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Nomenclature

Qa-gas flow reduced to absolute pressure (m3/s),

Q-gas flow reduced to standard value of pressure and temperature (m3/s)

v-gas flow velocity (m/s),

Ac-surface value of cross section (m2),
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Din-inner diameter of conduit (m),

π-Ludolph’s number (=3.14159),

p2- pressure at conduit exit (Pa),

p1-pressure at conduit entrance (Pa),

ρr-relative gas density (-),

L-conduit length (m),

R-hydraulic resistance, flow resistance (m/mn) (in electric networks equivalent Ω)

n-flow equation exponent (n=1,82 in Renouard equation),

m-mark observed iteration, 

X-number of conduits (pipes, main, manifolds)

Y-number of nodes

i, j, k-counter

Δ-flow correction (m3/s)

A, K, G, D-Bull's variables (1 or 0)

D,G,K,A -mark complementary value of Bull's variable (if Bull's variable u has value 1, 

then its complementary value ū is 0, and opposite)

C-auxiliary Bull's variable (1 or 0)

1. Introduction

For single source, branching networks, only the reach equations need to be solved (e.g. using 

Hazen-Williams for water or Renouard for natural gas). In this case, optimization by linear 

programming could yield the best alternative network, both hydraulically and economically [1]. 

Critical path analysis for optimizing branched pipe networks and implementation of the finite 



element method can be done for branched networks. For looped networks, however, techniques 

that are more powerful are required. Algorithms have been developed to ensure convergence of 

the iterative procedures.

Today, Hardy Cross method [2] is very often used for optimization of gas distribution networks 

with loops of conduits. Hardy Cross1 developed a numerical method for calculating flow and 

pressure distribution in a looped network. This method also has been widely used in modeling of 

waterworks with ring-like structures of conduits in municipalities. Hardy Cross method assumes 

an equilibrium between pressure and friction forces in steady and incompressible flow. As a 

result, it cannot be successfully used in unsteady and compressible flow calculations with large 

pressure drop where inertia force is important. Original and improved Hardy Cross method, are 

methods of successive iterative corrections, but for the first one, corrections are calculated for 

each contour separately, while for the second one, corrections for all contours in each iteration is 

calculated simultaneously using the Newton-Raphson numerical procedure. Hardy Cross method 

is one approach to solve the loop equations. Original method first determines corrections for 

each loop independently and applies this correction to compute new flow in each conduit. It is 

not efficient compared to improved Hardy Cross method that considers entire system 

simultaneously. Simultaneous method is used by Epp and Fowler [3], but only for looped 

waterworks systems.

                                                
1 Hardy Cross (Nansemond County, Virginia 1885 - Virginia Beach, Virginia 1959), American engineer, assistant 
professor of civil engineering at Brown University, professor of structural engineering at the University of Illinois, 
Chair of the Department of Civil Engineering at Yale. He had also developed a method for analysing indeterminate 
structures that minimized the inconveniences and risks involved in the use and development of reinforced concrete.



Some methods developed by Russian authors are similar with original Hardy Cross method. 

Contemporary with Hardy Cross, soviet author V.G. Lobachev [4] was being developed very 

similar method compared to original Hardy Cross method. Andrijashev method [5] was very 

often being used in Russia during the soviet era. According to this method, contour and loop are 

not synonyms (contours for calculations has to be chosen to include few loops and only by 

exception one).

Using the loop equations to represent conservation of energy, Wood and Charles [6] developed a 

linear theory (flow adjustment) method by coupling the loop equations with node equations. 

Convergence characteristics of linear theory are later improved by Wood and Rayes [7]. 

Modified linear theory solves directly for the conduits flow rates rather than the loop equations 

approach of Hardy Cross method. Shamir and Howard [8] solved node equations instead loop 

equations using the Newton-Raphson method. After the nodal heads are computed, they 

computed the conduits flow rates. Previous methods solve for the conduits flows or nodal heads 

separately then use conservation of energy to determine the other set of unknowns. Haman and 

Brameller [9], and, Todini and Pilati [10] devised a method to solve for flows and heads 

simultaneously. Here, each conduit equation is written to include, both, the conduit flows and 

nodal heads. In addition, although the number of equations is larger than the other methods, the 

algorithm does not require defining loops. Further procedure is developed by Patankar [11]. He 

developed a finite volume procedure to solve for Navier-Stokes equations in a structured co-

ordinate system. Since the publication of the original paper in 1972, there have been several 

developments reported to improve the numerical performance of the original algorithm. Datta 



and Majumdar [12] used this solution algorithm to develop a calculation procedure for manifold 

flow systems. 

Examples of calculation of looped natural gas distribution network after original Hardy Cross 

method can be found in handbooks [13] and similar calculation of real gas network is shown in 

paper of Manojlović et al. [14]. But, deeper improvement of Hardy Cross method is only shown 

in case of looped waterworks systems [15]. Analysis of looped gas distribution networks is 

shown in paper of Osiadacz [16] while in many papers are shown methods for calculation of 

waterworks [17-29]. Very interesting application of two ant colony optimisation algorithms to 

water distribution system optimisation is shown in the paper of Zecchin et al. [30].

2. Concept of distribution network

Hardy Cross method is powerful toll for calculation of looped gas distribution network in 

settlements without limitation factors, such as: number of conduits per contours, number of 

loops, number of nodes or number of input nodes. In Hardy Cross calculation, previously, has to 

be determinated maximal consumption per each node (Qoutput), and one or more inlet nodes 

(Table 1). These parameters are looked up. Now, initial guess of flow per conduits has to be 

assigned (Table 2), and in that way chosen values are to be used for first iteration. After the 

iteration procedure is completed, and if the value of gas flow velocity for all conduits are bellow 

standard values, calculated flows2 become flow distribution per conduits for maximal possible 

consumptions per nodes. Further, pressure per all nodes can be calculated. Whole network can be 

supplied by gas from one or more points (nodes). Distribution network must be design for largest 

consumption assigned to nodes of networks chosen to satisfy larges possible gas consumption of 
                                                
2 see Table 5



households in condition of very severe winters (Table 1)3. Disposal of households is along the 

network’s conduits, and only their consumption is to be assigned to nodes for the purpose of 

calculation according to Hardy Cross. Task of Hardy Cross method is to calculate gas flow 

distribution per conduits for fixed looked up maximal natural gas consumption per nodes and 

inputs in network. If the flow speed in some conduits are above standard values after the 

calculation is finished, these conduits must be chosen with larger diameters, and whole iteration 

procedure have to be repeated4. Hardy Cross method is only suitable for calculation of looped 

networks, not for branch-like networks. Before start of iterative procedure, consumption of gas 

per node, input nodes, their spatial disposal and length of conduits must be chosen and looked 

up. Then, first guess of flow for all conduits must be chosen according to first Kirchhoff’s law 

for each of the node nodes. Next, diameters of all conduits have to be chosen (after eq. (1); see I 

in Table 2, or not; see II in Table 2). 
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In previous equation (1), flow is reduced to absolute value of pressure, and if flow is given for 

standard value is to be reduced using pa·Qa=pn·Qn. In distribution network pressure value is 

usually pa=4·105 Pa abs., or 3·105 Pa gauge pressure. First larger standard diameter than 

calculated after eq. (1) has to be chosen (du~Du) from the tables of standard polyethylene pipes.

                                                
3 for example networks shown in Fig. 2
4 see conduit 3’ in Table 5.



Each equation for determination of pressure drop in distribution gas network [31] (e.g. in the 

technical literature the Renouard equation for conditions of pressure values in gas distribution 

networks comes written in an explicit form in terms of the pressure difference) (2)5:

82.4
in

82.1
r2

1
2
2 D

QL
4810pp


 (2)

can be written in form Δp2=R·Qn, where is: n=1.82, and hydraulics resistance R is to be written 

as R=4810∙ρr∙L∙Din
-4.82. 

Basics assumption is to be satisfied for Hardy Cross calculation:

-Algebraic sum of flows per each node must be zero exactly (first Kirchhoff’s law- continuity of 

flow),

-Algebraic sum of pressure drops per each contour must be approximately zero at the end of 

iterative procedure (second Kirchhoff’s law - continuity of potential).

It is usually desired to determine the total loss of pressure or voltage between inlet and outlet. If 

a single conductor connected these two points, the loss of head for given flow could be computed 

directly from the relation between flow and head loss. In a network, however, this loss depends 

on the distribution of the flow in the system. If such distribution is known, the drop of potential 

in each conductor can be determined directly, and the total drop found as the sum of the drops 

along any path connecting inlet and outlet, the total drop being of course the same whatever path 

is chosen. If, however, the relation is not linear as for gas flow (2), serious difficulties arise in 

solving the equations. This problem must be solved during iterative procedure.

                                                
5 whereas in the technical literature it appears as: Δp2=4088∙ρr

0.82∙L∙Q1.82∙Din
-4.82



In general, systems for distributing natural gas in cities may, for purposes of analysis, be 

considered as in a single plane. In other cases, as, for example, the distribution may take place in 

several planes, with interconnection between the planar systems of distribution (Fig. 1). This 

type of problem presents no especially new features except that distribution must be made in 

circuits closed by the risers as well as in the circuits which lie in a plane. It will be noted that in 

such problems any conduit may lie in only one circuit (an outside conduit in a floor) or in two 

circuits, three circuits, or even in four circuits (two floor circuits and two riser circuits). The total 

change in flow in the conduit is the sum of the changes in all the circuits of which it is a member. 

All networks with three or more dimensions can be noted as spatial. Spatial network is each 

network with at least one conduit mutual for three or more contours. In fig. 1, networks A) can 

be reduced to single plane problem, but case C) is three-dimensional problem as in our example 

in fig 26.

3. Mathematical description of network

The first step in solving a problem is to make a network map showing conduit sizes and lengths, 

connections between conduits (nodes), and sources of supply. For convenience in locating 

conduits, assign each contour and each main a code number. Conduits on the network periphery 

are common to one contour and those in the network interior are common to two contours. 

Special cases may occur in which two conduits cross each other but are not connected, resulting 

in certain conduits being common to three or more loops. The distribution network then becomes 

three-dimensional rather than two-dimensional.

                                                
6 and in Fig 7



Figure 27 is an example of a three-dimensional network because conduit 15 is not connected to 

conduit 6. Conduits 1 to 14 form a two-dimensional network of four contours. Contour 5 consists 

of conduits 15, 9, 10, 11, and 12. Conduits 9, 10, and 11 are each common to two contours (5 

and 3, 5 and 3, and 5 and 2, respectively) and conduit 12 is common to three contours (2, 4, and 

5). Contour 5 could have been chosen along-several other paths in the two-dimensional network; 

for example, by starting at the right end of conduit 15 via conduit 8 and returning to the left end 

of conduit 15 via conduit 2 or 3.

Gas distribution system, composed of fifteen conduits (Fig. 2), has been analyzed by the Hardy 

Cross method (original and improved version) to determine the individual conduit flow rates and 

pressure drops. Gas flow into the network from a source on the left side is 7000 m3/h (Table 1.). 

Points of delivery are at junctions of conduits, with the arrows pointing to volumes delivered 

(summation of these deliveries equals 7000 m3/h). Assumed gas flow and its direction, also 

indicated by an arrow (near pipe in fig. 2).

After the network map with its conduit and contour numbers and delivery and supply data has 

been prepared, the next step is to assume a flow pattern in the network (Table 2). This may be 

done by starting at sources with volumes of gas delivered into the system, and distributing these 

volumes through the conduits until they have been allocated to the various delivery points. The 

flows thus assumed are entered next to their respective conduits, with arrows to indicate 

direction. The total gas flow arriving at a junction must equal the total gas flow leaving it (first 

Kirchhoff’s law). The assumed flow pattern will approximate the correct flow pattern if 

consideration is given to the relative flow capacity of various network conduits.
                                                
7 and Fig 7



To introduce matrix form in calculation, it is necessary to represent distribution network (Fig. 2) 

as a graph according to Euler’s theorem from mineralogy (number of polyhedral angles and 

edges of minerals). Graph has X branches and Y nodes (in Fig. 2: X=15, Y=11). Graph with n 

nodes has Y-1 independent nodes and X-Y+1 independent loops. Tree is a set of connected 

branches chosen to connect all nodes, but not to closed any closed path (not to form loop) – in 

fig. 2 e.g. conduits 13, 11, 10, 9, 15, 3, 4, 1, 5, 7 or other combination. Branches, which do not 

belong to a tree, are links (number of links are X-Y+1). Number of independent loops in network 

are formed using tree conduits and one of the links conduit). So, number of loops are determined 

by number of links. In graph, one node is referent (in Fig. 2 referent node is I) and all others are 

so called dependent nodes. In example from fig. 2 for 1st guess referent node is I (3). So first row 

in matrix is for node 2, second for node 3, etc., and last row is for node Y-1 (i.e. XI).
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In (3); 1 means that particular conduit has input in observed node, -1 if not and 0 if this particular 

conduit do not belong to observed node. If network has two or more points of supply, that can be 

included in eqs. (3) as Qi but with negative sign.

Equation (3) can be written as (4) in develop form:
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For independent loops can be written set of X-Y+1 independent equations of energy continuity

for network shown in fig. 2. can be written as (5):
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In (5); 1 means that flow direction in conduit coincides with assumed direction of observed 

contour, -1 if not, and 0 if conduit do not belong to observed contour.

Equation (3) can be written as (4) in develop form:



contours

F

F

F

F

F

0
D

QL

D

QL

D

QL

D

QL

D

QL
4810

ppppp

0
D

QL

D

QL

D

QL

D

QL
4810

pppp

0
D

QL

D

QL

D

QL

D

QL

D

QL
4810

ppppp

0
D

QL

D

QL

D

QL

D

QL

D

QL
4810

ppppp

0
D

QL

D

QL

D

QL

D

QL
4810

pppp

5

4

3

2

1

82,4
15

82,1
1515

82,4
12

82,1
1212

82,4
11

82,1
1111

82,4
10

82,1
1010

82,4
9

82,1
99

r

2
15

2
12

2
11

2
10

2
9

82,4
14

82,1
1414

82,4
13

82,1
1313

82,4
12

82,1
1212

82,4
3

82,1
33

r

2
14

2
13

2
12

2
3

82,4
10

82,1
1010

82,4
9

82,1
99

82,4
8

82,1
88

82,4
7

82,1
77

82,4
6

82,1
66

r

2
10

2
9

2
8

2
7

2
6

82,4
12

82,1
1212

82,4
11

82,1
1111

82,4
6

82,1
66

82,4
5

82,1
55

82,4
2

82,1
22

r

2
12

2
11

2
6

2
5

2
2

82,4
4

82,1
44

82,4
3

82,1
33

82,4
2

82,1
22

82,4
1

82,1
11

r

2
4

2
3

2
2

2
1






































 























 




















 























 























 













(6)

Equations (3-6) are for initial guess of gas flow rate I from Table 2 and Fig 2.

4. General solution after Hardy Cross method

Two types of methods based on Hardy Cross’s idea are shown for the solution of loop equations:

- Hardy Cross method; successive substitution method (single loop adjustment method)

- Modified Hardy Cross method; simultaneous loop solution method (Newton-Raphson method)

4.1 Hardy Cross’s successive substitution method (single loop adjusment method)

Equations of flow (for conduits i which belong to contour j) for all contours (each particular 

contour is marked by j) can be written as follows (7):

    
j

n
iij QRQF   (7)

The basic idea of the Hardy-Cross method is that conservation of mass at each node can be 

established initially. This means we must first assume an initial guess of flows in every pipe 



element before starting the pressure drop calculation. For any pipe in which Q0 is assumed to be 

the initial flow rate, eq. (7) can be estimated using a Taylor series expansion as follows (8):
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Because of second Kirchof’s law in late iterations; F(Q)(m)→0, and   j
m
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For contour (loop) j, where conduits i belong to loop j (10):
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For Renouard equation (2): n=1,82. Equation (10) in matrix form can be writen as (11):
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Detail example for calculation according Hardy Cross’s successive substitution method (single 

loop adjusment method) for network shown in fig. 2 are given in table 4.

4.2 Modified Hardy Cross method (Newton-Raphson simulaneous method)



The Newton-Raphson method is a numerical method that can solve a set of equations (7)

simultaneously. Convergence of Newton method nonlinear network analysis is studied by 

Altman and Boulos [32]. The method is particularly convenient for solving differentiable 

equations when the value of the desired unknown parameters is known approximately. Using the 

Taylor’s series expansion, a first-order approximation can be written as (12):
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First matrix in (11) and (12) is a Jacobian matrix of first derivates of loop equations evaluated at 

Q(m-1) of all the functions for (12) and for only observed loop in (11). Jacobian matrix is square 

(number of contours) and symmetric. The rows in Jacobian matrix are corresponding to the loop 

equations and the columns correlated the loop corrections. The diagonal terms of Jacobian matrix 

are the sum of first derivates of the conduit equation in particular contour. The difference 

between successive substitution method and simultaneous solution method is that some of non-

diagonal terms are non-zero in simultaneous solution method.

For the network shown in Fig. 2 Jacobian matrix is for the first iteration (13):
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Numbers in (14) are from first iteration shown in Table 4 (but note that Table 4 is for single loop 

adjustment method and only input parameters for first iteration have equal numerical values):
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Note that in eq. (14); 559997875 = 233875825 + 326122050, and 179192287 = 14916225 +

164276062 (see Table 4). 

5. Rules for determination of algebraic signs preceding corection of flow

These rules are to be applied for both version of method (shown in chapter 4).

Contours and conduits numbers are listed in the first and second columns of the table 4, 

respectively. Diameters and lengths of conduits are listed in the third and forth column of table 4. 

The assumed gas flow in each conduit for iteration 1 (shown in Table 2) is listed in the fifth

column in table 4. The plus or minus preceding the flow, Q, indicates the direction of the conduit 

flow for the particular contour. A plus sign denotes clocwisese flow in the conduit within the 

contour; a minus sign, counterclockwise.



The first computation—resistance to change in gas flow in each conduit, R∙Q0,82 —is listed in 

table 4 (R is according to (2). The coefficient n, which in this case equals 1.82 - from Renouard 

equation (2), has become n-1=0,82 (first derivate). The pressure drop in each main, R∙Q1.82, is 

listed, and carries the same sign as the gas flow. Column R∙Q0,82 is added arithmetically for each 

contour. Column R∙Q1.82 is added algebraically for each contour. A flow correction, Δ, is 

computed for each contour - (11) for original method and (12) for improved. This correction 

must be subtracted algebraically from the assumed gas flow. A conduit common to two loops 

receives two corrections, and a main common to three or more contours receives three or more 

corrections.

Correction Δ1 is from the particular contour under consideration. Corrections Δ2 and Δ3 are from 

the second and third contours to which a conduit belongs. The upper plus or minus sign shown 

indicates direction of flow in that conduit in these two contours and is obtained from Q for 

previous iteration. The upper sign is the same as the sign in front of Q if the flow direction in 

each contour coincides with the assumed flow direction in the particular contour under 

consideration, and opposite if it does not.

The flow, Q, and corrections are totaled across to obtain the Q listed under next iteration 

according to the following rules:

1. The algebraic operation for correction 1 should be the opposite of its sign; i.e., add when 

the sign is minus.

2. The algebraic operation for corrections 2 and 3 should be the opposite of their lower 

signs when their upper signs are the same as the sign in front of Q, and as indicated by 

their lower signs when their upper signs are opposite to the sign in front of Q.



Rules for determination of preceding sign for flow corrections is shown in Table 3. Rules shown 

in table 3 can be presented by following logical equation; Bull’s logic (15) and (16):

DGKDGKDGKDGKA  (15)

DCDCA  (16)

Where in (16) is auxiliary relation for (17):

GKGKC  (17)

Some possible logical circuits according previous equations (15) and (16) are shown in Fig. 3.

Computation according to these rules is by an algebraic subtraction of the flow correction terms. 

The iteration procedure is repeated until the net pressure drop around each loop, is as close to 

zero as the degree of precision desired demands. The network is then in approximate balance. 

Pressure drops in conduits along a path from the node of lowest pressure to the supply source are 

summed to obtain the total pressure drop in the network. When the gas flow in a conduit is in the 

same direction as the path taken between two nodes, there is a pressure loss. When the flow is 

opposite to the direction of the path, there is a pressure gain. Since the network is in approximate 

balance, the total pressure drop should be computed along several paths and averaged to obtain a 

better value.

6. Results and identification of possible problems

Detail calculation (first two iterations – 1st guess, network in Fig. 2) after original Hardy Cross 

method (shown in subchapter 4.1) is given in Table 4. Corrections are calculated using eq. (15). 

Calculation after improved Hardy Cross method is not given here in such detailed table, but 



calculation is done (12) and compared graphically in figs. 4-6 with (11). Set of corrections 

calculated using eq. (12) for first iteration (1st guess, network in Fig. 2) after modified Cross 

method (shown in subchapter 4.2) are Δ1=-44/325, Δ2=-7/93, Δ3=-48/577, Δ4=135/862, and 

Δ5=103/538. Modified Hardy Cross method has better convergence performance for all contours 

(approximately 3-5 increased speed of convergence in our case) for both guess – 1st and 2nd. 

Same conclusions can be done for convergence of flow corrections (shown in fig. 5 for contour I 

and in fig. 6 for contour IV). 

Example of symmetric network is good example to solve some misunderstandings (initial and 

final flow pattern are shown in fig. 7, node consumption in Table 1; 3rd guess, initial flow in 

Table 2, and final results in Table 5). This network is selected very carefully because under 

above-mentioned circumstances, in conduit 6 two-way flow must be expected (Fig. 8) [33]. But 

in Hardy Cross calculation that kind of flow in conduit is forbidden and cannot be calculated. 

Anyway, after the calculation of this network is finished, value of flow in conduit 6 for 3rd guess 

is 0 m3/s. But real consumers are located between node XI and node VII. That implies that in real 

network, in conduit 6 some value of flow must be expected (two-way supplied pipes) or some 

household will be left gasless. In some rare cases, convergence of Hardy Cross method can be 

spoiled [32]. Recommendations for these cases is to changed method for calculation, i.e. original 

Hardy Cross instead of improved Hardy Cross, or opposite, or to applied some of other available 

methods. Even, if the node consumption is satisfied, in some regimes of exploitation of network, 

some households can be felt lack of gas. These households are place in the middle of conduits, 

between the nodes. In two-way supplied conduits this case can be occurred (Fig. 9). Also, in our 

case of symmetric network, convergence is stabile as for 1st and 2nd guess. Under some special 



cases, modified Hardy Cross method has not always better convergences characteristics in 

comparisons to original Hardy Cross method.

7. Conclusions

Approach of Hardy Cross was extremely practical. His view was that engineers lived in a real 

world with real problems and that it was their job to come up with answers to questions in design 

even if approximations were involved. Hardy Cross method procedure can give good results 

when designing a looped gas-pipeline network of composite structure. According to the price and 

velocity limits, the optimal design can be predicted. This paper addresses to the problem of 

construction of networks for distribution of natural gas in the cities and with subject to all the 

practical requirements for the engineers charged with design and/or analysis of such system. This 

paper is especially addressed to those engineers willing to understand and interpret the results of 

calculation properly and to make good engineering decision based on this subject. While the 

spatial natural gas networks with loops are maybe purely hypothetic, this kind of networks, but 

with some adjustment can find application in calculation of mines ventilation systems.
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Table 1
Constant node outflows

Consumption
a Asymmetric 
 1st and 2nd guess

b Symmetric – 3rd guess

Node m3/h m3/s Node m3/h m3/s
I 60 1/60 I’ 60 1/60 
II 2100 7/12 II’ 2300 23/36 
III 170 17/360 III’ 185 37/720
IV 90 1/40 IV’ 90 1/40 
V 200 1/18 V’ 185 37/720
VI 2500 25/36 VI’ 2300 23/36 
VII 300 1/12 VII’ 290 29/360
VIII 170 17/360 VIII’ 225 1/16 
IX 850 17/72 IX’ 850 17/72 
X 280 7/90 X’ 225 1/16 
XI 280 7/90 XI’ 290 29/360

c Flow into the network
Node m3/h m3/s Node m3/h m3/s
I -7000 -1  17/18 I’ -7000 -1  17/18
a constant in calculation (network - Fig. 2)
b constant in calculation (network - Fig. 7)
c Flow into the network is sum of consumptions per nodes
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Table 2
First assumed flows
a First assumed flows per conduit - m3/s

b initial guess of gas flow rate
conduit c I d II conduit e III
1 1/18 1/36 1’ 7/36
2 5/72 1/12 2’ 1/9
3 17/30 47/180 3’ 47/180
4 23/36 5/9 4’ 5/6
5 7/90 1/120 5’ 61/240
6 1/72 31/180 6’ 13/144
7 1/120 7/72 7’ 19/72
8 7/180 1/20 8’ 29/144
9 41/360 7/60 9’ 1/48
10 13/360 7/36 10’ 1/12
11 1/18 4/9 11’ 61/240
12 1/12 1/12 12’ 1/9
13 1/36 5/12 13’ 7/36
14 13/18 1  1/9 14’ 5/6
15 7/18 5/72 15’ 1/72
a must be chosen to satisfy rule after first Kirchhoff’s law for all nodes (exactly)
b initial guess means: distribution of flows for first iteration
c chosen after eq. (1) – (1st guess, network Fig. 2)
d chosen to satisfy only mandatory first Kirchhoff’s law for all nodes, but not chosen after eq. (1) – (2nd guess, 
network Fig. 2)
e flow pattern chosen for symmetric node consumption (see Table 1) - (3rd guess, network Fig. 7)
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Table 3
Combinations for choose of final algebraic sign of second rang correction or higher

Signs preceding second or 
higher correctionb

Sign preceding 
flowa K

Upper signc

G
Lower signd

D

Chosen final 
algebraic sign 
A

0 (-)e 0 (-) 0 (-) 1 (+)f

0 (-) 0 (-) 1 (+) 0 (-)
0 (-) 1 (+) 0 (-) 0 (-)
0 (-) 1 (+) 1 (+) 1 (+)
1 (+) 0 (-) 0 (-) 0 (-)
1 (+) 0 (-) 1 (+) 1 (+)
1 (+) 1 (+) 0 (-) 1 (+)
1 (+) 1 (+) 1 (+) 0 (-)
aindicates the direction of the conduit flow for particular loop (contour) – a plus sign denotes clockwise flow in the 
conduit within the loop; a minus sign, counterclockwise
bsecond rang correction is from the second contour to which a conduit belongs, third rang correction is from the 
third contour to which a conduit belongs, etc.
cthe upper plus or minus sign shown indicates direction of flown in that conduit in these two contours and is 
obtained from Q for previous iteration. The upper sign is the same as the sign in front Q if the flow direction in the 
particular contour under consideration, and opposite if it does not.
dthe lower sign is copied from the primary contour for this correction (sign from the contour where this correction is 
first, sign preceding the first iteration from adjacent contour for the conduit taken into consideration)
elogical zero is equivalent to sign (-) minus
flogical one is equivalent to sign (+) plus
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Table 4
Calculation of spatial natural gas distributive network of conduits with loops after original Hardy Cross method (example from fig. 2)- 1st initial 
guess

* ** Din L

Iteration 1 Iteration 2a

cQ
(1)
R∙Q1,82

(2)
R∙Q,0,82

Flow correction Δb

Q
Flow correction Δb

Q1 2 3 1 2 3
I 1 0.4064 100 +1/18 114959 2069265 +35/123 … … +251/738 -15/104 ... ... +19/97 

2 0.3048 100 -5/72 -690438 9942302 +35/123 -6/619± … +91/443d -15/104 -4/73= ... +5/782
3 0.1524 100 -17/30 -889949040 1570498307 +35/123 +53/219‡ … -31/773 -15/104 -89/743± ... -59/194
4 0.3048 100 +23/36 39193885 61346951 +35/123 … … +193/209 -15/104 ... … +60/77 

∑ -851330634 1643856824

123

35

164385682482,1

851330634
I 





***8805 104

15

29534352982,1

77528086
I 




***29178
II 5 0.1524 100 +7/90 23969880 308184165 +6/619 … … +37/423 +4/73 ... ... +34/239

6 0.3048 200 -1/72 -73795 5313266 +6/619 +1/560‡ … -1/415 +4/73 -27/539± ... +1/437d

11 0.1524 100 -1/18 -12993101 233875825 +6/619 -43/303  … -89/441 +4/73 -13/392 ... -20/111
12 0.1524 100 -1/12 -27176838 326122050 +6/619 +53/219‡ -114/731  +2/161d +4/73 -89/743= -13/392‡ -3/35d

2 0.3048 100 +5/72 690438 9942302 +6/619 -35/123= … -91/443d +4/73 +15/104‡ ... -5/782
∑ -15583417 883437609

619

6

88343760982,1

15583417
II 




 ***10506 73

4

110680774582,1

110372041
II 




***3948
III 7 0.1524 100 +1/120 411338 49360570 -1/560 … ... +4/611 +27/539 ... ... +29/512

8 0.1524 100 -7/180 -6788773 174568437 -1/560 … ... -29/713 +27/539 ... ... +5/531d

9 0.3048 100 +41/360 1698792 14916225 -1/560 -114/731‡ ... -31/707d +27/539 -13/392 ... -7/260
10 0.1524 100 +13/360 5932191 164276062 -1/560 -114/731‡ ... -9/74d +27/539 -13/392 ... -78/745
6 0.3048 200 +1/72 73795 5313266 -1/560 -6/619= ... +1/415 +27/539 -4/73= ... -1/437d

∑ 1327344 408434560
560

1

40843456082,1

1327344
III 


 ***7841 539

27

67436113682,1

61479037
III 




***1152

IV 3 0.1524 100 +17/30 889949040 1570498307 -53/219 -35/123= ... +31/773 +89/743 +15/104 ... +59/194
12 0.1524 100 +1/12 27176838 326122050 -53/219 -6/619= +114/731  -2/161d +89/743 -4/73± +13/392‡ +3/35d

13 0.1524 100 -1/36 -3679919 132477076 -53/219 … ... -242/897 +89/743 ... ... -3/20 
14 0.4064 100 -13/18 -12243919 16953118 -53/219 … ... -647/671 +89/743 ... ... -38/45 

∑ 901202040 2046050552

219

53

204605055282,1

901202040
IV 




***15651 743

89

112354674882,1

244942051
IV 





***30020

V 15 0.1524 200 +7/18 897059511 2306724456 -114/731 … ... +157/674 -13/392 ... ... +177/886
9 0.3048 100 +41/360 1698792 14916225 -114/731 -1/560‡ ... -31/707d -13/392 +27/539= ... -7/260
10 0.1524 100 +13/360 5932191 164276062 -114/731 -1/560‡ ... -9/74d -13/392 +27/539= ... -78/745
11 0.1524 100 -1/18 -12993101 233875825 -114/731 +6/619= ... -89/441 -13/392 +4/73 = ... -20/111
12 0.1524 100 -1/12 -27176838 326122050 -114/731 +6/619= +53/219‡ +2/161d -13/392 +4/73 ± -89/743= -3/35d

∑ 864520555 3045914618
731

114

30459146182,1

864520555
V 




***12786 392

13

270871352482,1

163492506
V 




***29403
*-mark Loop i.e. Contour, **-mark Conduit i.e. Pipe (Main), ***-pressure drop per Loop i.e. Contour (Pa)
acalculation of R∙Qcon

1.82 and R∙Qcon
0.82 are not shown explicitly as in iteration 1

bΔ1 must be added with opposite preceding sign, Δ2 and Δ3 must be added with adopted preceding sign (according to rule shown in table 3)
cfirst assumed (initial) guess (flows per all conduits must be chosen to satisfy first Kirchhoff’s law for all nodes – sum of pressure drops*** per all loops according to second 
Kirchhoff’s law must be (approximate) zero when the network is in balance (here after 15 iterations) – see Fig 4
dchange of flow direction (opposite than in previous iteration – opposite upper sing in Δ2 and Δ3)
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Table 5
Final (calculated) flows in the network for both methods

1st and 2nd guess 3rd guess d

conduit a Final flow

b Velocity 
check c conduit a Final flow

b Velocity 
check

Din (m) m3/s m3/h m/s Din (m) m3/s m3/h m/s
1 0.4064 334/979 1228.19 2.63 1’ 0.1524 85/421 726.84 11.07
2 0.3048 13/129 362.80 1.38 2’ 0.1524 1/29 124.14 1.89
3 0.1524 82/539 547.68 8.34 3’ 0.1524 81/329 886.32 13.50 d

4 0.3048 551/596 3328.19 12.67 4’ 0.3048 639/760 3026.84 11.52
5 0.1524 130/673 695.39 10.59 5’ 0.1524 180/973 665.98 10.14
6 0.3048 1/71 50.73 0.19 6’ 0.3048 0 0 0
7 0.1524 9/94 344.66 5.25 7’ 0.1524 40/383 375.98 5.73
8 0.1524 18/371 174.66 2.66 8’ 0.3048 32/763 150.98 0.57
9 0.3048 22/687 115.28 0.44 9’ 0.3048 32/763 150.98 0.57
10 0.1524 28/255 395.28 6.02 10’ 0.1524 40/383 375.98 5.73
11 0.1524 106/611 624.55 9.51 11’ 0.1524 180/973 665.98 10.14
12 0.1524 17/235 260.43 3.97 12’ 0.1524 1/29 124.14 1.89
13 0.1524 76/485 564.13 8.59 13’ 0.1524 85/421 726.84 11.07
14 0.4064 223/262 3064.13 6.56 14’ 0.3048 639/760 3026.84 11.52
15 0.1524 7/45 560.05 8.53 15’ 0.1524 58/381 548.03 8.35
a calculation is over when second Kirchhoff’s law is approximately satisfied (after n iterations) for all contours (loops) – algebraic sum 
of pressure drop per conduit is approximately equal zero. Note that final flow is not depend on first assumed gas flow and chosen type 
of methods,
b must be under standard values [14] - The velocity limits are 6 m/s for the pipes of small diameter (up to 0,09 m) and 12 m/s for the 
pipes of large diameter (up to 0,225 m) (if not must be changed diameter of conduit and must be repeated whole calculation)
c symmetric network, Fig. 7
d velocity limit is exceeded in conduit 3 (must be increased diameter of conduit and must be repeated whole calculation)
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