A generic framework for the structured abstraction of images

Abstract : Structural properties are important clues for non-photorealistic representations of digital images. ‘Therefore, image analysis tools have been intensively used either to produce stroke-based renderings or to yield abstractions of images. In this work, we propose to use a hierarchical and geometrical image representation, called a topographic map, made of shapes organized in a tree structure. ‘There are two main advantages of this analysis tool. Firstly, it is able to deal with all scales, so that every shape of the input image is represented. Secondly, it accounts for the inclusion properties within the image. By iteratively performing simple local operations on the shapes (removal, rotation, scaling, replacement...), we are able to generate abstract renderings of digital photographs ranging from geometrical abstraction and painting-like eff‚ects to style transfer, using the same framework. In particular, results show that it is possible to create abstract images evoking Malevitch’s Suprematist school, while remaining grounded in the structure of digital images, by replacing all the shapes in the tree by simple geometric shapes.
Type de document :
Communication dans un congrès
Expressive - NPAR 2017, Jul 2017, Los Angeles, United States. 2017, NPAR '17 Proceedings of the Symposium on Non-Photorealistic Animation and Rendering. 〈10.1145/3092919.3092930〉
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01587259
Contributeur : Julie Delon <>
Soumis le : mercredi 13 septembre 2017 - 21:59:57
Dernière modification le : jeudi 31 mai 2018 - 09:12:02
Document(s) archivé(s) le : jeudi 14 décembre 2017 - 14:17:20

Fichier

Expressive_17_paper_39.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Noura Faraj, Gui-Song Xia, Julie Delon, Yann Gousseau. A generic framework for the structured abstraction of images. Expressive - NPAR 2017, Jul 2017, Los Angeles, United States. 2017, NPAR '17 Proceedings of the Symposium on Non-Photorealistic Animation and Rendering. 〈10.1145/3092919.3092930〉. 〈hal-01587259〉

Partager

Métriques

Consultations de la notice

482

Téléchargements de fichiers

128