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Abstract

Diagnosis systems often use structured data. These data have a hierarchical structure related with the ques-
tions asked during the interview with the doctor or the survey taker in charge of verbal autopsies. The
hierarchical nature of these questions leads to consider this aspect when analyzing medical data. Thus, it
is recommendable to choose a similarity measure that takes into account this issue to better represent the
reality. We propose the introduction of a kernel taking into account the hierarchical structure and of the
data interactions between sub-items in supervised binary classification methods This kernel can integrate the
knowledge from the application domain relative to how the features of the problem are organized. In general,
we focus on problems whose features can be hierarchically structured. As part of this work, these hierarchies
are represented by trees on two levels. Our main contribution is the proposal of a kernel that simultaneously
takes into account the hierarchical appearance and the interaction between variables. The proposed kernel
has shown a good classification performance on a complex set of medical data including a high number of
predictors and classes.
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1 Introduction

The diagnostic methods often use structured data. These data has a hierarchical structure at the questions
asked during the interview with the doctor or the investigator in case of verbal autopsies. The hierarchical
aspect of the questions asked during the interview needs to be considered when analyzing the medical data.
Thus, it is advisable to choose a similarity measure taking into account this aspect in order to better represent
reality. The hierarchical classification structure allows taking into account the a priori knowledge on the data.
The a priori is represented by a structure on the variables or characteristics of the data set.
To take into account the structure of data, an overall kernel is used on heterogeneous types (video, sound,
text, . . . ) or hierarchical struct (items, sub-items, . . . ). Each set of these features may require a different
kernel. So, to build a global kernel, it is possible to set a kernel for each of these features and combine them
linearly or multiplicatively.
In this article, we propose the use a hierarchical kernel binary data. It outlines the introduction of a
kernel taking into account the hierarchical structure and interactions between sub-items in the supervised
classification methods. This kernel can integrate knowledge in the domain of application. This knowledge
is relative to how the characteristics of the problem are organized. In general, we focus on problems whose



characteristics can be structured hierarchically. As part of this work, these hierarchies are represented by
trees on two levels.
The article is organized as follows. In paragraph 3 , we first describe the different stages of the process
that leads to the choice of this kernel. We show that the resulting formulation is suitable for trees on two
levels and the interaction of sub-variables. Through these two formulations, we study the characteristics of
defined nucleus and characterize the relationship between the levels of this tree. The performance of the new
classification method is illustrated on verbal autopsy data in section 4. Concluding remarks are provided in
section 5.

2 Binary classification using a kernel function

We focus on the new classification method, referred to as pgpDA, has been proposed [1]
The principle of pgpDA is as follows. Let us consider a learning set {(x1, y1), . . . , (xn, yn)} where {x1, . . . , xn}
are assumed to be independent realizations of a random binary vector X ∈ {0, 1}p. The class labels
{y1, . . . , yn} are assumed to be realizations of a discrete random variable Y ∈ {1, . . . ,K}. It indicates
the memberships of the learning data to the L classes denoted by C1, . . . , CK , i.e. yi = k means that xi
belongs to the kth cluster Ck for all i ∈ {1, . . . , n} and k ∈ {1, . . . ,K}.
Let κ be a symmetric non-negative bivariate function κ : {0, 1}p × {0, 1}p → R+. In the following, κ is
referred to as a kernel function and additional conditions will be assumed on κ. For all k = 1, . . . ,K, the
function ρk : {0, 1}p × {0, 1}p → R+ is obtained by centering the kernel κ with respect to the class Ck:

ρk(x, x′) = κ(x, x′)− 1

nk

∑
x`∈Ck

(κ(x`, x
′) + κ(x, x`)) +

1

n2k

∑
x`,x`′∈Ck

κ(x`, x`′),

where nk is the cardinality of the class Ck, i.e. nk =
∑n
i=1 I{yi = k} and with I{.} the indicator function.

Besides, for all k = 1, . . . ,K, let us introduce the nk × nk symmetric matrix Mk defined by (Mk)`,`′ =
ρk(x`, x`′)/nk for all (`, `′) ∈ {1, . . . , nk}2. The sorted eigenvalues of Mk are denoted by λk1 ≥ · · · ≥ λknk

while the associated (normed) eigenvectors are denoted by βk1, . . . , βknk
. In the following, βkj` represents the

`th cordinate of βkj , for (j, `) ∈ {1, . . . , nk}2. The classification rule introduced in [1], Proposition 2 affects
x ∈ {0, 1}p to the class Ci if and only if i = arg mink=1,...,K Dk(x) with

Dk(x) =
1

nk

dk∑
j=1

1

λkj

(
1

λkj
− 1

λ

)( ∑
x`∈Ck

βkj`ρk(x, x`)

)2

+
1

λ
ρk(x, x)

+

dk∑
j=1

log(λkj) + (dmax − dk) log(λ)− 2 log(nk) (1)

where dmax = max{d1, . . . , dK} and

λ =

K∑
k=1

nk(trace(Mk)−
dk∑
j=1

λkj)

/
K∑
k=1

nk(rk − dk) .

Here, rk is the dimension of class Ck once mapped in a nonlinear space with the kernel κ. In practice, one has
rk = min(nk, p) for a linear kernel and rk = nk for the nonlinear kernels. See [1], Table 2 for further examples.
Moreover, let us highlight that only the eigenvectors associated with the dk largest eigenvalues of Mk have
to be estimated. This property is a consequence of the crucial assumption of this method: The data of each
class Ck live in a specific subspace (of dimension dk) of the space (of dimension rk) defined by the kernel
κ. This assumption allows to circumvent the unstable inversion of the matrices Mk, k = 1, . . . ,K which is
usually necessary in kernelized versions of Gaussian mixture models, see for instance [2]. In practice, dk is
estimated thanks to the scree-test of Cattell [3] which looks for a break in the eigenvalues scree. The selected
dimension is the one for which the subsequent eigenvalues differences are smaller than a threshold t. The
threshold t can be provided by the user or selected by cross-validation.The implementation of this method
requires the selection of a kernel function κ which measures the similarity between two binary vectors.



3 Hierarchical kernel associated with binary observations

3.1 Structure Data and notations:

In a survey, there are often issues called main. For each main issue, there are issues called secondary.
Secondary questions are asked only if the answer to the main question is positive. By formalizing this
concept, the variable Xj represents the answer to the main question j. For each given Xj there were qj
responses to secondary issues noted by the sub-variables Zj1 , . . . , Z

j
qj .. Thus, referring to the case of verbal

autopsy data included:

• The randoms variables X = (Xj , j = 1, . . . , p) define the answers to the main questions representing
the symptoms and the socio-demographic variables.

• The randoms variables Z = (Zj` , ` = 1, . . . , qj , j = 1, . . . , p) define the answers to the secondary
questions representing the qj sub-variables for each variable Xj .

• The randoms variables Y = (Yk, k = 1, . . . ,K) define the explanatory variables representing the
physician’s answers (cause of death).

These hierarchies are represented by a two-level tree structure, as that shown in Figure 1 .
The first level represents the answers to main questions. The second level represents the sub-variables that
is to say, the answers to the secondary issues of each main issue.

•

X1

Z1
1 Z1

` Z1
q1

Xj

Zj
1 Zj

`
Zj
qj

Xp

Zp
1 Zp

`
Zp
qp

Figure 1: Example tree with two levels associated with the explanatory variables

In addition, the following lemma sets the relationship between the levels of the tree.

3.2 Hierarchical Kernel for binary data

The goal is to build a kernel takeing into account the hierarchical data structure and the interaction of sub-
variables. We focus on issues where the explanatory variables of a data set can be structured in a tree. In
this structure, the characteristics of sub-variables are located in the bottom level of the tree. The first level
identifies the principal variables to which the sub-variables belong.
Below we propose a new kernel that takes into account interactions between variables. Interaction must
have significant relevance and be capable of providing additional information on the diagnostic method to to
improve the accuracy of the results.
Our principle is based on the transformation of the dissimilarity between two main variables Xj and Xj′ of
a combination of dissimilarities between the main variables Xj and Xj′ and their respective sub-variables

Zj` , ` = 1, . . . , qj and Zj
′

`′
, `

′
= 1, . . . , q

′

j .

For each variable Xj there were qj sub-variables Zj1 , . . . , Z
j
qj . In addition, we have:

Xj = max{Zj1 , . . . , Z
j
` } = 1−

qj∏
`=1

(1− Zj` ) =

qj∑
`=1

(−1)`−1
∑̀
k=1

∑
|i|=k

Zi1 . . . Zik



where |i| = k denotes the size of the multi-index i = (i1, . . . , ik).
Calculing ‖x− x′‖2 was :

‖x− x′‖2 =

p∑
j=1

[
qj∏
`=1

(1− zj` )−
qj∏
`=1

(1− z
′j
` )

]2

=

p∑
j=1

qj∑
`=1

∑̀
k=1

∑
|i|=k

s2kji +R

where skji =
(
zji1 . . . z

j
ik
− z

′j
i1
. . . z

′j
ik

)
and R the sum of the double products.

By defining:

SC(z, z′) =

p∑
j=1

qj∑
`=1

∑̀
k=1

∑
|i|=k

s2kji

there is therefore the decomposition
‖x− x′‖2 = SC(z, z′) +R.

A dissimilarity measure is defined for all γ ∈ [0, 1] by:

D((x, z), (x′, z′)) = γSC(z, z′) + (1− γ)R = (1− γ)‖x− x′‖2 + (2γ − 1)SC(z, z′).

By asking:

• Dx(x, x′) = ‖x− x′‖2,

• Dz(z, z
′) = SC(z, z′),

Previous dissimilarity measure can be rewritten:

D((x, z), (x′, z′)) = (1− γ)Dx(x, x′) + (2γ − 1)Dz(z, z
′).

Using the kernel construction method proposed [4], introducing the kernel:

κSGH((x, z), (x′, z′)) = κx(x, x′)1−γκz(z, z
′)2γ−1 (2)

where,

• κx(x, x′) = exp(−‖x− x′‖2/2σ2
x) is the RBF kernel,

• κz(z, z′) = exp(−SC(z, z′)/2σ2
r).

More generally in the kernel (2)

1) For the main variables X, we can choose a kernel of the form:

κx(x, x′) = exp

(
S(x, x′)

2σ2
x

)
. (3)

where S is the similarity measure.

This similarity measure S can be chosen by the measures defined in our formalism introduced in [4].

2) The interactions between sub-variables Z are considered to be of order r with the following kernel:

κz(z, z
′
) = exp

(
SC(r)(z, z

′)

2σ2
r

)
(4)

where

(a) r the number of interactions,



(b) SC(r) in the truncated version of r on SC:

SC(r)(z, z
′) =

p∑
j=1

r∑
k=1

(qj + 1− k)
∑
|i|=k

s2kji

=

p∑
j=1

sc(r,j)

(c) sc(r,j) the interactions between r sub variables j defined by

sc(r,j) =

r∑
k=1

(qj + 1− k)
∑
|i|=k

s2kji

=

r∑
k=1

(qj + 1− k)
∑
|i|=k

(
zji1 . . . z

j
ik
− z

′j
i1
. . . z

′j
ik

)2

By combining 1) and 2) defines the hierarchical kernel of interactions of order r following:

κSGH((x, z), (x′, z′)) = κx(x, x
′
)(1−γ)κz(z, z

′
)(2γ−1)

where κx give by (3) and κz par (4).
For some values of γ, it appears that the RBF kernel can be found for binary data in some cases.
If κx = κRBF then

• γ = 1
2 ⇒ κSGH ((x, z), (x′, z′)) = κRBF(x, x′),

• γ = 1 et r = 1⇒ κSGH ((x, z), (x′, z′)) = κRBF(z, z
′
) ,

• γ = 2
3 et r = 1

⇒ κSGH ((x, z), (x′, z′)) = κRBF((x ∪ z), (x′ ∪ z′
)).

4 Experiments

4.1 Datasets

Verbal autopsy Data The goal of verbal autopsy is to get some information from family about the
circumstances of a death when medical certification is incomplete or absent. In such a situation, verbal
autopsy can be used as a routine death registration. A list of p possible symptoms is established and the
collected data X = (X1, . . . , Xp) consist of the absence or presence (encoded as 0 or 1) of each symptom on
the deceased person. The probable cause of death is assigned by a physician and is encoded as a qualitative
random variable Y . We refer to [5] for a review of automatic methods for assigning causes of death Y from
verbal autopsy data X. In particular, classification methods based on Bayes’ rule have been proposed, see [6]
for instance.
Here, we focus on data measured on the deceased persons during the period from 1985 to 2010 in the three
IRD (Research Institutr for Development) sites (Niakhar, Bandafassi and Mlomp) in Senegal. The dataset
includes n = 2.500 individuals (deceased persons) distributed in K = 18 classes (causes of death) and
characterized by p = 100 variables (symptoms).

4.2 Comparison with levels of interaction

We note that the classification rates associated with level of interaction r = 3 are higher than in the interaction
r = 1 and r = 2. For γ = 0.5, the classification rate is invariant on the order of interaction. This is explained



by the fact that for γ = 0.5, the proposed kernel does not take into account the interactions and is calculated
only based on the main variables. The highest classification rate is obtained for γ = 0.67 with a level
of interaction equal to r = 3. The table 1 summarizes the classification rate depending on the level of
interaction and the value of γ.

interactions r= 1 r = 2 r = 3
γ CCR CCR CCR CCR CCR CCR

(learning set ) (test set) (learning set ) (test set) (learning set ) (test set )

0.5 76.21 67.44 76.21 67.44 76.21 67.44
0.6 83.50 74.33 85.77 76.48 86.59 77.07
0.67 84.20 74.92 86.50 76.95 86.93 77.19
0.7 84.53 75.25 86.63 77.00 86.93 77.14
0.8 84.32 74.95 84.94 75.76 85.10 75.57
0.9 83.15 73.72 83.97 74.50 83.01 73.21
1 71.36 61.52 75.09 64.91 74.72 64.59

Tableau 1: Summary of correct classification rate for γ ∈ [0.5, 1]

5 Conclusion

This work was motivated by the consideration of the hierarchical aspect of the questions in the interview
with the physician. We proposed a kernel that takes account a tree structure of the levels of response to the
questions during the interview and the interactions of symptoms. This kernel implemented in the method
ppgda presents consistent classification performance. A good diagnosis is obtained often accurate by the
presence or absence of symptoms but particularly their interaction.
Our main contribution is the proposal of a kernel simultaneously taking into account the hierarchical appear-
ance and interaction variables. The proposed kernel has good classification performance on a complex set of
diagnostic data (high number predictors and classes).
An adaptation of this structured kernel on the graphical data might be useful on many issues.
This work could be extended to the classification of mixed quantitative and binary data by specifying the
interactions of the variables.
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