speed
tradeoff. To select optimal parameters for CNN and FCN, we
conduct extensive experiments by assessing performance on
the validation set A2 for database A, and the validation set
B2 for database B. There are 600 images (50 fingers × 6
images × two sessions) associated with 50 fingers in dataset
A2 and 1476 images (123 fingers × 6 images × two sessions)
associated with 123 fingers in dataset B2.

1) Determination of CNN parameters: In this section, we
modify the parameters of a basic CNN network (as shown
in Fig.6) to investigate the best trade-off between accuracy
and speed. From Fig.6, the basic network consists of two
convolutional layers and one full connected layer. The number
of kernels in the three layers are 24, 48 and 100 respectively,
and the sizes of kernels in both convolutional layers are 5. To
simplify description, we denote this CNN as 24(5×5)-48(5×5)-
100. To select the optimal CNN architecture, the size of input
patch is initialized to 15 × 15 (as shown in Fig.6).

Number of layers: Recent work [37] implies that the
CNN can benefit from an increasing depth of the network.
So, we extend the basic network by adding some convo-
lutional layers or full-connection layers. For example, two
deeper networks (24(5×5)-48(5×5)-64(5×5)-100 and 24(5×5)-
48(5×5)-200-100) are created by adding a convolutional layer
of 64 kernels with size of 5 × 5 and a full-connected layer
of 200 kernels to the basic network (24(5×5)-48(5×5)-100),
respectively. The two new CNNs and the basic one are
compared by the following experiments. The three CNNs
above (24(5×5)-48(5×5)-100, 24(5×5)-48(5×5)-64(5×5)-100,
and 24(5×5)-48(5×5)-200-100) are trained to extract the vein
patterns of images in dataset A2. The first 6 images acquired at
the first session are employed as registration templates and the
remaining as testing images. Therefore, there are 300 (50 × 6)
genuine scores and 14700 (50 × 49 × 6) impostor scores. The
False Rejection Rate (FRR) is computed by genuine scores and
the False Acceptance Rate is computed by impostor scores.
The Equal Error Rate (EER) is the error rate when FAR
is equal to FRR. Table I shows the EER and the average
feature extraction processing time of one finger-vein image
for different CNNs. From Table I, we observe that, compared
to the three-layers network, the four-layers networks achieve
the same accuracy on the validation set, but the time cost
increases significantly.
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TABLE I: Results of using different layer numbers

Methods 24(5×5)-48(5×5) 24(5×5)-48(5×5) 24(5×5)-48(5×5)
-100 -64(5×5)-100 -200-100

EER(%) 1.33 1.33 1.33
Time(sec) 2.58 3.45 3.77

TABLE II: Results of using different kernel numbers

Methods 12(5×5)-24(5×5) 24(5×5)-48(5×5) 48(5×5)-96(5×5)
-50 -100 -200

EER(%) 2.67 1.33 1.33
Time(sec) 2.03 2.58 4.86

Number of kernels: In general, a larger number of convo-
lution kernel leads to better performance but the computation
time will increase accordingly. We modify the width of the
basic network by changing the number of kernels and we then
conduct the following experiments to determine the network
width. First, we create a larger network 48(5×5)-96(5×5)-200
and a smaller network 12(5×5)-24(5×5)-50. Then, the ERR
and computation time of both networks are computed based
on dataset A2. To facilitate comparison, the performance of the
basic network is also listed in Table II. The experimental re-
sults in Table II show that the networks 24(5×5)-48(5×5)-100
and 48(5×5)-96(5×5)-200 achieve the same EER. However,
the basic network 24(5×5)-48(5×5)-100 significantly reduces
the computation time. If a fast segmentation speed is desired,
a small network width is preferred.

Size of kernel: In the previous section, the kernel size for
each convolutional layer is fixed to 5 × 5. In this experiment,
we examine the network sensitivity to different kernel sizes.
We change the kernel size of all convolutional layers to 3 × 3
and 7 × 7, respectively, and conduct experiments on dataset
A2. The experimental results in Table III show that the best
verification accuracy is achieved at the size of 5×5. Therefore,
we adopt the model with better performance speed trade-off:
a three-layer network 24(5 × 5)-48(5 × 5)-100.

Patch size: The selection of the patch size for CNN is
critical for achieving high performance. If the size is too small,
more detailed vein patterns are extracted but including more
noise. This noise can produce mismatch errors that degrade
verification accuracy. On the contrary, for too large patches,
the CNN will take into account more global information than
needed as vein patterns that are far away from the center pixel
may actually confuse CNN training. In this section, we deter-
mine the appropriate patch size for CNN experimentally. For
database A, we train the CNN to extract the vein patterns of the
finger-vein images in the dataset A2 at different patch sizes.

TABLE III: Results of using different kernel sizes

Kernel size 24(3×3)-48(3×3) 24(5×5)-48(5×5) 24(7×7)-48(7×7)
-100 -100 -100

EER(%) 1.92 1.33 2.67
Time(sec) 2.37 2.58 3.33

TABLE IV: Results using different patches

Patch size 7×7 11×11 15×15 19×19 23×23
EER(%) 1.92 1.33 1.33 1.33 2.33
Time(sec) 2.23 2.38 2.58 2.93 3.46

The first 6 images acquired at the first session are employed
as registration templates and the remaining as testing images.
We thus obtain 300 (50 × 6) genuine scores and 14700 (50
× 49 × 6) impostor scores. Finally, we compute the EER at
different patch sizes.

Table IV. illustrates the relationships between patch size,
EER and computation time. The results are obtained on the
validation dataset A2. From Table IV, we can see that a smaller
equal error rate is achieved at a patch size of 11, 15 and
19 (11 × 11, 15 × 15 and 19 × 19) for database A, which
implies better separation between the two score distributions.
We observe, hence, that a patch size of 11 gives a good trade-
off in terms of accuracy and speed for Database A. As the
vein width in the two databases are similar, the partition size
is fixed to the same value for Database B. It is true that the
human visual system in very effective in integrating more
global information for making sound decisions at the local
level. Thus, a patch with a larger size may be more helpful to
judge whether a pixel is a vein pixel or a background pixel.
Our brain, nonetheless, uses rich prior knowledge that guides
it in distinguishing noise from relevant information, and in
deciding whether to use information from a region far away
from the center pixel or not. For instance, the vein network
usually consists of numerous veins with different lengths, and
if the pixel to be decided upon pertains to a small vein, the
connectivity around this small vein is the most relevant to
decision, not the other veins that happen to be far away. The
brain is able to make sound decisions in this regard, but a
machine learning algorithm will have difficulty to do it unless
it integrates good prior knowledge about the problem, which is
a very hard problem by itself. One idea to partially circumvent
the problem, nonetheless, is to consider the whole image in
a learning scheme that gives less weights to the pixels as
their distance to the pixel to be classified increases. That
said, considering a whole image-based scheme, the learning
would be based only on the available training image datasets,
which are generally limited in biometrics, especially for finger-
vein images. Our patch-based approach, by contrast, allows
considering much larger training datasets (patch-based) on
which CNN-like models can be robustly trained. Furthermore,
optimizing the patch size on a validation set ensures that
the selected patch provides an optimal tradeoff between the
number of training patches (sufficiency for parameter estima-
tion) and the spatial dimension of the patch (reaching enough
information to classify the center pixel)

2) Determination of FCN parameters: To evaluate the
sensitivity of FCN, we employ a similar experimental protocol
to that described in the previous section. Our baseline FCN
(as shown in Fig.8) consists of two convolution layers and
one reconstruction layer: 64 kernels with size 9 × 9 in the
first convolutional layer, 32 kernels with size 1 × 1 in the
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Fig. 12: Relationship between the number of iteration steps
and EER on both Databases

TABLE V: Results using different layer numbers

Kernel size 64 (9 ×9) − 32(1 × 1) 64(9 ×9) − 32(1 × 1) 64 (9 ×9) − 32(3 × 3)
-1(5 ×5) -32(1 ×1) − 1(5 × 5) -32(3 ×3) − 1(5 × 5)

EER(%) 1.33 1.67 2.33
Time(sec) 0.04 0.05 0.13

second convolutional layer, one kernel with size 5 × 5 in the
reconstruction layer . It is denoted as 64(9×9)-32(1×1)-1(5×5)
to simplify the description. We train and test the network
with different numbers of layers, numbers of kernels and
sizes of kernels. Table V shows how the performance varies
with the number of layers. We observe that the performance
from the two four-layer networks decreases w.r.t the baseline
performance. This may be caused by the difficulty of training
(overfitting issues). In our experiments, we can observe that
the four-layer networks converge more slowly than the three
layer network does. The experimental results in Tables VI and
VII show that the basic FCN is not sensitive to the number
and size of kernels. As the choice of the network scale should
be a trade-off between performance and speed, the baseline
network should be preferred.

For database A, the FCN of 64(9×9)-32(1×1)-1(5×5) with
the best trade-off between the speed and verification accuracy
are trained for pattern recovering. For database B, as the image
size is slightly different from that in database A, we adapt
the FCN. For example, we set the size of kernels in the first
convolutional layer to be 13×9 instead of 9×9 shown in Fig.
8.

Recursive Recovery of Missing Vein Patterns: After

TABLE VI: Results using different kernel numbers

Kernel size 32(9 ×9) − 16(1 × 1) 64 (9 ×9) − 32(1 × 1) 128 (9 ×9) − 96(1 × 1)
-1(5 ×5) -1(5 ×5) -1(5 ×5)

EER(%) 1.67 1.33 1.33
Time(sec) 0.03 0.04 0.09

TABLE VII: Results using different kernel sizes

Kernel size 64(9 ×9) − 32(1 × 1) 64 (11 ×11) − 32(3 × 3) 64 (13 ×13) − 32(5 × 5)
-1(5 ×5) -1(7 ×7) -1(9 ×9)

EER(%) 1.33 1.33 2.00
Time(sec) 0.04 0.12 0.24

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 13: Experimental results from various approaches. (a)
Original image; (b) Gabor filter; (c) Difference curvature;
(d) Maximun curvature point; (e) Mean curvature; (f) Region
growth; (g) Repeated line tracking; (h) Wide line detector; (i)
Combination; (j) Output from CNN; (k) Finger-vein feature
from image (j) by encoding scheme in Eq.(10).

(a) (c)(b)

Fig. 14: Extracted results of two images from a finger; (a)
Original images;(b) vein feature extracted by combination
scheme; and (c) vein feature extracted by the proposed ap-
proach.

training, the FCN takes a binary finger-vein image as input and
provides its recovered image as output, as shown in Fig.8. If
this output is fed back as input to the FCN, more vein patterns
can be recovered, which enables the recovering to be done in
a recursive way. The number of iteration steps is important in
order to achieve high verification accuracy. When the number
of the iteration steps is small, some missing vein patterns may
not be recovered. By contrast, if the number of iteration steps
is large, some non-vein patterns may be wrongly generated. In
our experiments, the number of iteration steps is optimized by
assessing performance on the images from the two validation
sets A2 and B2. First, each image in two sets is enhanced
by our CNN. The enhanced image is subsequently subject to
binarization using Eq.(10). The vein patterns in the set above
are recovered at different numbers of iterative steps. Then,
we select the images acquired in the first session for training
and remaining ones for testing. For dataset A2, 300 (50 ×
6) genuine scores and 14700 (50 × 49 × 6) impostor scores
are produced by matching images from the same finger and
different fingers, respectively. For dataset B2, there are 1476
images from 123 fingers. We match the images from the same
finger and from different fingers to generate 738 (123 × 6)
genuine scores and 90036 (123 × 122 × 6) impostor scores.
The results of EER on both databases are shown in Fig.12.

From Fig.12, we see that the lowest EERs for A2 and B2
are achieved when the numbers of the iteration steps are 2 and
1 respectively. Therefore, we fixed the number of the iteration
steps as 2 and 1 for database A and database B.

D. Visual Assessment

In this section, we visually analyze the extracted patterns
from various approaches and recovered images from our
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(a) (b) (c) (d)

Fig. 15: Recovered images. (a) Original finger-vein image; (b)
Recovered finger-vein image (the number of iteration steps is
1); (c) Recovered finger-vein image (the number of iteration
steps is 5); (d) Recovered finger-vein image (the number of
iteration steps is 10);;

scheme, so that we can get more insights into the proposed
approach. Fig.13 illustrates the finger-vein extraction results of
various existing approaches in addition to their combination
scheme. From the obtained results, we can see that, compared
to the other approaches, the proposed method effectively
suppresses the noise in ambiguous regions and extracts more
smooth and continuous vein features from raw finger-vein
images. Fig.14 shows the extracted vein patterns of two
images from the same finger using the proposed approach
and the combination scheme. As shown in Fig.14(a), there
are translational variations between the two images. Some
corresponding vein patterns are corrupted and marked by the
red rectangle. Surprisingly, there are huge differences between
vein networks of the two images from the same finger, which
are extracted based on the combination scheme. By contrast,
the proposed approach extracts similar vein networks in spite
of the translational variations and corruption. This may be
explained by the fact that the CNN learns vein patterns based
on pixel correlations in a probabilistic way from the whole
training dataset, rather than based on simple image processing
operations on the input image. The experimental results from
Fig.13 and Fig.14 imply that the proposed approach is able
extract robust vein patterns from raw finger-vein images.

The experimental results of recovering the finger-vein image
are shown in Fig.15. After one iteration, few missing vein
patterns are recovered by the proposed scheme. More vein
patterns are recovered with an increasing number of iterations.
When the number of iterations is 10, the recovered vein
patterns show very good connectivity. It is interesting to see
that the missing vein patterns are naturally recovered in spite
of a huge corruption in the input finger vein image.

E. Verification results with CNN-based segmentation

This experiment aims at estimating the verification perfor-
mance in terms of effectiveness and robustness of various
algorithms on the finger-vein image datasets. In test dataset
A3, there are 1260 images associated with 105 fingers which
are captured in two sessions. In test dataset B3, 2952 images
from 246 fingers are employed for verification. For both
datasets, we select 6 finger-vein images acquired during the
first imaging session as training data while the corresponding
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Fig. 16: Receiver operating characteristics from (a) Datbase A
and (b) Database B

6 images acquired during the second session are employed as
testing data to assess the verification performance. The genuine
scores are computed by matching images from the same
finger while the impostor scores are obtained by matching
images from different fingers. This results in 630 (105×6)
genuine scores and 65520 (105×104×6) impostor scores from
dataset A3, and 1476 (246×6) genuine scores and 361620
(246×245×6) impostor matching scores from dataset B3. The
experimental results from various approaches are summarized
in Table VIII. The receiver operating characteristics (ROC)
curves (the Genuine acceptance rate (GAR=1-FAR) against
the FAR) for the corresponding performances are illustrated
in Fig.16.

TABLE VIII: EER of various approaches on both datasets

Methods Database A Database B
Repeated line tracking [20] 12.85 6.90
Maximum curvature point [17] 8.30 6.48
Region growth [23] 5.71 3.93
Wide line detector [15] 7.62 4.54
Gabor filters [4] 5.08 3.36
Mean curvature [16] 4.20 2.41
Difference curvature [24] 7.90 5.34
Combination 4.44 2.98
The proposed approach 3.02(28.10%) 1.69(29.88%)

We observe from Fig.16 and Table VIII that the proposed
approach using a CNN deep representation achieves, on both
datasets, the best performance among all the approaches
considered in this work, including the combination scheme
of the seven baseline approaches. For instance, the proposed
approach reduces by more than 28% the EER obtained by the
best one (Mean curvature [16]) among existing approaches on
each of the two datasets. Certainly, the verification accuracies
may be further enhanced by including, in the training set,
some patches from ambiguous regions with high probability
of being associated with vein or background patterns. Such
a good performance may be explained as follows: 1) as
the vein pixel is labeled based on several baselines, it can
guide the learning approach to extract robust features for vein
pattern representation. 2) The handcrafted segmentation-based
approaches do not infer any knowledge from the different



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

images as they segment each image independently from the
others. By contrast, the proposed approach harnesses a rich
prior knowledge acquired by training the CNN on a huge patch
set from different images so that it is capable of predicting
the probability of a pixel to belong to a vein pattern even if
there exists incorrect labels for few training patches. 3) CNN
can automatically extract high level features by representation
learning that are objectively related to vein patterns. The CNN
takes as input the raw image pixels and iteratively uncovers
hierarchical features in such a way to minimize its decision
errors on vein patterns. CNN avoids the need of first explicitly
extracting some image processing-based features that might
discard relevant information about image quality. Similar
advantages have been demonstrated based on visualization of
feature maps in recent work in other tasks [7], [8], [38].

The baseline approaches that are based on detecting valleys
have been shown to offer promising performance, on their
own finger-vein databases, but they do not generalize and
perform well on the two datasets A and B that are more
realistic. Such a poor performance may be attributed to their
assumption that valleys exist only in vein regions. However,
pixels in ambiguous regions can also create valleys, even
though they are not associated with veins, as shown in Fig.3(c).
Performing matching in such regions, genuine vein pixels or
background pixels may generate additional verification errors.
Similar to valley detector, the line feature detectors make
the assumption that the vein pattern can be treated as line,
which limits the performance. As shown in Fig.3(c), the
distribution of pixel values in non-vein regions also shows
line-like attributes while the vein pixels, as shown in Fig.4(c),
create more complex attributes instead of lines. The line
feature-based approaches above [4] [15] obtain EER above
5% on dataset A. Surprisingly, combining vein features from
the seven baselines do not show higher performance than each
of them. For example, Mean Curvature [16] achieves 4.2%
EER which is lower than that of the combination scheme.
This may be explained by the fact that some approaches such
as [17] [20] provide less evidence to identify vein features
in ambiguous regions. Furthermore, existing approaches may
generate conflicting evidences owing to their segmentation
errors in ambiguous regions. On the contrary, it is easy for
all baselines to distinguish veins from background in clear
regions. In this case, their combination can further enhance
the evidence. Considering clear patches, either from veins
or background, for training CNN is important for the CNN
to effectively predict the probability of each pixel, not only
in clear regions, but actually in other regions, including the
ambiguous ones.

F. Verification results based on missing veins recovery

The experimental results presented in this section are fo-
cused to assess the performance improvement that can be
achieved by recovering missing finger-vein patterns. The CNN
is first employed to extract the finger-vein pattern network
which is then input to the FCN to recover possibly missing
vein pixels. We denote it as ”The proposed approach +
recover”. Fig.17 (a) and Fig.17 (b) show the ROC curve on
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Fig. 17: Receiver operating characteristics from (a)Datbase A
and (b)Database B

TABLE IX: EER of various approaches on both datasets

Methods Database A Database B
The proposed approach 3.02 1.69
The proposed approach + recover 2.70(10.6%) 1.42(15.98%)

database A and database B acquired at two sessions after
recovering vein patterns, and the corresponding EERs are
listed in Table IX. To facilitate comparison, the results of
corresponding approaches before recovering are also depicted
in Figs.17 and Table IX.

From the experimental results on the two databases, the per-
formance is significantly improved after the missing patterns
are recovered. For database A, the EER (Table IX) is reduced
to 2.7% (about 10% relative error reduction), for the dataset
set collected at two sessions. The corresponding ROC curve
(as shown in Fig.17(a)) shows that the GAR is significantly
improved in different FAR regions. For database B, a lower
EER, namely 1.42% (about 16% relative error reduction) is
achieved by the proposed approach + recover. Also, the ROC
curve (as shown in Fig.17(b)) shows that using the recovering
scheme allows to achieve a higher GAR at lower FAR.

Overall, the finger-vein verification error rate on the two
datasets is decreased by recovering the missing vein patterns,
which implies the recovered vein features can contribute more
discriminative information for verification. Such a good per-
formance may be explained by the fact that the proposed FCN
is able to uncover the vein network structure by learning as it
is trained by plenty of images. Therefore, the FCN can locate
the cropped region and recover the missing vein patterns. The
proposed recovering scheme may show better performance in
finger-vein verification systems where the verification error is
mainly created by missed vein patterns. Also, some minutia-
based matching methods [39]–[41] may benefit from the
recovering scheme because missing minutia points (bifurcation
and ending points) are created after recovering vein patterns
(as shown in Fig.15).

As shown in Fig.1, the finger-vein pattern extends from
finger root to fingertip, showing good network connectivity
However, the vein network extracted from a finger-vein image
by existing approaches becomes essentially not connected as
some vein patterns are corrupted by various factors such as
illumination and noises. To recover missed vein patterns, we



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

crop the vein patterns to construct a dataset for FCN training.
The reasons for generating training samples in this way
(Section V-B) are as follows. A key point for vein recovering
is how to obtain the ground truth. In practice, it is impossible
to get the ground truth image. So we crop (along different
lines, orientations and widths) the vein patterns in the input
image to generate new images with miss-connected veins.
Each vein pattern image generated in this way is considered
an input image, while the ground truth image corresponds to
the original uncropped input image. A FCN is then trained
based on each pair of cropped image and associated ground
truth uncropped image. The ground truth images are the
images to be recovered by the FCN. The rationale behind
this idea is that even though the FCN is trained on manually
cropped vein patterns, the fact that the training set is very
large and consists of over 100 000 (cropped input, uncropped
ground truth) image pairs helps the FCN to learn to recover,
not only the manually cropped vein parts, but also actual
unknown missing vein patterns that possibly exist in the input
images although no ground truth is available for them. In
other words, by learning the underlying structure of labeled
cropped vein patterns on a huge dataset, the FCN is able to
generalize over unknown and unlabeled missing vein patterns.
Additionally, our FCN-based vein recovery approach is linked
to all other segmentation techniques. When the vein network in
a finger-vein image is quite ambiguous owing to non-optimal
acquisition conditions, any segmentation technique is likely
to fail in retrieving perfectly the vein network, which leads
to missing vein parts or, on the contrary, to the introduction
of noise. Our FCN model will allow in this case to both
recover missing vein patterns and suppress noise resulting
from segmentation of these low-quality images.

VI. CONCLUSION AND PERSPECTIVES

This paper proposed a deep learning based segmentation
model for finger-vein verification. First, a CNN based ap-
proach is developed to predict the probability of pixels to
belong to veins or to background by learning a deep feature
representation. As a finger-vein consists of clear regions and
ambiguous regions, several baselines are employed to automat-
ically label pixels as vein or background in the image clear
regions, thus avoiding the tedious and prone-to-error manual
labeling. Then, a CNN is trained to extract the vein patterns
from any image region. Second, to improve the performance,
we proposed an original method based on a FCN to recover
missing finger-vein patterns in the binary image. Experimental
results show that the proposed approach extracts robust vein
patterns and significantly improves the verification error rate
w.r.t the state of the art.

Currently, the proposed approach achieves promising perfor-
mance for finger-vein verification, but a lot remain to be done
for the improvement of verification accuracy in future. First,
our CNN model have achieved better performance to robustly
extract the finger-vein patterns. As the CNN has shown robust
learning capacity based on big scale data, a large database
will be collected to further improve the performance. Second,
in the experiments, we found that the proposed FCN shows

good performance for images where some vein patterns are
missing instead of over-segmented images where there are
not only plenty of vein patterns but also a lot of false vein
regions. This may lead to the false region being enlarged
by the recovering scheme, which degrades the verification
accuracy. A deep learning based approach will be investigated
to conjointly recover the missing vein patterns and suppress
noise and irregular shadowing in grayscale images so that
robust vein patterns are extracted for finger-vein verification.

Another important issue is the imbalanced and poor local
illumination problem. To develop our CNN based-approach,
we had to make an important choice on whether to manually
or automatically label the pixels before feeding them to CNN
for training. We have opted for the automatic labeling scheme
as it avoids the tedious manual labeling work and the huge
cost it incurs, besides being easily and quickly applicable
to any new database and system. The automatic labeling,
however, will depend on the accuracy of the baseline methods
employed for this purpose. This is why we have combined
seven baseline methods for this purpose as the combination
will reduce labeling errors. However, if this combined baseline
system often fails in segmenting patches with imbalanced local
illumination, the CNN will often be fed with wrongly labeled
pixels for poorly illuminated regions and its classification
performance on such pixels will not be good. The opposite
is true, if the combined scheme fails in some cases but
often gives a correct label for the center pixel of a patch
with imbalanced local illumination, the CNN will be able to
learn automatically how a vein pixel is characterized when
the surrounding patch has poor illumination. Therefore, an
analysis that is specific to these kinds of patches would be
helpful to assess the quality of the automatic labeling. If such
a quality is judged as not sufficient, one solution is to consider
a small subset of the training images with poor illumination,
and to label the pixels therein. Even if such a subset is small,
it will generate a large amount of patches that can allow
our patch-based CNN to learn, with minimal manual labeling
effort, the characteristics of vein pixels inside patches with
poor illumination.
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