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A note on the steady state optimization of the biogas production in

a two-stage anaerobic digestion model

Terence Bayen∗†, Pedro Gajardo‡

September 12, 2017

Abstract

In this paper, we study the optimization problem of maximizing biogas production at the steady state
in a two-stage anaerobic digestion model, which was initially proposed in [4]. Nominal operating points,
consisting in steady states where the involved microorganisms coexist, are usually referred to as desired
operational conditions, in particular for maximizing biogas production. Nevertheless, we prove that under
some conditions related to input substrate concentrations and microorganism growth functions, the optimal
steady state can be the extinction of one of the two species. We provide some numerical examples of this
situation.

Keywords. Anaerobic digestion, Biotechnology, Steady state analysis, Equilibrium, Optimization.

1 Introduction

Within the context of renewable energies, anaerobic digestion is now an attractive alternative to carbon fossil,
being a well-known and established technology to treat waste in the methanization of sewage sludge from
wastewater treatment plants [8]. Anaerobic digestion is a complex process that can take place in one or seve-
ral bioreactors used for the production of biogas (methane, hydrogen); one of the most important drawbacks,
however, is its sensitivity to disturbances, which can lead to instability problems in addition to diminishing
biogas production flow [9]. For this reason, mechanistic mathematical models are a good basis for monitoring
and developing control strategies to optimize the functioning of this type of process (a complete review about
modeling and identification of anaerobic digestion processes can be found in [6]).

In the last thirty years, complex models of anaerobic digestion have been developed and fitted with exper-
imental data to predict, for example, biogas production rates. This is true in the case of the ADM1 [1], a
model that consists of 29 dynamic state variables, which makes it very difficult to carry out qualitative ana-
lysis. Simpler models focusing on different subprocesses of ADM1 have been proposed, as in [4] (two stages
considered: acidogenesis and methanogenesis), [15] (three stages considered: acidogenesis, acetogenesis, and
methanogenesis), and [5] (four stages considered: hydrolysis, acidogenesis, acetogenesis, and methanogenesis).
Mathematical analysis was carried out for these models in [11, 12, 13, 3, 15, 5]. Concerning the two-stage
model proposed in [4], in [3], the authors present a complete analysis developed in a generic way that is related
to the existence of steady states and their stability properties. The problem of optimizing biogas production
for the model proposed in [4] is studied in [11, 12, 13]. This issue is also analyzed in [15] and [5], where
models with more stages for the anaerobic digestion process are considered. In these works, one observes
that steady states can be characterized as follows: (i) the extinction (washout) of one or more of the involved
microorganisms and (ii) the coexistence of microorganisms. The coexistence steady states are referred to as
nominal operating points, and they are typically viewed as the desired operating conditions.
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From a practical point of view, an interesting issue is to obtain an efficient management policy for anaerobic
digestion processes in order to maximize biogas production over a given period (see e.g. [7]). This policy
can be characterized in a two-step optimization procedure. First, one finds an equilibrium point maximizing
biogas production at the steady state, and then, one determines a control strategy in order to reach this
steady state, eventually optimizing another criterion (e.g.: time, as in [2], and cost as in [11], etc.). Intuitively,
the optimal steady states should be nominal operating points (coexistence of microorganims), as assumed
in [11, 12] for the two-stage model introduced in [4]. In [15], for a three-stage model, the authors show
numerically that, surprisingly, the optimal biogas production does not always occur at a steady state where
all microorganisms coexist, the same phenomena that can be observed numerically in [5] for a four-stage model.

In the present work, we consider the two-stage model introduced in [4], and we prove that, under some (sim-
ple) assumptions related to input substrate concentrations and microorganism growth functions, the optimal
steady state can involve the extinction of one of the species. The mathematical proof of this non-intuitive
solution can be interesting from a practical point of view if the goal is to maximize biogas production. From
a mathematical point of view, the problem amounts to the maximization of the supremum of two concave
functions, and it is addressed by utilizing standard tools of analysis.

The paper is organized as follows: In the next section, we present the two-stage anaerobic digestion model
introduced in [4], establishing a general hypotheses for the analysis and proposing an equivalent model (with
the same structure) in order to reduce, for convenience, the quantity of parameters. In the third section, we
recall the steady state analysis carried out in [3], which will be useful to compute the equilibrium points of
the dynamics. In the fourth section, we study the optimization problem of maximizing biogas production at
the steady state: Proposition 4.4 is our main result and summarizes which steady state is optimal depending
on the input substrate concentrations. Finally, in the last two sections, we present some numerical examples
highlighting the previous results (Section 5) and final conclusions (Section 6).

2 Two-stage anaerobic digestion model

A representation of the two-stage anaerobic digestion model is based on the coupling of two main reactions
called acidogenesis and methanization. These two reactions can be described by the so-called AM2 model (see
[4]) represented by the following dynamical system:

Ẋ1 = (µ̃1(S1)− αD)X1,

Ṡ1 = −k1µ̃1(S1)X1 +D(S1
in − S1),

Ẋ2 = (µ̃2(S2)− αD)X2,

Ṡ2 = k2µ̃1(S1)X1 − k3µ̃2(S2)X2 +D(S2
in − S2),

(2.1)

that is based on the chemostat model (see [10, 14]).Here, Xi, i = 1, 2, denotes the biomass concentration,
S1 is the concentration of the organic substrate characterized by its COD (Chemical Oxygen Demand) and
measured in [g/l], and S2 is the total concentration of VFA (Volatile Fatty Acids) measured in [mmol/l]. The
dilution rate of the continuously operated bioreactor is denoted by D (i.e., D = Q/V where Q is the input and
output flow rate of water and V is the constant volume of water present in the bioreactor). The index i = 1,
resp. i = 2, is for the acidogenesis reaction, resp. methanization reaction. The parameters Siin represent the
input substrate concentrations. Coefficients kj , j = 1, 2, 3 are positive parameters called pseudostochiometric
coefficients associated to the bioreactions, α ∈ (0, 1] is a parameter making it possible to decouple the HRT
(Hydraulic Retention Time) and the SRT (Solid Retention Time) (see [4, 3]), and the functions µ̃i are the
so-called growth rate functions. Values (borrowed from [4]) and units of all involved parameters are specified
in Table 2 of Section 5.

The dilution rate D is the decision variable due to the fact that one can control the input and output flow
rates, both being equal in a continuously operated bioreactor.

The growth functions or kinetics µ̃1(·) and µ̃2(·) are usually of a Monod and Haldane type (see Example 2.1
for the definitions), respectively, as in [4, 11, 12]. However, in this paper, we consider generic kinetics µ̃1(·)
and µ̃2(·), satisfying the following qualitative properties:
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Assumption 2.1. The function µ̃1 : [0,+∞) −→ R is concave, increasing, and continuously differentiable,
with µ̃1(0) = 0 and lim

S1→+∞
µ̄1(S1) = µ̄1, for some µ̄1 > 0.

Assumption 2.2. The function µ̃2 : [0,+∞) −→ R is continuously differentiable, and for some Smax2 > 0, it
is concave and increasing over [0, Smax2 ] and decreasing over (Smax2 ,+∞), with µ̃2(0) = 0 and µ̃2(S2) > 0 for
all S2 > 0.

Remark 2.1. Observe that with the previous assumptions, one has:

• µ̃′1(S1) > 0 for all S1 > 0, where µ̃′1(·) is the derivative of function µ̃1(·);

• The function µ̃′1(·) is decreasing over (0,+∞);

• µ̃′2(S2) > 0 for all S2 ∈ (0, Smax2 ), µ̃′2(Smax2 ) = 0, and µ̃′2(S2) < 0 for all S2 ∈ (Smax2 ,+∞). Therefore,
µ̃2(·) attains its maximum value at S2 = Smax2 ;

• The function µ̃′2(·) is decreasing over (0, Smax2 ].

Example 2.1. It is straightforward to check that if µ̃1(·) is a Monod function and µ̃2(·) is of Haldane type,
they satisfy assumptions 2.1 and 2.2. Recall that the Monod function is defined by

µ̃1(S1) =
µ̄1S1

kA + S1
,

and the Haldane function by

µ̃2(S2) =
µ̄2S2

kM + S2 + S2
2/kI

,

where µ̄1, kA, µ̄2, kM , and kI are positive parameters. In this case, the value Smax2 in Assumption 2.2 is given
by Smax2 =

√
kMkI .

Finally, we introduce the expression of the methane flow rate (see [4]), given by

qM (X2, S2) = q̄µ̃2(S2)X2, (2.2)

where q̄ > 0. The objective of the paper is to find a stable (at least locally) equilibrium point of (2.1) for
which this quantity at steady state is maximal.

2.1 Reduction of the model

It is straightforward to verify that the AM2 model can be equivalently written with adimensioned pseudosto-
chiometric coefficients as follows:

ẋ1 = µ1(s1)x1 − ux1,
ṡ1 = −µ1(s1)x1 + u

α (s1in − s1),

ẋ2 = µ2(s2)x2 − ux2,
ṡ2 = −µ2(s2)x2 + µ1(s1)x1 + u

α (s2in − s2).

(2.3)

From (2.1), the change of variables and the new definitions of growth functions µ1(·) and µ2(·), for obtaining
(2.3) are indicated in Table 1.

Remark 2.2. Note that functions µ1(·) and µ2(·), in system (2.3) have exactly the same properties of µ̃1(·)
and µ̃2(·), introduced in assumptions 2.1 and 2.2. The value smax2 where µ2(·) is maximized is smax2 = k1

k2
Smax2 ,

where Smax2 is given in Assumption 2.2.

The expression (2.2) of the methane flow rate in the new variables then becomes

qM (x2, s2) =
q̄k2
k1k3

µ2(s2)x2. (2.4)
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New variables in system (2.3) Original variables in system (2.1)
x1 k1X1

s1 S1

x2
k1k3
k2

X2

s2
k1
k2
S2

u αD

s1in S1
in

s2in
k1
k2
S2
in

µ1(s1) µ̃1(s1) = µ̃1(S1)

µ2(s2) µ̃2

(
k2
k1
s2

)
= µ̃2(S2)

Table 1: Change of variables for obtaining (2.3) from (2.1).

3 Steady states and stability results

Following [11, 12, 13], it can be interesting to suppose the dynamical system (2.3) (equivalent to (2.1)) at the
steady state for a constant dilution rates u ≥ 0 maximizing the static production of methane (2.4). Then,
the bioreactor can be stabilized at the corresponding equilibrium, which then guarantees a certain value of
the methane production over time. For this purpose, when u ≥ 0 is constant in (2.3), we shall recall possible
steady states admitted (i.e. with non negative values) by this system, and the stability results associated to
each of them. A rigorous mathematical analysis can be found in [3].

For a fixed u ≥ 0, we denote by Ẽ∗(u) := (x̄1(u), s̄1(u), x̄2(u), s̄2(u)) a steady state of (2.3). It is straightfor-
ward to check that

x̄1(u) =
(s1in − s̄1(u))

α
and x̄2(u) =

(s1in + s2in − s̄1(u)− s̄2(u))

α
. (3.1)

Therefore, the steady states are characterized by the values (s̄1(u), s̄2(u)) only, and for this reason, we shall
only write E∗(u) := (s̄1(u), s̄2(u)) instead of Ẽ∗(u).

In [3], the authors show that under Assumptions 2.1 and 2.2, there exist at least four steady states:

• E∗1 (u) = (s1in, s
2
in) (total washout): This steady state always exists, and for u large enough, it is

globally asymptotically stable;

• E∗2 (u) = (s1in, s
∗
2(u)) (washout of the acidogenic microorganism), where s∗2(u) is the unique solution

in [0, smax2 ] of the equation µ2(s2) = u: It exists if u < max
s∈[0,s2in]

µ2(s). If only E∗1 (u) and E∗2 (u) exist,

then E∗2 (u) is globally asymptotically stable. Otherwise, it is unstable;

• E∗3 (u) = (s∗1(u), s1in + s2in − s∗1(u)) (washout of the methanogenic microorganism), where s∗1(u) is
the unique solution in [0, s1in] of the equation µ1(s1) = u: It exists if u < µ1(s1in). If only E∗1 (u) and
E∗3 (u) exist, then E∗3 (u) is globally asymptotically stable. Otherwise, it is unstable;

• E∗4 (u) = (s∗1(u), s∗2(u)) (coexistence): It exists if u < µ1(s1in) and u < max
s∈[0,s1in+s2in−s∗1(u)]

µ2(s). In this

case, it can be globally asymptotically stable or just locally stable.

If in addition to Assumption 2.2 one supposes lim
s2→+∞

µ2(s2) = 0, it is shown in [3] that there could exist two

other steady states:

• Ē∗2 (u) = (s1in, s
∗∗
2 (u)) (washout of the methanogenic microorganism), where s∗∗2 (u) is the unique solution

in [smax2 ,+∞) of the equation µ2(s2) = u, and
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• Ē∗4 (u) = (s∗1(u), s∗∗2 (u)) (coexistence).

Steady states Ē∗2 (u) and Ē∗4 (u) exist under the same conditions as E∗2 (u) and E∗4 (u), respectively. We do not
consider these equilibrium points because they are unstable, and since our aim is to maximize the methane
flow at equilibrium, this quantity evaluated in Ē∗2 (u) and Ē∗4 (u) is strictly lower than (2.4) evaluated at E∗2 (u)
and E∗4 (u), respectively. Indeed, from the respective values of x̄1(u) and x̄2(u) in (3.1), we deduce that x̄2(u)
associated to s∗2(u) is strictly greater than x̄2(u) associated to s∗∗2 (u). Since µ2(s∗2(u)) = µ2(s∗∗2 (u)) = u, from
(2.4) we obtain that the methane flow rate evaluated at unstable equilibria Ē∗2 (u) and Ē∗4 (u) are lower.

4 Steady state optimization

In this section, our aim is to optimize the methane flow rate given by (2.4) at the steady state operation. First,
note that this quantity is zero at the equilibria E∗1 (u) and E∗3 (u) introduced in the previous section (because
from (3.1) one has x̄2(u) = 0). Therefore, the objective is to find a dilution rate u ≥ 0 such that the biogas
flow rate, evaluated in E∗2 (u) or E∗4 (u), is maximal.

Remark 4.1. Observe that if E∗2 (u) and E∗4 (u) exist (for this situation, it is necessary that u < µ1(s1in)), the
methane flow rate evaluated in E∗2 (u) is lower than this quantity evaluated in E∗4 (u).1 Thus, if the maximal
biogas flow rate is obtained for u < µ1(s1in), we know that this quantity is attained at the steady state E∗4 (u).
Therefore, in order to maximize the methane flow rate, we only have to consider E∗2 (u) or E∗4 (u) in the
following cases:

• Consider only E∗4 (u) if u < µ1(s1in) and u < max
s∈[0,s1in+s2in−s∗1(u)]

µ2(s);

• Consider only E∗2 (u) if u ≥ µ1(s1in) and u < max
s∈[0,s2in]

µ2(s).

Note that the above conditions on the decision variable u can be written in the form u ∈ I(u) := [0, µ2(s+2 (u))],
where

s+2 (u) := Argmax
s∈[0,λ(u)]

µ2(s) = min{λ(u), smax2 }, (4.1)

with
λ(u) := s1in + s2in − s̃∗1(u), (4.2)

and

s̃∗1(u) :=

{
s∗1(u) = µ−11 (u) if u < µ1(s1in),

s1in if u ≥ µ1(s1in).
(4.3)

Using the definition of s̃∗1(u) given in (4.3), for a fixed u, we can write in a unified expression the maximal
methane flow rate possible to obtain among the existing steady states (for this decision variable u), that is, the
methane flow rate (2.4) evaluated in E∗2 (u) (when E∗4 (u) does not exist) or evaluated in E∗4 (u) (when E∗2 (u)
and E∗4 (u) exist). This expression is:

qM (u) =
q̄k2
k1k3

µ2(s∗2(u))(s1in + s2in − s̃∗1(u)− s∗2(u)) =
q̄k2
k1k3

u(s1in + s2in − s̃∗1(u)− s∗2(u)). (4.4)

Therefore, maximizing the methane flow rate is equivalent to solving the following optimization problem

max
u∈I(u)

g(u), (4.5)

where g : [0,+∞) −→ [0,+∞) is defined by

g(u) :=
k1k3
q̄k2

qM (u) = µ2(s∗2(u))(s1in + s2in − s̃∗1(u)− s∗2(u)) = u(s1in + s2in − s̃∗1(u)− s∗2(u)), (4.6)

1Perhaps because of this fact some authors consider the coexistence (represented by E∗4 (u)) as a desired operating point.
Nevertheless, it could happen that the methane flow rate at E∗2 (u) (for some u where E∗4 (u) does not exist) could be greater than
this flow rate evaluated in any E∗4 (u) (for u such that E∗4 (u) exists).

5



with s̃∗1(u) defined by (4.3) and s∗2(u) is the unique solution in [0, smax2 ] of the equation µ2(s2) = u, which
exists when u ∈ I(u).

The condition u ∈ I(u) (necessary and sufficient for the existence of s∗2(u)) can be written in a simpler way.
In order to study this point, let us first prove some properties of the function φ : R+ −→ R+ defined by

φ(u) := µ2(s+2 (u)),

where s+2 (u) is defined in (4.1). The function φ is depicted in Figure 1.

Lemma 4.1. Defining

s̃2 := min{smax2 , s2in} and ŝ2 := min{smax2 , s1in + s2in}, (4.7)

the function φ : R+ −→ R+ has the following properties:

(a) φ(u) = µ2(s̃2) for all u ≥ µ1(s1in);

(b) φ is non-increasing. In particular, if s̃2 = smax2 , then φ(u) = µ2(s̃2) for all u ≥ 0;

(c) φ(0) = µ2(ŝ2) ≥ µ2(s̃2).

Proof. For u ≥ µ1(s1in), from the definition of λ(u) in (4.2), one has λ(u) = s2in. Therefore, from (4.1), we
conclude s+2 (u) = s̃2 and then φ(u) = µ2(s̃2) for all u ≥ µ1(s1in), which proves part (a).

If s̃2 = smax2 , then λ(u) = s1in + s2in − s̃∗1(u) ≥ smax2 for all u ≥ 0. Therefore, s+2 (u) = smax2 = s̃2, and then
φ(u) = µ2(s̃2) for all u ≥ 0, proving the second statement of part (b). For proving that φ is non-increasing,
note that:

• the function u → s̃∗1(u) defined in (4.3) is non-decreasing; hence, u → λ(u) is non-increasing, and
therefore, u→ s+2 (u) = min{λ(u), smax2 } is a non-increasing function;

• one has s+2 (u) ∈ [0, smax2 ] for all u ≥ 0, interval where function µ2 is increasing.

Therefore, φ(u) = µ2(s+2 (u)) is a non-increasing function.

Now, part (c) is a direct consequence of the equality λ(0) = s1in + s2in, which ends the proof.

µ
1
(s

in

1
)

u

µ
2
(s

in

2
)

φ(0)

φ
(u

)

Function φ

Case s
in

2
 < s

2

max

Figure 1: Plot of the function φ where the parameter values of functions µ̃1 and µ̃2 (and then of µ1 and µ2)
are given in Table 2 in Section 5 (obtained from [4]) and S1

in = 5 [g/l] and S2
in = 10 [mmol/l].

Since I(u) = [0, φ(u)], the previous result will imply an equivalent expression of the condition u ∈ I(u), as the
next corollary shows.
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Corollary 4.1. There exists a unique u∗ = u∗(s1in, s
2
in) > 0 such that φ(u∗) = u∗ and

u ∈ I(u) ⇔ u ∈ [0, u∗]. (4.8)

We can be more specific for describing u∗ in the above corollary, as we establish in the next proposition.

Proposition 4.1. Condition u ∈ I(u) is equivalent to requiring that u belongs to a fixed interval, as follows:

• If µ1(s1in) < µ2(s̃2), then
u ∈ I(u) ⇔ u ∈ [0, µ2(s̃2)],

where s̃2 is defined in (4.7).

• If µ1(s1in) ≥ µ2(s̃2), then
u ∈ I(u) ⇔ u ∈ [0, u∗] ⊂ [0, µ1(s1in)],

where u∗ ∈ (0, µ1(s1in)) is the unique positive solution of the equation

u = µ2(λ−(u)),

with λ−(u) = min{s1in + s2in − s∗1(u), smax2 }.

Proof. Let u∗ = u∗(s1in, s
2
in) be given by Corollary 4.1. If µ1(s1in) < µ2(s̃2) = φ(µ1(s1in)) (the last equality is

due to Lemma 4.1 (i)), then one has u∗ > µ1(s1in). Since φ(u) = µ2(s̃2) for all u ≥ µ1(s1in), we conclude

u∗ = φ(u∗) = µ2(s̃2),

which together with (4.8) proves the first part of the proposition.

Similarly, if µ1(s1in) ≥ µ2(s̃2) = φ(µ1(s1in)), we obtain that u∗ ≤ µ1(s1in). Then,

u ∈ I(u) ⇔ u ∈ [0, u∗] ⊂ [0, µ1(s1in)].

Since u∗ = φ(u∗) = µ2(s+2 (u∗)), s+2 (u∗) = min{λ(u∗), smax2 } (see (4.1)) and λ(u) = s1in + s2in − s∗1(u) for
u ≤ µ1(s1in), we conclude u∗ = µ2(λ−(u∗)).

With the characterization of the condition u ∈ I(u) obtained previously, we can now rewrite the optimization
problem (4.5). First, since s̃∗1(u) is piecewise (see (4.3)), function g by (4.6) can be written

g(u) =

{
g1(u) if u ∈ I(u) and u < µ1(s1in),

g2(u) if u ∈ I(u) and u ≥ µ1(s1in),

where
g1(u) := u(s1in + s2in − s∗1(u)− s∗2(u)) for u ∈ I(u) and u ∈ [0, µ1(s1in))

g2(u) := u(s2in − s∗2(u)) for u ∈ I(u),

together with the convention s∗1(0) = s∗2(0) = 0 (indeed, one has lim
u→0+

s∗1(u) = lim
u→0+

s∗2(u) = 0). Recall that

s∗1(u) is the unique solution over [0, s1in] of the equation µ1(s1) = u; that is, one has s∗1(u) = µ−11 (u) (when
u < µ1(s1in)); and recall that s∗2(u) is the unique solution over [0, smax2 ] of the equation µ2(s2) = u (which
exists when u ∈ I(u)).

Thanks to Proposition 4.1, functions g, g1 and g2 can be rewritten as follows:

1. If µ1(s1in) < µ2(s̃2), then one has

g(u) =

{
g1(u) if 0 ≤ u < µ1(s1in),

g2(u) if µ1(s1in) ≤ u ≤ µ2(s̃2).
(4.9)

together with

g1(u) = u(s1in + s2in − s∗1(u)− s∗2(u)) for u ∈ [0, µ1(s1in)], (4.10)

g2(u) = u(s2in − s∗2(u)) for u ∈ [0, µ2(s̃2)], (4.11)
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2. If µ1(s1in) ≥ µ2(s̃2), then one has

g(u) = g1(u) = u(s1in + s2in − s∗1(u)− s∗2(u)) for all u ∈ [0, u∗] ⊂ [0, µ1(s1in)]. (4.12)

From (4.9) and (4.12), the optimization problem (4.5) presents the following structure.

Proposition 4.2. The maximization problem (4.5) is equivalent to one of the next two formulations:

• If µ1(s1in) < µ2(s̃2), then problem (4.5) is equivalent to maximizing g1 over [0, µ1(s1in)] and to maximizing
g2 over (µ1(s1in), µ2(s̃2)], and then the maximal value is taken between these two problems, that is:

max

{
max

u∈[0,µ1(s1in)]
g1(u) , max

u∈(µ1(s1in),µ2(s̃2)]
g2(u)

}
.

• If µ1(s1in) ≥ µ2(s̃2), then problem (4.5) is equivalent to the optimization problem

max
u∈[0,u∗]

g1(u),

where u∗ is the unique positive solution of the equation

u = µ2(λ−(u)),

with λ−(u) = min{s1in + s2in − s∗1(u), smax2 }. In this case, the maximal methane flow rate is achieved at
a coexistence steady state E∗4 (u) (see Remark 4.1).

Proof. It is a direct consequence from (4.9) and (4.12).

From the above proposition, when µ1(s1in) ≥ µ2(s̃2), the maximal methane flow rate at equilibrium is achieved
at a steady state of coexistence (i.e., E∗4 (u)). This result is in line with other studies in the literature (see
[11, 12]). A plot of the mapping g1 in this case can be found in Figure 2 (left). Nevertheless, if µ1(s1in) < µ2(s̃2),
according to the first part of Proposition 4.2, the maximal methane flow rate at equilibrium could be achieved
at some value u ≥ µ1(s1in), that is, at a steady state of type E∗2 (u) where the acidogenic microorganism is
washed out (see Remark 4.1). This situation will occur when

max
u∈[0,µ1(s1in)]

g1(u) < max
u∈[µ1(s1in),µ2(s̃2)]

g2(u).

In order to give sufficient conditions ensuring that this case may happen, let us now give properties of the
functions g1 and g2 (some of them illustrated in Figure 2) defining the optimization problem when µ1(s1in) <
µ2(s̃2).

Proposition 4.3. Suppose that µ1(s1in) < µ2(s̃2). Then, the functions g, g1, and g2 defined by (4.9), (4.10),
and (4.11) satisfy the following properties:

(a) the function g is continuous over [0, µ2(s̃2)];

(b) one has g2(u) < g1(u) for all u ∈ (0, µ1(s1in));

(c) the functions g1 and g2 are concave and differentiable over (0, µ1(s1in)) and (0, µ2(s̃2)), respectively. In
addition, one has

g′2(u) = s2in − s∗2(u)− u

µ′2(s∗2(u))
= s2in − s∗2(u)− µ2(s∗2(u))

µ′2(s∗2(u))
for u ∈ (0, µ2(s̃2)), (4.13)

g′1(u) = g′2(u) + s1in − s∗1(u)− u

µ′1(s∗1(u))
= g′2(u) + s1in − s∗1(u)− µ1(s∗1(u))

µ′1(s∗1(u))
(4.14)

for u ∈ (0, µ1(s1in)) ;
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Figure 2: (Left): Plot of g1 over [0, u∗] in the case where µ1(s1in) ≥ µ2(s̃2) and S1
in = 5 [g/l], S2

in = 10 [mmol/l]
(all other parameters are taken from Table 2 in Section 5). (Right): Plot of g over [0, µ2(s̃2)] in the case where
µ1(s1in) < µ2(s̃2) and S1

in = 1.5 [g/l], S2
in = 4 [mmol/l], µ̄1 = 0.4 (all other parameters are taken from Table

2).

(d) one has lim
u→0+

g′(u) = lim
u→0+

g′1(u) > 0 and

lim
u→µ2(s̃2)−

g′(u) = lim
u→µ2(s̃2)−

g′2(u) =


−∞ if s̃2 = smax2 ,

−µ2(s
2
in)

µ′2(s
2
in)

if s̃2 = s2in.

(e) lim
u→µ1(s1in)

−
g′(u) = lim

u→µ1(s1in)
−
g′1(u) < g′2(µ1(s1in)).

Proof. Let us prove (a) and (b). From the definition of g1 and g2 in (4.10), and (4.11), one has

g1(u) = g2(u) + u(s1in − s∗1(u)). (4.15)

Since s1in > s∗1(u) for u ∈ [0, µ1(s1in)) and s1in = s∗1(u) when u = µ1(s1in), from (4.15) we deduce part (b) and
also part (a) because functions s∗1(u) = µ−11 (u) and s∗2(u) = min{s | µ2(s) = u} are two continuous functions
over [0, µ1(s1in)] and [0, µ2(s̃2)], respectively.

To prove (c), observe first that one has u = µj(s
∗
j (u)) (for u where s∗j (u) is well defined), implying

(s∗j )
′(u) =

1

µ′j(s
∗
j (u))

j ∈ {1, 2}.

Thus, we get (4.13) and (4.14). Note also that the mappings u 7→ s∗j (u) for j ∈ {1, 2} are increasing in the
intervals where they are defined (recall assumptions 2.1 and 2.2, and Remark 2.2).
Finally, since s∗2(u) ∈ [0, smax2 ] and µ′2 is decreasing on this interval (indeed, µ2 is concave over [0, smax2 ]), we
deduce that g′2 is decreasing, implying that g2 is concave. Analogously (because µ1 is concave) one can show
that g1 is also concave, which proves (c).

In order to prove (d) and (e), we can check that one has:

(i) µ′1(0) > 0 and µ′2(0) > 0 (from assumptions 2.1 and 2.2, and Remark 2.2);

(ii) lim
u→µ2(s̃2)−

s∗2(u) = s̃2 and then µ′2(s∗2(u))→ 0 if s̃2 = smax2 or µ′2(s∗2(u))→ µ′2(s2in) if s̃2 = s2in;

(iii) lim
u→µ1(s1in)

−
g′1(u) = g′2(µ1(s1in))− µ1(s

1
in)

µ′1(s
1
in)

, therefore lim
u→µ1(s1in)

−
g′1(u) < g′2(µ1(s1in)).
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Property (iii) straightforwardly implies (e). Now, with properties (ii) and (iii) together with the equalities
s∗1(0) = s∗2(0) = 0 and the expressions of g′1 and g′2 given by part (c), we can prove (d).

When µ1(s1in) < µ2(s̃2), the maximal value for the methane flow rate at steady state can then be obtained
either at an equilibrium point of type E∗2 (u) (i.e., when the acidogenic microorganism is washed out) or at
an equilibrium point of type E∗4 (u) (i.e., when there is coexistence of the two species). In the next result, we
provide sufficient conditions that allow us to determine which equilibrium provides the greatest value for the
methane flow rate.

Proposition 4.4. Suppose that µ1(s1in) < µ2(s̃2).

(a) If lim
u→µ1(s1in)

−
g′1(u) ≥ 0, then one has

max
u∈[0,µ1(s1in)]

g1(u) < max
u∈[µ1(s1in),µ2(s̃2)]

g2(u), (4.16)

and therefore, the maximal methane flow rate at equilibrium in problem (4.5) is achieved for some
u ∈ (µ1(s1in), µ2(s̃2)), with the corresponding steady state E∗2 (u) (washout of the acidogenic microorgan-
ism).

(b) If g′2(µ1(s1in)) ≤ 0, then one has

max
u∈[0,µ1(s1in)]

g1(u) ≥ max
u∈[µ1(s1in),µ2(s̃2)]

g2(u), (4.17)

implying that the maximal methane flow rate at equilibrium in problem (4.5) is achieved for some
u ∈ (0, µ1(s1in)), with the corresponding steady state E∗4 (u) (coexistence).

Proof. If lim
u→µ1(s1in)

−
g′1(u) ≥ 0, then we obtain

max
u∈[0,µ1(s1in)]

g1(u) = g1(µ1(s1in)) = g2(µ1(s1in)),

due to the concavity of g1 and continuity of g (see parts (a) and (c) in Proposition 4.3). Since g2 is also
concave and we have

0 ≤ lim
u→µ1(s1in)

−
g′1(u) < g′2(µ1(s1in)),

due to part (e) in Proposition 4.3, we conclude (4.16).

Finally, if g′2(µ1(s1in)) ≤ 0, we then necessarily have

max
u∈[0,µ1(s1in)]

g1(u) = g1(ū) > g2(µ1(s1in)),

for some ū ∈ (0, µ1(s1in)) where g′1(ū) = 0, because g1 is concave and lim
u→0+

g′(u) = lim
u→0+

g′1(u) > 0 (part (d)

in Proposition 4.3). By the concavity of g2 , one has that g′2 is negative over [µ1(s1in), µ2(s̃2)], and therefore,
we obtain (4.17).

5 Numerical examples

As established in the previous section, given acidogenic and methanogenic populations, characterized by
functions µ1(·) and µ2(·) and the corresponding input substrate concentrations s1in and s2in, the steady state
that maximizes the methane flow rate at equilibrium can be of two types. Either the optimal steady state for
(4.5) corresponds to the coexistence of both populations (if the optimal constant u is lower than µ1(s1in)), or
it corresponds to the washout of the acidogenic population. In this section, considering the original variables
and parameters of system (2.1) obtained from [4], we will depict in the plane S1

in-S2
in the set of points for

which either the coexistence steady state or the wash-out steady state is optimal.
First, let us summarize analytically the conditions on the input substrate concentrations S1

in and S2
in, consi-

dering the original variables and parameters of system (2.1) in order to have the mentioned situations:
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• If µ̃1(S1
in) ≥ µ̃2(S̃2), where

S̃2 := min{Smax2 , S2
in},

then the maximal biogas flow rate is attained in a coexistence steady state (see Proposition 4.2 and
Table 1);

• If µ̃1(S1
in) < µ̃2(S̃2) and g′2(µ̃1(S1

in)) ≤ 0; then, the maximal biogas flow rate is attained in a coexistence
steady state (see propositions 4.2 and 4.4, and Table 1);

• If µ̃1(S1
in) < µ̃2(S̃2) and lim

u→µ̃1(S1
in)
−
g′1(u) ≥ 0; then, the maximal biogas flow rate is attained in a steady

state where the acidogenic population is washed out (see propositions 4.2 and 4.4, and and Table 1).

In order to determine in the plane S1
in-S2

in which case occurs, we proceed as follows. Using the expressions
of g′1 and g′2 in part (c) of Proposition 4.3, we compute the curves corresponding to equalities in the above
conditions:

C1 := {(S1
in, S

2
in) ∈ R+ × R+ ; µ̃1(S1

in) = µ̃2(S̃2)},

C2 := {(S1
in, S

2
in) ∈ R+ × R+ ; g′2(µ̃1(S1

in)) = 0},

C3 := {(S1
in, S

2
in) ∈ R+ × R+ ; lim

u→µ̃1(S1
in)
−
g′1(u) = 0}.

It is worth to mention that

(S1
in, S

2
in) ∈ C2 ⇔ S2

in = S∗2 (µ̃1(S1
in)) +

µ̃2(S∗2 (µ̃1(S1
in)))

µ̃′2(S∗2 (µ̃1(S1
in)))

;

(S1
in, S

2
in) ∈ C3 ⇔ S2

in = S∗2 (µ̃1(S1
in)) +

k2
k1

µ̃1(S1
in)

µ̃′1(S1
in)

+
µ̃2(S∗2 (µ̃1(S1

in)))

µ′2(S∗2 (µ1(S1
in)))

.

In the above expressions, S∗2 (u) stands for the unique solution in [0, Smax2 ] of the equation µ̃2(S) = u.

Remark 5.1. Note that if µ̃1(S1
in) ≥ µ̃2(Smax2 ), then µ̃1(S1

in) ≥ µ̃2(S̃2) for all S2
in ≥ 0, and therefore in this

case, the optimal methane flow rate at equilibrium is attained for a coexistence steady state. For this reason,
in the figure below, we restrict the plane S1

in-S2
in to values (S1

in, S
2
in) such that 0 ≤ S1

in ≤ µ̃−11 (µ̃2(Smax2 )).
Supposing that S1

in ≤ µ̃
−1
1 (µ̃2(Smax2 )) ensures that the washout of the acidogenic population could be optimal.

Figure 3 has been obtained using the parameter values that can be found in [4]. This allows us to obtain
the values of µ̃1(·) and µ̃2(·), Monod and Haldane, respectively (see Example 2.1), and also the values of the
pseudostochiometric coefficients in (2.1) together with the expression of (2.2). All these parameter values are
specified in Table 2.

Parameter Value Unit
α 0.5

µ̄1 1.2 d−1

kA 7.1 g/l

µ̄2 0.74 d−1

kM 9.28 mmol/l

kI 256 mmol/l

k1 42.14

k2 116.5 mmol/g

k3 268 mmol/g

q̄ 453 mmol/g

Table 2: Values of parameters involved in system (2.1) obtained from [4].
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Figure 3: The three curves C1, C2, C3 delimit in the plane S1
in-S2

in three subsets where either coexistence or
washout of acidogenic population is optimal for the maximization of biogas at steady state.

In Figure 3, we have depicted four points in the plane S1
in-S2

in, according to concentrations of S1
in and S2

in

belonging to the range published in [16] for these quantities. Since these points belong to the subset where
the wash-out of the acidogenic population is optimal, we present in Table 3 the optimal methane gas flow rate
given by (2.2) together with the gain with respect to the other strategy corresponding to a coexistence steady
state.

S1
in(COD) [g/l] S2

in (VFA) [mmol/l] Dopt [d−1] S∗2 (αDopt) [mmol/l] qM [mmol/ld] Gain
2 150 1.00 24.34 212.93 64.95%

3 160 1.01 25.05 229.92 26.31%

3 75 0.92 17.11 89.99 13.02%

4 130 0.99 22.79 179.25 5.84%

Table 3: Gain of methane flow rate at steady state when considering the wash-out of the acidogenic population
in place of coexistence equilibrium.

6 Conclusions

In the last years, simplified models have been developed for monitoring and controlling anaerobic digestion
processes in order to optimize the functioning of them. The analysis of simple models such as the two-
stage anaerobic digestion model proposed in [4] have been carried out by several authors (see, for instance,
[11, 12, 13, 3] and the references therein). As noted by these authors, steady states of the model introduced
in [4] can be as follows: (i) the extinction (washout) of one or two of the involved microorganisms; (ii) the
coexistence of microorganisms. The coexistence steady states are referred to as nominal operating points, and
they are usually viewed as the desired operating conditions. From a practical point of view, an interesting
problem is to obtain an efficient management policy of such bioprocesses in order to maximize the biogas pro-
duction over a given period. This policy can be to find an equilibrium point maximizing the biogas production
at the steady state. Intuitively, the optimal steady states should be nominal operating points (coexistence

12



of microorganims), as assumed in [11, 12]. Nevertheless, as we have shown in this paper, under some sim-
ple assumptions related to input substrate concentrations and microorganism growth functions, the optimal
steady state can be the extinction of one of the species, a phenomena that can be observed numerically in
the three-stage model introduced in [15] and in the four-stage model proposed in [5]. This non-intuitive result
can be interesting from a practical point of view if the goal is to maximize biogas production. In particular,
if in the effluent to be treated the total concentration S2

in of VFA is too high with respect to the organic
substrate concentration S1

in (characterized by its COD), in the sense that µ̃1(S1
in) < µ̃2(Smax2 ), it could be

optimal to wash out the acidogenic population. We have noted that this can happen when taking values from
the literature; specifically, we considered parameters of acidogenic and methanogenic populations from [4] and
concentrations of organic substrate and VFA of effluents from the wine industry published in [16].

It is worthwhile to point out that in general, the VFA concentration in the effluent to be treated is not
very high, and therefore, the optimal methane flow rate is attained in the coexistence of microorganisms.
Nevertheless, due to storage or transport of the water to be treated, the VFA concentration could increase
considerably (as shown in [16]), in these cases it being better to wash out the acidogenic microorganisms in
order to maximize methane production. Therefore, we believe that the analytic characterization of regions in
the plane S1

in − S2
in, where the coexistence or the washout of acidogenic population is optimal, could help in

the design of an anaerobic digestion process, for instance, considering two interconnected bioreactors where
the objective is to maximize methane production. In this setting, one can consider a first tank with only
methanogenic microorganisms and receiving an effluent to be treated; this tank is connected with a second
tank where the two populations coexist. This second bioreactor receives the flow treated from the first tank
and can also receive the effluent to be treated without passing by the first tank. Thus, our analytical results
can be used in order to determine if the effluent to be treated (taking into account its concentrations of S1

in

and S2
in) should pass by the first bioreactor (if µ̃1(S1

in) < µ̃2(Smax2 )) or directly by the second bioreactor in
order to maximize the methane flow rate.
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