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Almost universal codes achieving ergodic MIMO
capacity within a constant gap

Laura Luzzi and Roope Vehkalahti

Abstract—This work addresses the question of achieving ca-
pacity with lattice codes in multi-antenna block fading channels
when the number of fading blocks tends to infinity.
A design criterion based on the normalized minimum deter-
minant is proposed for division algebra multi-block space-time
codes over fading channels; this plays a similar role to the
Hermite invariant for Gaussian channels.
Under maximum likelihood decoding, it is shown that this crite-
rion is sufficient to guarantee transmission rates within a constant
gap from capacity both for deterministic channels and ergodic
fading channels. Moreover, if the number of receive antennas is
greater or equal than the number of transmit antennas, the same
constant gap is achieved under naive lattice decoding as well. In
the case of independent identically distributed Rayleigh fading,
the error probability vanishes exponentially fast.
In contrast to the standard approach in the literature which
employs random lattice ensembles, the existence results in this
paper are derived from number theory. First the gap to capacity
is shown to depend on the discriminant of the chosen division
algebra; then class field theory is applied to build families
of algebras with small discriminants. The key element in the
construction is the choice of a sequence of division algebras whose
centers are number fields with small root discriminants.

Index Terms—MIMO, block fading, space-time codes, number
theory, division algebras

I. INTRODUCTION

It is well-known [3] that in ergodic multiple-input multiple-
output (MIMO) fading channels with channel state information
at receiver only, the maximal mutual information is achieved
with Gaussian circularly symmetric random inputs. In this case
the existence of capacity-achieving codes can be proven with
standard random coding arguments.
It has been shown that by combining simple modulation and
strong outer codes such as turbo or LDPC codes, it is possible
to operate at rates close to capacity with small error probability
[4, 5]. However, to the best of our knowledge, the problem of
achieving ergodic capacity with explicit codes for all ranges
of signal-to-noise ratio (SNR) is still open.
This is in strong contrast to the classical complex Gaussian
single antenna channel, where the capacity is log(1 + SNR)
and it is known that several lattice code constructions achieve

Part of this work appeared at ISIT 2015 [1, 2].
L. Luzzi is with ETIS (UMR 8051, ENSEA, Université de Cergy-Pontoise,

CNRS), 95014 Cergy-Pontoise, France (e-mail: laura.luzzi@ensea.fr).
R. Vehkalahti is now with the Department of Communications

and Networking, FI-02150, Aalto University, Espoo, Finland (e-mail:
roope.vehkalahti@aalto.fi). While this work was in progress, he was with
the Department of Mathematics and Statistics, FI-20014, University of Turku,
Finland.

The research of R. Vehkalahti was funded by Academy of Finland grants
#252457, #283135 and #299916 and by the Finnish Cultural Foundation.

log SNR−C rates for some constant gap C. These construc-
tions are based on a rich theory of lattice codes developed
to attack these questions. At the heart of this theory are
sphere packing arguments showing that the performance of a
lattice code in the classical Gaussian channel can be roughly
estimated by the size of a geometrical invariant of the lattice,
the Hermite invariant. In particular the Hermite invariant
can be used to roughly measure how close to capacity a
family of lattices can get. This connection has been extremely
fruitful and has led to a monumental work connecting algebra,
geometry and information theory [6].

In the case of fading channels the situation is quite different.
While it is well-known that space-time lattice codes from
division algebras [7] provide good performance over multiple
antenna fading channels, and a rich algebraic theory has been
developed to optimize specific code designs [8, 9], there are as
yet no results connecting capacity questions and the geometry
of lattices. The minimum determinant criterion [10] allows
to improve the worst-case pairwise error probability in the
high-SNR regime, when coding over a single fading block.
Optimizing this value has been the major concern of several
works in space-time coding [8, 11, 12]. However, no design
criterion has been suggested to approach the MIMO capacity
with explicit lattice codes.

In this paper we address this problem and show that when
we are allowed to encode and decode over a growing number
of fading blocks, the normalized minimum determinant plays
a similar role to the Hermite constant in Gaussian channels.
In particular it can be used to measure how close to capacity
a given family of lattice codes can get.

Based on this design criterion we prove that for a MIMO
channel with n transmit and nr receive antennas, where
nr ≥ n, there exists a family of multi-block lattice codes
Ln,k ⊂ Mn×nk(C), where k goes to infinity, that achieves
a constant gap to capacity both in the Gaussian MIMO case
and ergodic fading case. More precisely, consider an ergodic
fading MIMO channel with channel matrix H ∈ Mnr×n(C),
and whose capacity is C = EH

[
log det(Inr + SNR

n H†H)
]
.

Then our scheme achieves any rate

R < EH
[
log det

SNR

n
H†H

]
− n logCL − n log

4n

πe
, (1)

where CL is a certain geometric invariant of the family of
lattices. Note that while the gap to capacity is independent
of the SNR, it does depend on n and also on the channel
statistics.

These rates are achieved not only with maximum likeli-
hood (ML) decoding, but also with naive lattice decoding as
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long as nr ≥ n. Furthermore, the same scheme achieves
positive rates of reliable communication for more general
fading processes {Hi} under the mild hypothesis that the
weak law of large numbers holds for the sequence of random
variables {log detH†iHi}. As far as we know, this is the first
non-random coding scheme which achieves constant gap to
capacity for all SNR levels in ergodic MIMO channels.

Instead of using random coding arguments we consider
algebraic multi-block division algebra codes introduced in
[13, 14, 15], and developed further in [16] and [17]. We use
the most general form presented in [18].
We derive the existence of multi-block codes with special
properties from two classical results from class field theory.
First we choose the center K of the algebra from a tower of
Hilbert class fields having constant root discriminant [19], and
then we prove the existence of a K-central division algebra
with small discriminant. Unfortunately, while the family of
codes in question is well-defined and deterministic, the best
known algorithms to compute Hilbert class fields of arbitrary
number fields [20, 21] have very high computational com-
plexity, and thus our construction cannot be made explicit at
present.

In most works on algebraic space-time coding the code
design criterion is derived from an upper bound for the
pairwise error probability [10] together with the union bound
[22, 23]. In our proofs we abandon this method and consider
a hard sphere packing approach, classically used in lattice
coding for the AWGN channel. The idea, formalized in Section
III, is to exploit the special multiplicative structure of algebraic
codes. It was observed in the context of diversity-multiplexing
gain trade-off (DMT) analysis [9, 24], that for codes based on
division algebras having the so-called non-vanishing determi-
nant property, fading has a diminishing effect on the Euclidean
distance of the received constellations only if the channel itself
is bad. This property was formalized in [24], where the authors
introduced approximately universal codes for fading channels.
Our main results Theorem 4.1 and Theorem 4.7 rely on this
“incompressibility” property of algebraic lattices. It follows
that our codes are almost universal and perform within a
constant gap to capacity for a wide class of channels, having
only mild restrictions on fading.

While we discuss specific lattice codes from division alge-
bras, our proofs do work for any ensemble of matrix lattices
with asymptotically good normalized minimum determinant.
The larger this value is, the smaller the gap to the capacity.

This work also suggests that capacity questions in fading
channels are naturally linked to problems in the mathematical
research area of geometry of numbers. Unlike the single
antenna Gaussian case, many of the questions that arise have
not been actively studied by the mathematical community.
Hopefully, studying such questions may lead to a comprehen-
sive geometric theory of lattices for multiple antenna fading
channels.

We note that the proposed lattice code constructions are not
yet practical, since they are based on number fields whose
existence is proved through class field theory. Given a fixed
degree, the required number fields can be found using compu-
tational algebra software, but this process is computationally

taxing. Decoding of the proposed codes is also very complex
and the constructions we provide still have a large gap to
capacity.

On the other side, as demonstrated in Section VIII, the
existence results we use are very pessimistic. For small degrees
the normalized minimum determinants of the best possible
lattices are considerably better than the bounds provided by
our existence results.

A. Related work

While our work shows that one can achieve a constant gap
to capacity in ergodic MIMO channels with a fixed family
of algebraic codes, it is natural to consider the more general
question of whether it is possible to achieve capacity with
any lattice codes. Such a result would be a generalization
of the work in [25, 26, 27] which proved the existence of
random lattice code ensembles achieving rate log(SNR) over
the AWGN channel. By making the extra assumption that the
transmitter and receiver have access to a common source of
randomness in the form of a dither, the authors in [28] finally
proved that the AWGN capacity is achievable with random
lattice codes. An explicit multilevel construction from polar
codes was recently proposed in [29].

As far as we know our work [2] was the first to give a
proof that lattice codes achieve a constant gap to capacity in
ergodic fading MIMO channels in the symmetric case where
n = nr. In the single antenna fast fading channel this problem
was considered before in [30], which claims that random
lattices achieve a constant gap to capacity. In [31] the authors
extend their previous results and claim to give a proof that
random lattices achieve capacity in single antenna ergodic
fading channels. However, we believe that at least in its current
form, the analysis in both works is missing some fundamental
details. In particular, the gap ∆ < 1 + logEh

[
1/|h|2

]
, given

in [30, Theorem 3], is infinite even when the fading process
{hi} is i.i.d. complex Gaussian. In [31, Equation (20)] the
authors state that for a given fixed fading realization, the
Minkowski-Hlawka theorem implies that there exists a lattice
for which the error probability is upper bounded in a certain
way. However, they proceed as if there existed a single lattice
that would satisfy this upper bound for any channel state. To
the best of our knowledge, such a result cannot be derived
from Minkowski-Hlawka.

While the main focus of our work is on the ergodic MIMO
channel, in Section V-A we also consider deterministic MIMO
channels. This work has at least two predecessors.

In [32, Theorem 3] the authors proved that for a given
deterministic channel matrix H there exist lattice codes that
achieve a constant gap to capacity. This corresponds to the
deterministic model or “channel model 1” in Telatar’s paper
[3, page 2]. However, in their work the chosen code did depend
on the channel matrix H . The authors in [33] went further and
proved the existence of lattice codes that achieve a constant
gap to capacity for a set of channels with the same white-
input capacity. This corresponds to the “channel model 3” in
[3]. Here the channel is random, but stays fixed during the time
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of transmission. Our results in Section V-A are somewhere in-
between these two works. We have a single family of codes
which achieves a constant gap to capacity for all fixed channels
H , but the size of the gap does depend on H .

We point out that our results for the deterministic channel
are simply side results and the main focus of this paper is on
the block version of the ergodic channel model 2 in [3]. As
far as we can see the approach in [32] or in [33] can not be
straightforwardly extended to this model.

As far as explicit algebraic constructions are concerned, our
work is indebted to several previous papers.
The idea to use division algebra codes to achieve capacity
can be tracked down to the work of H.-f. Lu in [14]. While
studying the diversity-multiplexing gain tradeoff (DMT) of
multi-block codes he conjectured that the ensemble of multi-
block division algebra codes might approach the ergodic
Rayleigh fading capacity. Our work confirms that conjecture;
however, we point out that it is unlikely that DMT-optimality
alone is enough to approach capacity. Instead one should
pick the code very carefully by maximizing the normalized
minimum determinant.

The families of number fields on which our constructions
are based were first brought to coding theory in [34], where
the authors pointed out that the corresponding lattices have
large Hermite constant. C. Xing in [35] remarked that these
families of number fields provide the best known normalized
product distance making them a natural candidate for achiev-
ing constant gap to capacity in fading single antenna channels.

Our geometry of numbers approach has its roots in [36],
where the authors studied lattice codes in single antenna fading
channels and defined the normalized product distance. They
also pointed out that using this criterion reduces the lattice
design to a problem in geometry of numbers.

The generalization of these ideas to the MIMO channel
was developed in [8] and [37], where the code design for
quasi-static MIMO channel problem was translated into lattice
theoretic language and where a formal definition of normalized
minimum determinant was given. However, none of these
works considered the relation between geometry of numbers
and capacity problems.

Recent results: Since the initial submission of this paper,
there have been several advances on the topic. In a revised
version of [38, Section 4.5], S. Vituri gave a proof of existence
of lattice codes achieving a constant gap to capacity for ergodic
SISO channels. It appears that with minor modifications this
proof implies the existence of capacity-achieving lattices. In
[39] the authors prove that polar lattices achieve capacity in
i.i.d fading channels. This is not only an existence result,
but provides an explicit low-complexity code construction as
well. In [40] the authors prove the existence of lattice codes
achieving capacity in the compound SISO channel, where the
fading is random during the first s time units, but then gets
repeated in blocks of length s. This work is most closely
related to [33].

B. Organization of the paper
In Section II we introduce the multi-block channel model

and recall the relevant properties of lattice codes. In Section

III-A we develop a geometric design criterion for capacity
approaching lattice codes for fading multiple antenna channels
and define the concept of reduced Hermite invariant which is
an analogue of the classical Hermite invariant. In Section III-B
we state the existence of lattices having asymptotically good
normalized minimum determinant (the proof will be given in
Section VII). In Section IV we prove that the lattice codes of
the previous section achieve positive rates over a very general
class of channels. We then prove that they achieve a constant
gap to capacity over Gaussian MIMO channels (Section V-A)
and ergodic fading channels (Section V-B). In Section VI we
focus on the i.i.d. Rayleigh fading channel model, and show
that the error probability vanishes exponentially. In Section
VII we prove the existence of asymptotically good lattices,
and in Section VIII we specialize our results to the single
antenna case. Finally in Section IX we explore the connection
between capacity questions in fading channels and geometry
of numbers. Section X discusses some perspectives and open
problems.

C. Notation

Throughout the paper, capacity is measured in bits. Ac-
cordingly, we denote by log the base 2 logarithm in rate and
capacity expressions; the natural logarithm will be denoted by
ln.

II. MULTIBLOCK LATTICE CODES

A. Channel model

We consider a MIMO system with n transmit and nr receive
antennas, where transmission takes place over k quasi-static
fading blocks of delay T = n. Each multi-block codeword
X ∈ Mn×nk(C) has the form [X1, X2, . . . , Xk], where the
submatrix Xi ∈ Mn(C) is sent during the i-th block. The
received signals are given by

Yi = HiXi +Wi, i ∈ {1, . . . , k} (2)

where Hi ∈Mnr×n(C) and Wi ∈Mnr×n(C) are the channel
and noise matrices. The coefficients of Wi are modeled as
circular symmetric complex Gaussian with zero mean and unit
variance per complex dimension. Perfect channel state infor-
mation is available at the receiver but not at the transmitter, and
decoding is performed after all k blocks have been received.
We will call such a channel an (n, nr, k)-multi-block channel.
For the sake of simplicity, in the rest of the paper we will
suppose that nr ≥ n unless explicitly stated otherwise. We also
assume that for all i ≥ 1, Hi ∈Mnr×n is full-rank with prob-
ability 1, and that the random variable

∑k
i=1

1
k log det(H†iHi)

converges in probability to some constant when the number of
blocks k tends to infinity. This channel model covers several
standard MIMO channels such as the Rayleigh block fading
channel and the Gaussian MIMO channel.

A multi-block code C in a (n, nr, k)-channel is a set of
matrices in Mn×nk(C). In particular we will concentrate on
finite codes that are drawn from lattices. Let R denote the
code rate in bits per complex channel use; equivalently, |C| =
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2Rkn. We assume that every matrix X in a finite code C ⊂
Mn×nk(C) satisfies the average power constraint

1

nk
E[‖X‖2] ≤ P, (3)

where ‖X‖ is the Frobenius norm of the matrix X .

B. Lattice codes

Given a nonzero matrix B ∈ Mn(C), we use the notation
ZB for the one-dimensional Z-module generated by B. Given
two Z-modules V and V ′, we denote their direct sum by V ⊕
V ′.

Definition 2.1: A matrix lattice L ⊆ Mn×nk(C) has the
form

L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBm,

where the matrices B1, . . . , Bm ∈ Mn×n(C) are linearly
independent over R, i.e., form a lattice basis, and m is called
the rank or the dimension of the lattice.

The space Mn×nk(C) is a 2n2k-dimensional real vector
space with a real inner product

〈X,Y 〉 = <(tr(XY †)),

where tr is the matrix trace. This inner product also naturally
defines a metric on the space Mn×nk(C) by setting ||X|| =√
〈X,X〉.
Given an m dimensional lattice L ⊂ Mn×nk(C), its Gram

matrix is defined as

G(L) = (〈Bi, Bj〉)1≤i,j≤m ,

where {Bi}1≤i≤m is a basis of L. The volume of the fun-
damental parallelotope of L is then defined as Vol(L) =√
|det(G(L))|.
In the following we will use the notation R(L) for the linear

space generated by the basis elements of the lattice L.
Lemma 2.2: [41] Let us suppose that L is a lattice in

Mn×kn(C) and S is a Jordan measurable bounded subset of
R(L). Then there exists X ∈Mn×kn(C) such that

|(L+X) ∩ S| ≥ Vol(S)

Vol(L)
.

Given a family of lattices Ln,k ⊆ Mn×nk(C), let us now
show how we can design multi-block codes C having rate
greater or equal to a prescribed constant R, and satisfying
the average power constraint (3), from a scaled version αLn,k
of the lattices, where α is a suitable energy normalization
constant. We denote by B(r) the set of matrices in Mn×nk(C)
with Frobenius norm smaller or equal to r. According to
Lemma 2.2, we can choose a constant shift XR ∈Mn×nk(C)
such that for C = B(

√
Pkn) ∩ (XR + αLn,k) we have

2Rnk = |C| ≥ Vol(B(
√
Pkn))

Vol(αLn,k)
=

Cn,kP
n2k

α2n2k Vol(Ln,k)
,

where Cn,k = (πnk)n
2k

(n2k)! . We then find the following condition
for the scaling constant:

α2 =
C

1
n2k

n,k P

2
R
n Vol(Ln,k)

1
n2k

(4)

III. DESIGN CRITERIA FOR FADING CHANNELS

In this section we propose a new design criterion for
capacity approaching lattice codes in fading channels. We note
that the design criterion derived here will finally be the familiar
minimum determinant criterion. However, we hope that our
alternative characterization offers more insight on the topic
and can have applications in further research.

A. Reduced Hermite invariant

We recall the classical definition of the Hermite invariant,
which characterizes the density of a lattice packing:

Definition 3.1: The Hermite invariant of an m-dimensional
lattice L ⊂Mn×nk(C) can be defined as

h(L) =
inf{ ||X||2 | X ∈ L,X 6= 0}

Vol(L)2/m
.

On the n× n MIMO Gaussian channel such that the channel
matrices Hi = In ∀i, the classical sphere packing approach is
to choose a 2n2k-dimensional lattice code Ln,k ⊂Mn×nk(C)
such that h(Ln,k) is as large as possible.

Let us now assume that we have a finite code CL ⊂
Ln,k ⊂ Mn×nk(C). We define the following notation for
componentwise multiplication of multi-block matrices: given
X = [X1, . . . , Xk] and H = [H1, . . . ,Hk] ∈Mn×nk(C),

H ∗X + [H1X1, . . . ,HkXk]. (5)

With this notation, the channel output Y = [Y1, . . . , Yk] can
be written as

Y = H ∗X +W, (6)

where X = [X1, . . . , Xk] is the transmitted multi-block code-
word, H = [H1, . . . ,Hk] is the random channel realization
and W = [W1, . . . ,Wk] is the multi-block noise. From the
receiver’s point of view, this is equivalent to an additive white
Gaussian noise channel where the lattice code is

H ∗ CL = {H ∗X | X ∈ CL}.

Even if the lattice Ln,k (and therefore the code CL) has good
minimum distance, there is no guarantee that the same can be
said about the lattice H ∗CL. This leads us to consider matrix
lattices Ln,k ⊂Mn×nk(C) which would have good minimum
distance after any (reasonable) channel. If we assume that each
of the matrices Hi in equation (2) has full rank with probability
1, then the multiplication X 7→ H ∗ X is a bijective linear
mapping with probability 1. For any lattice Ln,k ⊂Mn×nk(C)
having basis B1, . . . , B2n2k we then have that

H ∗ Ln,k = {H ∗X | X ∈ Ln,k}
= Z(H ∗B1)⊕ · · · ⊕ Z(H ∗B2n2k),

is a lattice with basis {H ∗ B1, · · · , H ∗ B2n2k}, and h(H ∗
Ln,k) is well defined.

As a discrete group, H∗Ln,k has positive Hermite invariant,
but even if h(Ln,k) is large there is no guarantee that h(H ∗
Ln,k) is.
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Given a matrix X = [X1, . . . , Xk] ∈Mn×nk(C), we define
its product determinant

pdet(X) =

k∏
i=1

det(Xi). (7)

For convenience we first introduce a group of matrices

G = {H ∈Mn×nk(C) | pdet(H) = 1}. (8)

Definition 3.2: The reduced Hermite invariant of an m-
dimensional lattice L ⊂Mn×nk(C) with respect to the group
G is defined as

rhG(L) = inf
H∈G
{h(H ∗ L)}.

For any lattice L, h(L) > 0. The same is not true for
the reduced Hermite invariant. Let us now describe the set
of lattices L for which rhG(L) > 0.

Definition 3.3: The minimum determinant of the lattice L ⊆
Mn×nk(C) is defined as

detmin (L) := inf
X∈L\{0}

|pdet(X)| .

If detmin (L) > 0 we say that the lattice satisfies the non-
vanishing determinant (NVD) property.

We can now define the normalized minimum determinant
δ(L), which is obtained by first scaling the lattice L to have
a unit size fundamental parallelotope and then taking the
minimum determinant of the resulting scaled lattice. A simple
computation proves the following.

Lemma 3.4: Let L be an m-dimensional matrix lattice in
Mn×nk(C). We then have that

δ(L) =
detmin (L)

(Vol(L))nk/m
. (9)

The normalized minimum determinant provides an alter-
native characterization of the reduced Hermite invariant, but
before that we need a well known lemma.

Lemma 3.5: Let A be an m×m complex matrix. We have
the inequality

|det(A)| ≤ ‖A‖
m

mm/2
.

Proof: Let λi, i = 1, . . . ,m be the eigenvalues of A†A.
By the arithmetic-geometric mean inequality we have

|det(A)|2 = det(A†A) =

m∏
i=1

λi ≤
(∑m

i=1 λi
m

)m
=

(
tr(A†A)

m

)m
=
‖A‖2m

mm
.

For a matrix X ∈Mn×nk(C) this immediately implies that

|pdet(X)| ≤ ‖X‖nk

(nk)nk/2
.

Proposition 3.6: If L ⊂Mn×nk(C) is a 2n2k-dimensional
lattice, then

nk (δ(L))
2/nk

= rhG(L).

Proof: If the lattice L includes a non-zero element X
such that pdet(X) = 0, it is easy to see that nk (δ(L))

2/nk
=

rhG(L) = 0.
Let us now assume that pdet(X) 6= 0, for all X 6= 0. If
pdet(H) = 1, Lemma 3.5 implies that

‖H ∗X‖2 ≥ nk |pdet(H ∗X)|2/nk = nk |pdet(X)|2/nk .

It follows that nk (δ(L))
2/nk ≤ rhG(L).

Let us now assume that we have a sequence of codewords
X(i) ∈ L such that

lim
i→∞

nk|pdet(X(i))|2/nk = nk (δ(L))
2/nk

.

Given X(i) = [X
(i)
1 , . . . , X

(i)
k ], we can choose

H(i) = pdet(X(i))1/nk[(X
(i)
1 )−1, . . . , (X

(i)
k )−1] so that

pdet(H(i)) = 1. We then have

||H(i) ∗X(i)||2 = nk|pdet(X(i))|2/nk

for every i and therefore

lim
i→∞

||H(i) ∗X(i)||2 = nk (δ(L))
2/nk

.

It follows that nk (δ(L))
2/nk

= rhG(L).
Remark 3.7: Our definition of the reduced Hermite invari-

ant rhG depends heavily on the group G. The group chosen
in (8) can be seen as a block diagonal subgroup of SLkn(C).
We could also consider a subgroup G1 ⊂ G and define rhG1

with respect to this group. A natural consequence of these
definitions is that for two subgroups G1, G2 of G such that
G1 ⊆ G2, we have that

rhG1(L) ≥ rhG2(L).

Remark 3.8: While the definition of the reduced Hermite
invariant is very natural, we have found very few previous
works considering similar concepts. The case n = 1 was
considered by Skriganov in [42], where the author also proved
Proposition 3.6 in this special case. Our results can therefore
be seen as a natural generalization of this work. For general
n the authors in [43] defined the Hermite invariant for gen-
eralized ideals in division algebras in the spirit of Arakelov
theory. Their Hermite invariant is analogous to our concept of
reduced Hermite invariant.

B. Asymptotically good families of lattices

Based on the observations in the previous section, we
introduce the following definitions:

Definition 3.9: A sequence of lattices Ln,k is asymptoti-
cally good for the AWGN channel if h(Ln,k) ≥ cn2k, for some
positive fixed constant c. Similarly, a sequence of lattices is
asymptotically good for fading channels if rhG(Ln,k) ≥ cn2k.
As seen in Proposition 3.6, this is equivalent to asking that
δ(Ln,k)2/nk ≥ cn.

We will show in the next sections that these properties
guarantee that the lattice sequences achieve constant gap to
capacity over AWGN and fading channels respectively.
In order to keep the paper suitable for a larger audience we
will postpone the proof of the following existence result to
Section VII.
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Proposition 3.10: Given n, there exists a family of 2n2k-
dimensional lattices Ln,k ⊂ Mn×nk(C), where k grows to
infinity, and a constant G < 92.4 such that

Vol(Ln,k) ≤ 23
kn(n−1)

10

(
G

2

)n2k

detmin(Ln,k) = 1 and δ(Ln,k) ≥ 1

23
k
20 (n−1)(G/2)

nk
2

.

Remark 3.11: In this section we have developed the notion
of reduced Hermite invariant for the case nr = n. We observe
that this notion does not extend to the case nr < n, because the
image H ∗L of an infinite lattice L will no longer be a lattice,
and the minimum distance in H ∗ L will be zero. However,
when considering finite constellations CL, it is still possible
to find suitable lower bounds on the minimum distance of the
received constellation H∗CL, as will be shown in the following
sections.

IV. ACHIEVABLE RATES FOR GENERAL CHANNELS

Suppose that we have an infinite family of lattices Lk ∈ Ck
with Hermite invariants satisfying h(Lk)

k ≥ c, for some positive
constant c. Then a classical result in information theory states
that with this family of lattices, all rates satisfying

R < logP − log

(
4

πe

)
+ log c,

are achievable in the additive complex Gaussian channel [6,
Chapter 3]. This means that we can attach a single number
h(Lk) to each lattice Lk ∈ Ck, which roughly describes
its performance and in particular estimates how close to the
capacity a family of lattices can get. The following theorem
can be seen as an analogue of this result for fading channels.

Theorem 4.1: Suppose that nr ≥ n, and let {Hi}i∈Z be
a fading process such that Hi ∈ Mnr×n is full-rank with
probability 1, and such that the weak law of large numbers
holds for the random variables {log det(H†iHi)}, i.e. ∃µ > 0
such that ∀ε > 0,

lim
k→∞

P

{∣∣∣∣∣1k
k∑
i=1

log det(H†iHi)− µ

∣∣∣∣∣ > ε

}
= 0. (10)

Let Ln,k ⊂ Mn×nk(C) be a family of 2n2k-dimensional
multi-block lattice codes such that

detmin (Ln,k) = 1, and Vol(Ln,k)
1
n2k ≤ CL (11)

for some constant CL > 0. Then, any rate

R < µ+ n

(
logP − log

4n2

πe
− logCL

)
(12)

is achievable using the codes Ln,k both with ML decoding
and naive lattice decoding.

For all the fading processes that satisfy equation (10) with
the same µ we achieve the rate (12) with the same code, hence
our codes achieve in this scenario universally the same rate.
However, as we will see later (Remarks 5.2 and 5.8), the gap
to the capacity of the channel might depend on the fading
process.

Remark 4.2: We note that existence of a family of lattices
with

CL ≤ 23
(n−1)
10n

(
G

2

)
,

was given in Proposition 3.10.
Remark 4.3: This theorem is stated by giving two condi-

tions (11) for the lattices Ln,k. However, according to Lemma
3.4 we could have captured both of these conditions by an
equivalent assumption δ(Ln,k)2/nk ≥ 1

CL
. Proposition 3.6

then transforms this condition to

rhG(Ln,k) = nk (δ(Ln,k))
2/nk ≥ nk

CL
.

As only k is growing, we can further write that rhG(Ln,k) ≥
n2kC ′L, where C ′L = n/CL. We can therefore see that
conditions (11) assure that the family of lattices Ln,k is
asymptotically good in the sense of Section III-B.

The achievable rate R in Theorem 4.1 can then be seen as
a complete analogue to the classical sphere packing result in
AWGN channels.

Remark 4.4: The condition (10) holds in particular for
ergodic stationary fading channels and for constant MIMO
channels. These special cases will be analyzed further in
Section V, where we will show that the codes in Theorem
4.1 achieve a constant gap to channel capacity.

To prove Theorem 4.1, we need the following Lemma:
Lemma 4.5: Consider the finite code C = B(

√
Pkn) ∩

(XR + αLn,k) defined in Section II-B. Suppose that the
receiver performs maximum likelihood decoding or “naive”
lattice decoding (closest point search in the infinite lattice).
Then, under the hypotheses of Theorem 4.1, ∀ε > 0 the error
probability is bounded by

Pe ≤ 2e−
kn2ε2

8 + P
{
α2

4n

k∏
i=1

det(H†iHi)
1
nk < 1 + ε

}
(13)

Proof: We distinguish two cases: the symmetric case
where nr = n, and the asymmetric case with nr > n.

a) Case nr = n: Suppose that X̄ ∈ C is the transmitted
multi-block codeword and that Y = H∗X̄+W is the received
multi-block signal, where we use the notation (5). Here W =
[W1,W2, . . . ,Wk] denotes the multi-block noise. The outputs
of the maximum likelihood (ML) decoder and naive lattice
decoder (NLD) are given respectively by

X̂ML = argmin
X∈C

‖Y −H ∗X‖ ,

X̂NLD = argmin
X∈αLn,k

‖Y −H ∗X‖ .

Let dH denote the minimum Euclidean distance in the received
lattice:

d2
H = min

X,X̄∈Ln,k
X 6=X̄

∥∥H ∗ (X − X̄)
∥∥2

= min
X,X̄∈Ln,k
X 6=X̄

k∑
i=1

∥∥Hi(Xi − X̄i)
∥∥2
.
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We note that if ‖W‖ < dH/2, then both decoders will output
the correct codeword X̄ . In fact, under this assumption, ∀X ∈
αLn,k such that X 6= X̄ we have

‖W‖ =
∥∥Y −H ∗ X̄∥∥ < 1

2

∥∥H ∗ (X̄ −X)
∥∥

≤ 1

2

∥∥Y −H ∗ X̄∥∥+
1

2
‖Y −H ∗X‖

and so
∥∥Y −H ∗ X̄∥∥ < ‖Y −H ∗X‖. Thus for both de-

coders the error probability is bounded by

Pe ≤ P

{
‖W‖2 ≥

(
dH
2

)2
}
.

By the law of total probability, ∀ε > 0 we have

Pe ≤ P

{
‖W‖2

kn2
≥ 1 + ε

}
+ P

{
d2
H

4kn2
< 1 + ε

}
. (14)

Note that 2 ‖W‖2 ∼ χ2(2kn2), and the tail of the chi-square
distribution is bounded as follows for ε ∈ (0, 1) [44]:

P

{
‖W‖2

kn2
≥ 1 + ε

}
≤ 2e−

kn2ε2

8 . (15)

Thus, the first term in equation (14) vanishes exponentially
fast as k →∞.
In order to provide an upper bound for the second term,
we consider a lower bound for the minimum distance in the
received lattice. We have

d2
H ≥ α2nk min

X∈Ln,k\{0}

k∏
i=1

|det(HiXi)|
2
nk

≥ α2nk

k∏
i=1

|det(Hi)|
2
nk ,

where the first bound comes from Lemma 3.5 and the second
from the hypothesis that detmin (Ln,k) = 1. Therefore, the
second term in (14) is upper bounded by

P
{
α2

4n

k∏
i=1

|det(Hi)|
2
nk < 1 + ε

}
. (16)

b) Case nr > n: In this case, the lattice H ∗ Ln,k is
2n2k-dimensional but is contained in a 2nrnk-dimensional
space. For all i = 1, . . . , k, consider the QR decomposition

Hi = QiRi, Qi ∈Mnr×nr(C), Ri ∈Mnr×n(C),

where Qi is unitary and Ri is upper triangular. We have Qi =
[Q′i Q

′′
i ], where Q′i ∈ Mnr×n(C) is such that (Q′i)

†Q′i = In,

and Ri =

[
R′i
0

]
, with R′i ∈ Mn(C) upper triangular. Note

that the “thin” QR decomposition Hi = Q′iR
′
i also holds.

Multiplying the channel equation (2) by Q†i , we obtain the
equivalent system

Ỹi = Q†iYi = RiXi +Q†iWi

for all i = 1, . . . , k. Note that

Ỹi =

[
Y ′i
Y ′′i

]
=

[
R′iXi + (Q′i)

†Wi

(Q′′i )†Wi

]
.

Thus, the second component contains only noise and no
information. The output of the naive lattice decoder can be
written as

X̂NLD = argmin
X′∈αLn,k

k∑
i=1

‖Yi −HiX
′
i‖

2

= argmin
X′∈αLn,k

k∑
i=1

∥∥∥Ỹi −RiX ′i∥∥∥2

= argmin
X′∈αLn,k

k∑
i=1

(
‖Y ′i −R′iX ′i‖

2
+
∥∥(Q′′i )†Wi

∥∥2
)

= argmin
X′∈αLn,k

k∑
i=1

‖Y ′i −R′iX ′i‖
2
,

since the second component does not depend on the lattice
point X ′. Thus, the naive lattice decoder for the original
system declares an error if and only if the naive lattice decoder
for the (n, n, k) multi-block system with components

Y ′i = R′iXi + (Q′i)
†Wi = R′iXi +W ′i

does. (Note that W ′i = (Q′i)
†Wi is an n × n matrix with

i.i.d. Gaussian entries of variance 1 per complex dimension.)
A similar reasoning holds for the ML decoder.

Let dR′ be the minimum distance in the 2n2k-dimensional
lattice generated by R′ = [R′1, . . . , R

′
k]:

dR′ = min
X,X̄∈αLn,k

X 6=X̄

k∑
i=1

∥∥R′i(Xi − X̄i)
∥∥2
.

Observe that ∀i = 1, . . . , k,∥∥Hi(Xi − X̄i)
∥∥2

=
∥∥Q′iR′i(Xi − X̄i)

∥∥2
=
∥∥R′i(Xi − X̄i)

∥∥2

Thus, dH = d′R. Moreover, det(H†iHi) = det((R′i)
†R′i) =

|det(R′i)|
2. Similarly to the symmetric case, the error proba-

bility of the naive lattice decoder and of the ML decoder can
be bounded by

Pe ≤ P

{
‖W ′‖2 ≥

(
dR′

2

)2
}
,

where W ′ = [W ′1, . . . ,W
′
k]. We can write

d2
R′ ≥ α2nk

k∏
i=1

|det(R′i)|
2
nk = α2nk

k∏
i=1

det(H†iHi)
1
nk .

The proof then follows exactly the same steps as in the
symmetric case.

Proof of Theorem 4.1: The second term in (13) can be
rewritten as

P

{
1

k

k∑
i=1

1

n
log det(H†iHi) < log

(
4n(1 + ε)

α2

)}
,

and will vanish as long as

log

(
4n(1 + ε)

α2

)
<
µ

n
.
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Recalling that the normalization constant α2 in equation (4)
satisfies

α2 ≥
C

1/n2k
n,k P

2R/nCL

under the hypothesis that Vol(Ln,k)
1
n2k ≤ CL, a sufficient

condition to have vanishing error probability is

R

n
< logP +

µ

n
− log(4n(1 + ε))− logCL +

1

n2k
logCn,k

From Stirling’s approximation, for large k we have

(Cn,k)
1
n2k ≈ πe/(n(2πn2k)

1
2n2k ). (17)

Since 1
2nk log 2πn2k → 0 when k →∞, any rate

R < µ+n(logP − log(4n(1 + ε))− logCL + log πe− log n)

is achievable. This holds ∀ε > 0, and concludes the proof.
Remark 4.6: The two-sided convergence in probability in

equation (10) is actually not required in the proof of Theorem
4.1. The theorem still holds provided that ∀ε > 0,

lim
k→∞

P

{
µ− 1

k

k∑
i=1

log det(H†iHi) > ε

}
= 0. (18)

Moreover, if we have exponentially fast convergence in (18),
then the error probability Pe also vanishes exponentially fast
when k →∞.

As a final remark, we note that for the ML decoder we can
prove an analogue of Theorem 4.1 also in the case nr < n,
although the bound on achievable rates is more involved:

Theorem 4.7: Suppose that nr < n, and let {Hi}i∈Z be
a fading process such that Hi ∈ Mnr×n is full-rank with
probability 1. Suppose that the weak law of large numbers
holds for the random variables log det(HiH

†
i ), i.e. ∃µ > 0

such that ∀ε > 0,

lim
k→∞

P

{∣∣∣∣∣1k
k∑
i=1

log det(HiH
†
i )− µ

∣∣∣∣∣ > ε

}
= 0. (19)

Let Ln,k ⊂ Mn×nk(C) be a family of 2n2k-dimensional
multi-block lattice codes satisfying (11). Then, any rate

R < µ+nr(logP −1)+(n−nr) log(n−nr)−n log
2n2CL
πe

is achievable using the codes Ln,k with ML decoding.
We remark that the result does not extend to the naive lattice

decoder. The proof of Theorem 4.7 can be found in Appendix
A.

V. ACHIEVING CONSTANT GAP TO CAPACITY FOR
GAUSSIAN MIMO CHANNELS AND ERGODIC CHANNELS

A. Gaussian MIMO channel

We now consider a deterministic model, where Hi = H
is constant. When H is known both at the transmitter and
receiver, the channel capacity is given by [3]

C(P ) = max
Qx≥0,tr(Qx)≤P

log det(Inr +HQxH
†), (20)

where Qx is the covariance matrix of the input x for a single
channel use.

However, if the channel is known at the receiver but not at the
transmitter, the transmitter cannot use optimal power allocation
and waterfilling, and can only achieve the white-input capacity
corresponding to uniform power allocation Qx = P

n In:

CWI = log det

(
Inr +

P

n
HH†

)
= log det

(
In +

P

n
H†H

)
.

This is for example the case for an open-loop broadcast
channel where the transmitter cannot perform rate adaptation
for all the users.
Clearly, Theorems 4.1 and 4.7 apply to the deterministic
channel scenario since the law of large numbers holds. More-
over, the convergence of the error probability to zero will be
exponential, since the second term in equation (13) is actually
zero. The following corollary then shows that a constant gap
to white-input capacity is achievable:

Corollary 5.1: Consider a deterministic channel such that
Hi = H for all i ≥ 1, and let Ln,k ⊂ Mn×nk(C) be a
family of 2n2k-dimensional multi-block lattice codes such that
detmin (Ln,k) = 1 and Vol(Ln,k)

1
n2k ≤ CL. Then, this coding

scheme can achieve any rate

R < log det
P

n
H†H − n logCL − n log

4n

πe

if nr ≥ n, and any rate

R < log det
P

n
HH†−2nr−(n−nr) log

n

n− nr
−n log

nCL
πe

if nr < n.
Remark 5.2: In the case nr ≥ n, let λi, i = 1, . . . , n

be the singular values of H . Then the channel capacity can
be written as C(P ) =

∑n
i=1 log

(
1 + P

n λi
)
. The previous

corollary shows that the achievable rate is of the form

R(P ) = max

(
0, log det

P

n
H†H − c

)
for some constant c > 0. Let Pmin be the smallest value of P
such that R(P ) > 0 if P > Pmin. Then, for P ≤ Pmin we have
that C(P )−R(P ) = C(P ) ≤ C(Pmin), while for P > Pmin,
C(P )−R(P ) =

∑n
i=1 log

(
1 + n

Pλi

)
+ c which is a strictly

decreasing function of P and tends to c when P →∞. Thus,
for all P > 0 we have that C(P ) − R(P ) ≤ C(Pmin). This
shows that the gap is bounded by a constant for all SNR,
however the value of Pmin and therefore the constant depends
on the channel H . As a consequence, the supremum of the
gap over all deterministic channels H is not bounded. This is
an artifact of the spherical shaping technique which incurs the
loss of “+1” in the capacity formula.
A similar argument holds for nr < n.

Example 5.3 (AWGN channel): It follows from Corollary
5.1 that any rate

R < logP − log
2G

πe
(21)

is achievable with the proposed scheme on the single antenna
AWGN channel. In this case, we have Pmin = 2G

πe = 21.63
(or equivalently, 13.35 dB). The maximum gap to capacity is
C(Pmin) = log(1 +Pmin) ≈ 4.50 bits. The achievable rate as
a function of SNR (in dB) is plotted in Figure 1.
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Fig. 1. Achievable rate on a single-antenna AWGN channel.

Similarly, one can compute the penalty in dB which is incurred
when using the proposed scheme compared to a capacity-
achieving scheme. To obtain a rate C(P ) with our scheme,
we need power Peq such that log(1 +P ) = logPeq − log 2G

πe ,
or equivalently Peq = (1 + P ) 2G

πe . The penalty Peq(dB) −
P (dB) = 10 log10

(
2G
πe

(
1 + 1

P

))
is a strictly decreasing

function of P , and is equal to 16.36 dB for P (dB) = 0 dB.
When P →∞, the penalty tends to 10 log10( 2G

πe ) = 13.35 dB.

B. Stationary ergodic channels

We now specialize the results of Section IV to the case
where the fading process {Hi} is ergodic and stationary. For
the sake of completeness, we review the relevant definitions
here.

Let I be the set Z or N, and consider a random process
XI = {Xi}i∈I on a probability space (Ω,B,P) where each
random variable Xi takes values in a separable Banach space
X . The sequence space (X I ,B(X I)) with the Borel sigma-
algebra inherits a probability measure mX from the underlying
probability space, defined by

mX(A) = P
{
ω : XI(ω) ∈ A

}
∀A ∈ B(X I). (22)

Definition 5.4: The process {Xi} is called stationary
if ∀t, k ∈ N, ∀i1, i2, . . . , ik ∈ I, the joint distri-
bution of (Xi1 , Xi2 , . . . , Xik) is the same as that of
(Xi1+t, Xi2+t, . . . , Xik+t).

In this case it is well-known [45, p. 494] that the measure
mX is invariant with respect to the shift map T : X I → X I
such that T ({xi}) = {xi+1}.

Definition 5.5: The process {Xi} is called ergodic if ∀A ∈
B(X I) such that T−1(A) = A, we have that mX(A) is equal
to 0 or 1.

We now go back to the channel model (2). For the sake of
simplicity, we suppose that nr ≥ n. If the fading process {Hi}
is stationary and ergodic, it is not hard to see that the random
process {Xi} =

{
log det(H†iHi)

}
taking values in X = R

is also stationary and ergodic, and the shift T : RI → RI
preserves the measure mX defined in (22).

For an ergodic process such that the shift T is measure-
preserving, Birkhoff’s theorem [46] guarantees that for any
f ∈ L1(X I ,B(X I),mX), the sample means with respect to
f converge almost everywhere: for almost all {xi} ∈ X I ,

lim
k→∞

1

k

k∑
n=1

f(Tn({xi})) =

∫
XI

fdmX . (23)

In particular, the projection Π : RI → R on the first coordinate
is L1 according to the image measure mX if and only if
E
[∣∣log detH†H

∣∣] < ∞. Under this hypothesis, Birkhoff’s
theorem implies the law of large numbers:

lim
k→∞

1

k

k∑
i=1

Xi =

∫
RI

Π({xi})dmX({xi}) =

∫
Ω

Π ◦XIdP

=

∫
Ω

X1dP = E[X] a.e. (24)

In other words,

lim
k→∞

1

k

k∑
i=1

log det(H†iHi) = EH
[
log det(H†H)

]
(25)

almost everywhere.
In the ergodic stationary case, it is well-known [3, 47] that the
ergodic capacity of the channel is well-defined and does not
depend on the channel correlation with respect to time, but
only on its first order statistics. Given a power constraint P in
equation (3), the ergodic capacity (per channel use) is equal
to

C(P ) = max
Qx≥0,tr(Qx)≤P

EH
[
log det(Inr +HQxH

†)
]
,

where H is a random matrix with the same first-order distri-
bution of the process {Hi}, which is independent of time by
stationarity, and Qx is the covariance matrix of the input x
for one channel use1.
If we suppose that the channel is isotropically invariant, i.e.
the distribution of H is invariant under right multiplication by
unitary matrices, then under the assumption of no CSI at the
transmitter, the optimal input covariance matrix is Qx = P

n In
[3] and we have

C(P ) = EH
[
log det

(
Inr +

P

n
HH†

)]
.

Since det(Inr + P
nHH

†) = det(In + P
nH
†H), we can also

write
C(P ) = EH

[
log det

(
In +

P

n
H†H

)]
.

The following Corollary to Theorem 4.1 shows that in this
case, the proposed multi-block codes can achieve a constant
gap to ergodic capacity.

Corollary 5.6: Suppose that nr ≥ n and that the fad-
ing process {Hi} is ergodic, stationary and isotropically
invariant. Moreover, suppose that E

[∣∣log detH†H
∣∣] < ∞.

Let Ln,k ⊂ Mn×nk(C) be a family of 2n2k-dimensional

1We note that the capacity (per channel use) of the block fading MIMO
channel of finite block length T with perfect channel state information at the
receiver is independent of T [48, eq. (9)]. So the previous result still holds
in the multi-block case.
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multi-block lattice codes such that detmin (Ln,k) = 1 and
Vol(Ln,k)

1
n2k ≤ CL. Then, any rate

R < EH
[
log det

P

n
H†H

]
− n logCL − n log

4n

πe

is achievable using the codes Ln,k both with ML decoding
and naive lattice decoding.

Proof: From equation (25), we have that the hypotheses
of Theorem 4.1 are satisfied (actually, only the weak law of
large numbers was required). Consequently, any rate

R < n logP + EH
[
log detH†H

]
− n logCL − n log

4n2

πe

= log

(
P

n

)n
+ EH

[
log detH†H

]
− n logCL − n log

4n

πe

= EH
[
log det

P

n
H†H

]
− n logCL − n log

4n

πe

is achievable.
A similar corollary to Theorem 4.7 holds in the case nr < n:

Corollary 5.7: Suppose that nr < n and that the fad-
ing process {Hi} is ergodic, stationary and isotropically
invariant. Moreover, suppose that E

[∣∣log detHH†
∣∣] < ∞.

Let Ln,k ⊂ Mn×nk(C) be a family of 2n2k-dimensional
multi-block lattice codes such that detmin (Ln,k) = 1 and
Vol(Ln,k)

1
n2k ≤ CL. Then, any rate R lower than

EH
[

log det
P

n
HH†

]
−2nr−(n−nr) log

n

n− nr
−n log

nCL
πe

is achievable using the codes Ln,k with ML decoding.
Remark 5.8: Using the same argument as in Remark 5.2,

we can show that the achievable rate is within a constant
gap from capacity, although this constant will depend on the
channel statistics.
Under the hypothesis EH

[∣∣log detH†H
∣∣], we have∣∣EH [log detH†H

]∣∣ < ∞. The achievable rate is of
the form R(P ) = max

(
0, n log P

n + EH [log detH†H]− c
)

for some constant c > 0. Let Pmin be the smallest value of
P such that R(P ) > 0 if P > Pmin. For P ≤ Pmin we have
that C(P )−R(P ) = C(P ) ≤ C(Pmin).
Let λi, i = 1, . . . , n be the (random) singular values of H . For
P > Pmin, C(P ) − R(P ) =

∑n
i=1 EH

[
log
(

1 + n
Pλi

)]
+ c

which is a strictly decreasing function of P and tends to c
when P →∞. This shows that the gap is uniformly bounded
by a constant which depends on the channel statistics.

VI. ACHIEVABLE RATES AND ERROR PROBABILITY
BOUNDS FOR I.I.D. RAYLEIGH FADING CHANNELS

We now suppose that the entries of Hi are i.i.d. circular
symmetric complex Gaussian with zero mean and unit variance
per complex dimension, and that the fading blocks Hi are
independent. In this case, the achievable rate can be computed
explicitly, and we can prove that the error probability vanishes
exponentially fast.
Let ψ(x) = d

dx ln Γ(x) denote the Digamma function. Then
we have the following:

Proposition 6.1: Let Ln,k ⊂ Mn×nk(C) be a family
of 2n2k-dimensional multi-block lattice codes such that

detmin (Ln,k) = 1 and Vol(Ln,k)
1
n2k ≤ CL. Then, over the

(n, nr, k) multi-block channel, these codes achieve any rate

R < EH
[
log det

P

n
H†H

]
− n logCL − n log

4n

πe
,

where

EH
[
log det

P

n
H†H

]
= n log

P

n
e

1
n

nr∑
i=nr−n+1

ψ(i)

. (26)

Moreover, the error probability vanishes exponentially fast.
Proof of Proposition 6.1: The first statement follows

from Corollary 5.6. The next step is to prove equation (26). It
is well-known [49, 50] that if H is an nr×n matrix with i.i.d.
complex Gaussian entries having variance per real dimension
1/2, the random variable det(H†H), corresponding to the
determinant of the Wishart matrix H†H , is distributed as the
product

Vn,nr = Znr−n+1Znr−n+2 · · ·Znr
of n independent variables, such that ∀j = nr−n+1, . . . , nr,
2Zj is a chi square random variable with 2j degrees of
freedom. The density of Zj is pZj (x) = xj−1e−x

Γ(j) . We have

E[lnZj ] =
1

Γ(j)

∫ ∞
0

xj−1e−x lnx dx = ψ(j),

Mn,nr = E[lnVn,nr ] =

nr∑
j=nr−n+1

ψ(j) = EH
[
ln detH†H

]
.

Then if we consider the base 2 logarithm, we find

EH
[
log detH†H

]
= E[log Vn,nr ] =

Mn,nr

ln 2

=

∑nr
j=nr−n+1 ψ(j)

ln 2
= n log e

1
n

∑nr
j=nr−n+1 ψ(j)

which concludes the proof of equation (26).
In order to show that the error probability converges exponen-
tially fast, by Remark 4.6 it is enough to show that we have
exponential convergence in equation (18).
Consider a sequence of i.i.d. random variables lnV

(i)
n,nr , i =

1, . . . , k, with the same distribution as lnVn,nr . Using the
Chernoff bound [51], given δ > 0, ∀v > 0 we have

P

{
Mn,nr

ln 2
− 1

k

k∑
i=1

log detH†iHi ≥
δ

ln 2

}

= P

{
Mn,nr −

1

k

k∑
i=1

ln detH†iHi ≥ δ

}

= P

{
Mn,nr −

1

k

k∑
i=1

lnV (i)
n,nr ≥ δ

}
≤ ekv(Mn,nr−δ)

(
E[e−v lnVn,nr ]

)k
(27)

The tightest bound in (27) is obtained for vδ such that

E[− lnVn,nre
−vδ lnVn,nr ] = (δ −Mn,nr )E[e−vδ lnVn,nr ].

Observe that

E[Z−vj ] =
1

Γ(j)

∫ ∞
0

xj−1−ve−xdx =
Γ(j − v)

Γ(j)
, (28)
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Fig. 2. Achievable rate and channel capacity for the single antenna i.i.d.
Rayleigh fading channel.
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Fig. 3. Achievable rate and channel capacity for the 2× 2 MIMO i.i.d.
Rayleigh fading channel.

E[Z−vj lnZj ] =
1

Γ(j)

∫ ∞
0

xj−1−ve−x lnx dx

=
Γ(j − v)

Γ(j)
ψ(j − v). (29)

Thus we find

E
[
e−v lnVn,nr

]
= E

[
V −vn,nr

]
=

nr∏
j=nr−n+1

E
[
Z−vj

]
=

nr∏
j=nr−n+1

Γ(j − v)

Γ(j)
,

E
[
− lnVn,nre

−v lnVn,nr
]

= E
[
−V −vn,nr lnVn,nr

]
=

nr∑
j=nr−n+1

E

[
− lnZj

nr∏
l=nr−n+1

Z−vl

]

=

nr∑
j=nr−n+1

∏
l 6=j

E[Z−vl ]

E[−Z−vj lnZj ]

= −
nr∑

j=nr−n+1

∏
l 6=j

Γ(l − v)

Γ(l)

 Γ(j − v)

Γ(j)
ψ(j − v)

= −
nr∏

l=nr−n+1

Γ(l − v)

Γ(l)

nr∑
j=nr−n+1

ψ(j − v).

Consequently, the tightest bound in (27) is achieved when

δ =

nr∑
l=nr−n+1

(ψ(l)− ψ(l − vδ)). (30)

Note that as δ → 0, vδ → 0. The right-hand side in equation
(27) for v = vδ can be rewritten as

ekvδ(−δ+
∑nr
j=nr−n+1 ψ(j))

(
nr∏

l=nr−n+1

Γ(l − vδ)
Γ(l)

)k
= ek(−vδδ+

∑nr
j=nr−n+1(vδψ(j)+ln Γ(j−vδ)−ln Γ(j)))

= ek
∑nr
j=nr−n+1(vδψ(j−vδ)−ln Γ(j)+ln Γ(j−vδ))

using (30).
Recall that Γ(x) is monotone decreasing for 0 < x < a0 =
1.461632 . . . and monotone increasing for x > a0. Using the
mean value theorem for the function ln Γ(x) in the interval
[i−vδ, i] we get that for i = 1, vδψ(1−vδ)+ln Γ(1−vδ) ≤ 0,
and for i ≥ 2, vδψ(i− vδ) ≤ ln Γ(i)− ln Γ(i− vδ). Thus, the
exponent is negative both for n = nr and for n > nr. We can
conclude that

P

{
Mn,nr

ln 2
− 1

k

k∑
i=1

log detH†iHi ≥
δ

ln 2

}
≤ e−kKn,nr,δ

for some positive constant Kn,nr,δ . Since the bound holds
∀δ > 0, using Remark 4.6 with µ =

Mn,nr

ln 2 , we find that the
error probability tends to 0 exponentially fast for any rate

R < n

(
log

P

n
e

1
n

∑nr
i=nr−n+1 ψ(i) − logCL − log

4n

πe

)
.

Corollary 6.2: Over the (n, n, k) multi-block channel, reli-
able communication is guaranteed when k →∞ for rates

R < n

(
log

P

n
e

1
n

∑n
i=1 ψ(i) − log

2n

πe
− log 23

1
10 (1− 1

n )G

)
using the multi-block code construction in Proposition 3.10.

Example 6.3: The achievable rates for the single antenna
and 2× 2 MIMO i.i.d. Rayleigh fading channel are plotted in
Figures 2 and 3 respectively. The maximum gap to capacity
is approximately 4.5 bits for the SISO case and 8 bits for the
2× 2 MIMO case.

VII. EXISTENCE OF ASYMPTOTICALLY GOOD LATTICES

All of our capacity results depend on the existence of lattices
with asymptotically good normalized minimum determinants,
which was claimed in Section III-B. In this section we will
prove this result.
We will first recall the construction of single-block space-
time codes from cyclic division algebras (see for example
[23]). Due to space constraints, we refer the reader to [52]
for algebraic definitions.
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Definition 7.1: Let K be an algebraic number field of
degree m and assume that E/K is a cyclic Galois extension
of degree n with Galois group Gal(E/K) = 〈σ〉. We can
define an associative K-algebra

A = (E/K, σ, γ) = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

where u ∈ A is an auxiliary generating element subject to the
relations xu = uσ(x) for all x ∈ E and un = γ ∈ K∗. We
call the resulting algebra a cyclic algebra.
Here K is the center of the algebra A.

Definition 7.2: We call
√

[A : K] the degree of the algebra
A. It is easily verified that the degree of A is equal to n.

We consider A as a right vector space over E and note that
every element a = x0 + ux1 + · · · + un−1xn−1 ∈ A has the
following representation as a matrix:

φ(a) =


x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)


The mapping φ is called the left regular representation of

A and allows us to embed any cyclic algebra into Mn(C).
Under such an embedding φ(A) forms an mn2-dimensional
Q-vector space.

We are particularly interested in algebras A for which φ(a)
is invertible for all non-zero a ∈ A.

Definition 7.3: A cyclic K-algebra D is a division algebra
if every non-zero element of D is invertible.

If we assume that D is a division algebra, then φ is an
injective mapping to Mn(C) and every non-zero element in
φ(D) is invertible. However, φ(D) is not a lattice. Therefore
we will instead consider a suitable subset of D.

Definition 7.4: A Z-order Λ in D is a subring of D having
the same identity element as D, and such that Λ is a finitely
generated module over Z which generates D as a linear space
over Q.

With the previous definition, the set φ(Λ) is a matrix lattice
that can be used for coding over a single space-time block.

A generalization of the embedding φ to the multi-block case
was proposed in [13, 14] for division algebras whose center
K contains an imaginary quadratic field. In this paper we
consider a more general multi-block construction developed
in [18], which applies to any totally complex center K.
We say that a degree 2k number field K is totally complex if
for every Q-embedding βi : K ↪→ C the image βi(K) includes
complex elements. The field K has 2k distinct Q-embeddings
βi : K ↪→ C. As we assumed that K is totally complex, each
of these embeddings is part of a complex conjugate pair. We
will denote by βi the embedding given by x 7→ βi(x).

For each βi we can find an embedding αi : E ↪→ C
such that αi|K = βi. This choice can be made in such a
way that αi|K = βi. We will suppose that the embeddings
{α1, . . . , α2k} have been ordered in such a way that αi =
αi+k, for 1 ≤ i ≤ k. Let a be an element of D and A = φ(a).
Consider the mapping ϕ : D 7→Mn×nk(C) given by

a 7→ (α1(A), . . . , αk(A)), (31)

where each αi is extended to an embedding αi : Mn(E) ↪→
Mn(C).
The following result was proven in [18, Proposition 5]:

Proposition 7.5: Let Λ be a Z-order in D and ϕ the previ-
ously defined embedding. Then ϕ(Λ) is a 2kn2-dimensional
lattice in Mn×nk(C) which satisfies

detmin (ϕ(Λ)) = 1, Vol(ϕ(Λ)) = 2−kn
2√
|d(Λ/Z)|

and

δ(ϕ(Λ)) =

(
22kn2

|d(Λ/Z)|

)1/4n

.

Here d(Λ/Z) is the Z-discriminant of the order Λ. It is a
non-zero integer we can associate to any Z-order of D. We
refer the reader to [52] for the relevant definitions.

We can now see that in order to maximize the minimum
determinant of a multi-block code, we have to minimize the
Z-discriminant of the corresponding Z-order Λ.

The first step to attack this question is to assume that Λ
has some extra structure. Let OK be the ring of algebraic
integers of K. If we assume that Λ is also an OK module,
then the OK-discriminant of Λ is well-defined [52], and will
be denoted by d(Λ/OK). The following formula holds:

d(Λ/Z) = NK/Q(d(Λ/OK))(dK)n
2

, (32)

where NK/Q is the algebraic norm in K and dK is the
discriminant of the field K.

In the case of fixed center K, [12] addressed the prob-
lem of finding the division algebras with the smallest OK-
discriminant, yielding the densest MIMO lattices. The main
construction is based on the following result (Theorem 6.14
in [12]):

Theorem 7.6: Let K be a number field of degree 2k and P1

and P2 be two prime ideals of K. Then there exists a degree
n division algebra D having an OK-order Λ with discriminant

d(Λ/Z) = (NK/Q(P1)NK/Q(P2))n(n−1)(dK)n
2

. (33)

Theorem 7.6 suggests that in order to build families of
(n, n, k) multi-block codes with the largest normalized mini-
mum determinant, we should proceed in four steps:

a) choose a sequence of center fields K of degree 2k such
that their discriminants dK grow as slowly as possible;

b) given the center K, choose an algebra D satisfying (33),
where P1 and P2 are the prime ideals in K with the
smallest norms2;

c) find an order Λ of D which satisfies (33);
d) produce an explicit representation of D as a matrix lattice.
We now discuss the choice of a suitable sequence of center

fields. The following theorem by Martinet [19] proves the ex-
istence of infinite sequences of totally complex number fields
K with small discriminants dK . As we will see, choosing such
a field as the center of the algebra D is a key element to obtain
a good normalized minimum determinant.

2However, we note [18] that a priori there may be a trade-off between
these two choices, so that minimizing the two terms in (32) separately may
be suboptimal.
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Theorem 7.7 (Martinet): There exists an infinite tower of
totally complex number fields {Kk} of degree 2k, where 2k =
5 · 22+t, such that

|dKk |
1
2k = G, (34)

for G ≈ 92.368.
The following Lemma shows that the number fields in the

Martinet family have suitable primes of small norm yielding
a good bound in Theorem 7.6.

Lemma 7.8: Every number field Kk in the Martinet family
has ideals P1 and P2 such that

NK/Q(P1) ≤ 23k/10 and NK/Q(P2) ≤ 23k/10.

Proof: Every field Kk has a subfield F =
Q(cos(2π/11),

√
2,
√
−23), where [F : Q] = 20 (see

for example [53, p. 395]). The field F has prime ideals B1

and B2 such that NF/Q(Bi) = 23. Let us now suppose that
P1 and P2 are such prime ideals of Kk that Pi ∩ OF = Bi.
Transitivity of the norm then gives us that

NKk/Q(Pi) = NF/Q(NKk/F (Pi)) ≤ NF/Q(Bi)
2k/20.

Armed with this observation, we can finally prove Proposition
3.10.

Proof of Proposition 3.10: Suppose that we have a
degree 2k field extension K in the Martinet family of totally
complex fields such that (34) holds. We know that this field
K has some primes P1 and P2 such that NK/Q(P1) ≤
23k/10 and NK/Q(P2) ≤ 23k/10. Then, there exists a central
division algebra D of degree n over K, and a maximal order
Λ of D, such that

d(Λ/Z) = (Nk/Q(P1)NK/Q(P2))n(n−1)(dK)n
2

≤ (23k/5)(n(n−1))(G2k)n
2

.

Remark 7.9: The number field towers in Theorem 7.7 are
not the best known possible. It was shown in [54] that one
can construct a family of totally complex fields such that G <
82.2, but this choice would add some notational complications.

Remark 7.10: The existence of Martinet’s family of number
fields is based on the work of Golod and Shafarevich [55],
where the authors prove that there exist fields K having infinite
class field towers

K = K(0) ⊂ K(1) ⊂ · · · ⊂ K(i) ⊂ K(i+1) ⊂ · · ·

Such towers are constructed recursively from a base field
K = K(0), by considering its Hilbert class field K(1) and
then repeating this process, in such a way that K(i+1) is always
the Hilbert class field of K(i). Due to the properties of Hilbert
class fields, the fields in such towers always have constant root
discriminants.

Remark 7.11: Let us now detail the explicit steps needed to
realize the proposed algebraic constructions as matrix lattices.
As mentioned in the introduction, there exist algorithms to
find the number fields K from the Martinet family, although
the complexity of this task may turn out to be prohibitive. The
second step is then to build an algebra D with the properties

described in equation (33). We will not elaborate on this topic,
but one can follow similar steps as in [12, Section VI]. The
next step is to find a suitable order from the division algebra
D. Here one can use the algorithms given in [56]. The explicit
presentations needed to turn these algebraic structures into
lattices are obtained from cyclic representations as in equation
(31).
Since the first step required to construct the center is generally
too taxing, in practice for fixed (small) k one should not
choose a field from the Martinet family, but instead choose
a degree 2k totally complex field with the smallest known
discriminant and then build the division algebra on top of
this field. Although Lemma 7.8 will not necessarily hold,
a trivial observation is that every number field of degree
2k has prime ideals P1 and P2 such that NK/Q(P1) ≤
22k and NK/Q(P2) ≤ 32k.

VIII. COROLLARIES FOR THE SINGLE ANTENNA FADING
CHANNEL

The single antenna fast fading channel is one of the special
cases of the general channel model (2). It is particularly
illuminating as the connection to the classical AWGN lattice
coding is most striking. In this case the abstract matrix lattices
of Section VII correspond to number field codes that have
been studied for twenty years [22]. Due to the familiarity and
simplicity of this model we can most easily compare our work
to previous research on the topic.

In the single antenna case the channel model (2) gets
simplified to

yi = hi · xi + wi, (35)

where xi are the transmitted symbols, and ∀i = 1, . . . , k, wi
are i.i.d. complex Gaussian random variables with variance
1 per complex dimension and {hi} is some complex fading
process such that

∑k
i=1

1
k log |hi|2 converges in probability to

some constant when the number of blocks k tends to infinity.
This scenario has received considerable interest in the case

of an i.i.d. complex Gaussian fading process {hi}, and several
works have focused on the design of lattice codes for this
model [36, 57]. The analysis of the union bound for the
pairwise error probability for a lattice code L ⊂ Ck leads to a
design criterion based on the maximization of the normalized
product distance

Ndp,min(L) = inf
x∈L\{0}

∏k
i=1 |xi|

Vol(L)
1
2

.

Note that the normalized product distance is a special case (for
n = 1) of the normalized minimum determinant in (9). Most of
the works in the literature have focused on the optimization
of the product distance for lattice signal constellations with
a fixed number of blocks k; few authors [35, 58] have also
studied the upper and lower bounds for Ndp,min over all
lattices when k grows to infinity.

However, there has been no general consensus on whether
significant gain could be achieved from coding over an exten-
sive number of fading realizations. For example the authors in
[59] state that: “increasing the diversity does not necessarily
increase to the same extent the performance: in fact, the
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minimum product distance decreases and the product kissing
number increases. Simulations show that most of the gain is
obtained for diversity orders up to 16”. In fact, the analysis
of the distribution of pairwise errors in the union bound as in
[60] shows that the product kissing number [57], or number
of worst case occurrences, will grow fast and a priori might
eat away the product distance gain. However, this issue seems
to be due to the suboptimality of the union bound rather than
to the codes themselves.

In fact, let us consider an infinite family of 2k-dimensional
lattices Lk ⊂ Ck with normalized product distance satisfying
(Ndp,min(Lk))2/k ≥ c, for some positive constant c.

According to Theorem 4.1 and Remark 4.3 we then have
the following.

Corollary 8.1: Any rate R

R < Eh
[
logP |h|2

]
− log

4

πe
+ log c,

is achievable with the family Lk of lattices over the fading
channel (35).

This result proves that indeed we gain by coding over an in-
creasing number of blocks, assuming that we have a family of
lattices Lk with the described product distances. According to
Proposition 3.6, the condition (Ndp,min(Lk))2/k ≥ c implies
that rhG(Lk) ≥ kc. It reveals that families of lattice codes
with large product distance do not only have large Hermite
invariants, but also that their reduced Hermite invariants are
large as well. Thus, the product distance is not only relevant
in capacity considerations or in the high SNR scenario, but
also plays a role when coding over a finite number of fading
realizations for low SNR.

A. Approaching capacity with number field codes

Using the normalized product distance as a code design
criterion led to lattice constructions based on number fields
in [61, 36, 57, 22]. However, none of these works considered
capacity questions.

Let us now show how the construction in Proposition 7.5,
when specialized to the single antenna case, is just the standard
method used to build lattice codes from number fields [57]
and how this method can be used to approach capacity in fast
fading channels.

Let K/Q be a totally complex extension of degree 2k and
{σ1, . . . , σk} be a set of Q-embeddings, such that we have
chosen one from each complex conjugate pair. Then we can
define a relative canonical embedding of K into Cn by

ϕ(x) = (σ1(x), . . . , σk(x)).

The ring of algebraic integers OK has a Z-basis W =
{w1, . . . , w2k} and ϕ(W ) is a Z-basis for the full lattice
ϕ(OK) in Ck.

Proposition 7.5 now simplifies to the following.
Corollary 8.2: Let ϕ be the previously defined embedding

and K a degree 2k totally complex number field. Then ϕ(OK)
is a 2k-dimensional lattice in Ck which satisfies

detmin (ϕ(OK)) = 1, Vol(ϕ(OK)) = 2−k
√
|dK |

and

δ(ϕ(OK)) =

(
22k

|dK |

)1/4

.

Using Martinet’s family of fields Kk from Theorem 7.7 and
setting L1,k = ϕ(OKk) we have

Vol(L1,k) ≤
(
G

2

)k
and detmin(L1,k) = 1,

where G ≈ 92.368. Specializing to the case where the fading
process is i.i.d complex Gaussian we have that any rate

R < log(Pe−γ)− log

(
2G

πe

)
, (36)

where e−γ = Eh[log |h|2], is achievable.

B. Known bounds on discriminants and Hermite invariants

Equation (36) reveals that the codes based on the Martinet
family have a rather large gap to capacity. However, the right-
hand side of (36) is just a lower bound on the maximum
achievable rate with lattice codes, and might be improved with
a better error probability estimate and/or a better choice of the
lattice sequence.

The Odlyzko bound [62] states that when k → ∞ we
have that |dK |1/2k ≥ 22.3. However it is not known whether
it is possible to reach this lower bound. For small values
of k, there exist number fields having considerably smaller
root discriminants. Table I [62] lists the best known root
discriminants for totally complex number fields of degree 2k.
The first four values are known to be optimal.

TABLE I
BEST KNOWN ROOT DISCRIMINANTS FOR TOTALLY COMPLEX NUMBER

FIELDS K OF SMALL DEGREE 2k.

k |dK |1/2k
1 1.732..
2 3.289..
3 4.622..
4 5.787..
5 6.793..

As seen in Corollary 8.1, we are only interested in the nor-
malized product distance of the lattices under consideration.
For example, instead of considering the image of the ring of
integers OK under the embedding ϕ, one can use an ideal of
this ring of integers [63, 58, 1] or more generally any lattices
with good normalized product distance.

The Minkowski-Hlawka theorem provides a non-
constructive proof of the existence of 2k-dimensional
lattices Lk ⊂ Ck having Hermite invariants h(Lk) ∼ k

πe [6].
It is an open question whether it is possible to obtain also
rhG(Lk) ∼ k

πe or equivalently (Ndp,min(Lk)) ∼
(

1
πe

)k/2
.
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IX. GEOMETRY OF NUMBERS FOR FADING CHANNELS

In the previous sections we have shown that the normalized
minimum determinant provides a design criterion to build
capacity-approaching lattice codes for block fading multiple
antenna channels. Let us now see how this approach fits into
a more general context and can be regarded as a natural
generalization of the classical theory of lattices for Gaussian
channels. Finally we show how the code design problems, both
in Gaussian and fading channels, can be seen as instances of
the same problem in the mathematical theory of geometry of
numbers [41] .

We denote with L(n,k) the set of all 2n2k-dimensional
lattices in the space Mn×nk(C) having volume one.

In the single antenna case, we can measure how a lattice
L ∈ L(1,k) roughly performs over the AWGN channel by
analyzing how the function

f1(x1, . . . , xk) = |x1|2 + |x2|2 + · · ·+ |xk|2 (37)

behaves on the lattice. We have shown in this paper that the
corresponding function for the fast fading channel is

f2(x1, x2, . . . , xk) = k|x1x2 · · ·xk|2/k. (38)

Similarly, the function f3 : L(n,k) → R defined by

f3(X1, X2, . . . , Xk) = nk

k∏
i=1

|det(Xi)|2/nk,

can be used to analyze how a multi-block lattice L ∈ L(n,k)

performs over the block fading MIMO channel.
We immediately note that all these functions share common

characteristics.
Definition 9.1: A continuous function F : Mn×kn(C)→ R

is called a homogeneous form of degree σ > 0 if

|F (αX)| = |α|σ|F (X)| ∀α ∈ R,∀X ∈Mn×kn(C).

We can now see that all the functions fi are homogeneous
forms of degree 2. With this observation we can place our
study into a more general context in geometry of numbers.

Definition 9.2: Let us consider the body S(F ) = {X |X ∈
Mn×kn(C), |F (X)| ≤ 1}, and a 2kn2 dimensional lattice L
with a fundamental parallelotope of volume one. We define
the homogeneous minima λ(F,L) of F with respect to the
lattice L by

λ(F,L) = (inf{λ | λ > 0,dim(R(λS(F ) ∩ L)) ≥ 1})σ,

where R(λS(F ) ∩ L) is the R-linear space generated by the
elements in λS(F ) ∩ L.

Using this notation we can now see that the Hermite invari-
ant and reduced Hermite invariants are homogeneous minima
λ(f1, L) = h(L), λ(f2, L) = rhG(L) and λ(f3, L) = rhG(L).
Given i ∈ {1, 2, 3}, suppose that {L(i)

n,k} is a sequence of
lattices with the property that λ(fi, L

(i)
n,k) ≥ ci. In this paper

we proved that any rate Ri such that

R1 < log2(P )− log2

(
4

πe

)
+ log2 c1,

R2 < Eh
[
log2 P |h|

2
]
− log2

4

πe
+ log2 c2,

R3 < EH
[
log2 det

P

n
H†H

]
− n log2

4n

πe
+ n log2 c3,

is achievable for {L(i)
n,k} over the corresponding channel.

Using this notation, characterizations of achievable rates using
lattice codes have now been transformed into purely geo-
metrical questions about the existence of lattices with certain
properties.

A natural question is how close to capacity we can get with
these methods by taking the best possible lattice sequences in
terms of their homogeneous minimum. This leads us to the
concept of absolute homogeneous minimum

λ(F ) = sup
L∈L(n,k)

λ(F,L).

This remark suggests that there is a very general connection
between information theory and geometry of numbers for
different channel models. It seems that given a fading channel
model, there exists a form whose absolute homogeneous
minimum provides a lower bound for the achievable rate using
lattice codes.

Here λ(f1) is the Hermite constant. The value of the
Hermite constant H(k), for different values of k, has been
studied in mathematics for hundreds of years and there exists
an extensive literature on the topic. In particular good upper
and lower bounds are available and it has been proven that
we can get quite close to Gaussian channel capacity with this
approach [6, Chapter 3].

In the case of λ(f2), the problem has been considered in
the context of algebraic number fields and some upper bounds
have been provided. As far as we know the best lower bounds
come from the existence results provided by number field
constructions [35] and [1].

The properties of λ(f3) seem to be be far less researched
in the literature. Simple upper bounds can be derived from
bounds for Hermite constants as pointed out in [37], and lower
bounds are obtained from division algebra constructions as
described in this paper, but the mathematical literature doesn’t
seem to offer any ready-made results for this problem.

Remark 9.3: The definitions for the geometry of numbers
given in this section were stated for lattices in the space
Mn×nk(C), while usually the definitions are given in the space
Rm. This is however, just to keep our notation simple. The
space Mn×nk(C) can be identified with the space R2n2k and
we could have given the definitions also in the traditional form
using this identification.

X. DISCUSSION AND QUESTIONS FOR FURTHER RESEARCH

In this work we proved the existence of lattice codes achiev-
ing constant gap to capacity in ergodic fading channels. Unlike
the case of existence results based on random coding, our
finite codes are always built from the same family of lattices,
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irrespective of the SNR and even of the fading statistics.
Hence, using the minimum determinant as a design principle
leads to extremely robust codes. In particular division algebra
and number field codes have this robustness property.

However, our codes still have a considerable gap to capacity
and further research is needed. Let us now point out a few
directions this research can take next.

In the case of single user channels the clearest goal is
to improve our methods and close the gap to capacity. We
note that this gap depends on several factors. First of all, the
normalized minimum determinant affects the value of the gap.
Second, our bound for the error probability is based on sphere
packing and might be suboptimal.

Thus, the possible improvements to our construction are
two-fold. In the first place, one could try to find families of
lattices Ln,k ⊂ Mn×nk(C) with larger normalized minimum
determinant, for instance by replacing the centers in our
constructions with families of number fields having smaller
discriminants. One can also consider more general examples of
lattices than those arising from orders in division algebras: for
example ideals of orders, or in the case of number field codes,
ideals of the ring of algebraic integers. In the second place,
in this paper we have not considered the issue of shaping.
Improving the shaping properties of our lattices might lead to
a better error probability bound.

Another approach is to relax our minimum determinant code
design criterion. Our codes are extremely robust and quite
universal in the sense that they respond very well to any non
pathological fading realization. This universality is of course a
strength, but it could also lead to a situation where the codes
are rather good for every channel, but not optimal for any.
If we fix a channel model, it may be possible to weaken
the design principle. This might allow us to consider larger
ensembles of lattices and possibly to close the gap to capacity
in this fixed channel model.

In this paper we have considered block fading MIMO
channels, but we hope that the methods developed here can
be applied also in a more general setting. Let us now sketch
an outline for possible generalizations.

The reduced Hermite invariant is a natural analogue of the
classical Hermite invariant for fading channels. This concept
can likely be generalized to other fading channel models, such
as for example intersymbol interference channels. Given a
fading channel we can ask what would be the group (or set)
G that would represent the action of the channel, and define
the corresponding reduced Hermite invariant hG. The next
question is then to find lattices that would maximize this value.
In the case of the block fading channel, the problem was made
more accessible by Proposition 3.6, where we proved that hG
can be seen as the minimum of a certain homogeneous form.
This line of thought suggests a general approach to turn the
chase for capacity into a problem in geometry of numbers for
different channel models. It also raises several questions. For
example we can ask which are the channel models where this
approach can be applied and for which groups G the reduced
Hermite invariant corresponds to some homogeneous form.

Finally, the lattice codes proposed in this paper can have
applications to other problems in information theory, such as

coding for multiple access fading channels and for information
theoretic security3.
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APPENDIX

A. Proof of Theorem 4.7

With a similar approach as in the proof of Theorem 4.1, we
consider the following upper bound:

Pe ≤ P

{
‖W‖2 ≥

(
dH
2

)2
}

≤ P

{
‖W‖2

knnr
≥ 1 + ε

}
+ P

{
d2
H

4knnr
< 1 + ε

}
, (39)

where

d2
H = min

X,X̄∈C
X 6=X̄

k∑
i=1

∥∥Hi(Xi − X̄i)
∥∥2

is the minimum distance in the finite received constellation.
The first term in equation (39) tends to zero exponentially fast
when k →∞ since 2 ‖W‖2 ∼ χ2(2knnr). We now focus on
the second term in equation (39), and begin by finding a lower
bound on dH .
For all i ∈ {1, . . . , k}, let λi,j , j = 1, . . . , n be the singular
values of H†iHi with

0 = λi,1 = · · · = λi,n−nr < λi,n−nr+1 ≤ · · · ≤ λi,n,

and li,j the singular values of (Xi − X̄i)(Xi − X̄i)
† with

li,1 ≥ li,2 ≥ · · · ≥ li,n.

Using the mismatched eigenvalue bound [65, 9], we have∥∥Hi(Xi − X̄i)
∥∥2 ≥

n∑
j=1

λi,j li,j =

n∑
j=n−nr+1

λi,j li,j .

Consequently, we find that

d2
H ≥ α2 min

X,X̄∈C
X 6=X̄

k∑
i=1

n∑
j=n−nr+1

λi,j li,j

≥ α2nrk

k∏
i=1

n∏
j=n−nr+1

(λi,j li,j)
1
nrk . (40)

Using the NVD property of the code, we get

k∏
i=1

n∏
j=1

li,j =

k∏
i=1

∣∣det(Xi − X̄i)
∣∣2 ≥ 1

3An application to the wiretap channel is considered in our recent work
[64].
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Therefore, we have the lower bound

k∏
i=1

n∏
j=n−nr+1

li,j ≥

(
k∏
i=1

n−nr∏
j=1

li,j

)−1

≥

(
1

(n− nr)k

k∑
i=1

n−nr∑
j=1

li,j

)−(n−nr)k

≥
(

2Pn

α2(n− nr)

)−k(n−nr)

,

where we have used the arithmetic-geometric mean inequality
and the power constraint

α2
∥∥X − X̄∥∥2

= α2
n∑
j=1

li,j ≤ 2Pkn.

Replacing the previous expression in (40), we obtain

d2
H ≥

α2nrk
∏k
i=1

∏n
j=n−nr+1 λ

1
nrk

i,j(
2Pn

α2(n−nr)

)n−nr
nr

= (α2)
n
nr

(
n− nr
2Pn

)n−nr
nr

nrk

k∏
i=1

det(HiH
†
i )

1
nrk .

The second term in (39) can thus be upper bounded by

P

{
k∏
i=1

det(HiH
†
i )

1
nrk < 4(1 + ε)

( n
α2

) n
nr
( 2P

n− nr

)n−nr
nr

}

= P

{
1

k

k∑
i=1

log detHiH
†
i < log

(4(1 + ε))nrnn(2P )n−nr

α2n(n− nr)n−nr

}

By hypothesis the weak law of large numbers (19) holds,
i.e. 1

k

∑k
i=1 log detHiH

†
i → µ as k → ∞. Thus, the error

probability will vanish provided that for sufficiently large k,

log
(4(1 + ε))nrnn(2P )n−nr

α2n(n− nr)n−nr
< µ

Recalling that α2 ≥ C
1
n2k
n,k P

2
R
n CL

, the condition can be rewritten as

R < µ+nr logP −nr log 2(1+ε)−n log 2nCL+
logCn,k
nk

+ (n− nr) log(n− nr).

Using Stirling’s approximation (17), for large k we have

logCn,k
nk

≈ n log πe− n log n− 1

2nk
log 2πn2k.

Asymptotically, we find that any rate

R < µ+nr log
P

2(1 + ε)
−n log

2n2CL
πe

+(n−nr) log(n−nr)

is achievable. Since this is true for all ε > 0, this concludes
the proof.
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