
HAL Id: hal-01586551
https://hal.science/hal-01586551

Submitted on 13 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative Methods for Looped Network Pipeline
Calculation

Dejan Brkić

To cite this version:
Dejan Brkić. Iterative Methods for Looped Network Pipeline Calculation. Water Resources Manage-
ment, 2011, 25 (12), pp.2951-2987. �10.1007/s11269-011-9784-3�. �hal-01586551�

https://hal.science/hal-01586551
https://hal.archives-ouvertes.fr


                             Editorial Manager(tm) for Water Resources Management 
                                  Manuscript Draft 
 
 
Manuscript Number: WARM1450R2 
 
Title: Iterative methods for looped network pipeline calculation 
 
Article Type: Special Issue: 5th Dubrovnik Conference 
 
Keywords: Pipeline networks; Waterworks; Natural gas distribution; Calculation methods; Flow; 
Hydraulic systems 
 
Corresponding Author: Dr Dejan Brkic, PhD in Petroleum Eng. 
 
Corresponding Author's Institution:  
 
First Author: Dejan Brkic, PhD in Petroleum Eng. 
 
Order of Authors: Dejan Brkic, PhD in Petroleum Eng. 
 
Abstract: Since the value of the hydraulic resistance depends on flow rate, problem of flow distribution 
per pipes in a gas or water distributive looped pipelines has to be solved using iterative procedure. A 
number of iterative methods for determining of hydraulic solution of pipeline networks, such as, Hardy 
Cross, Modified Hardy Cross, Node-Loop method, Modified Node method and M.M. Andrijašev method 
are shown in this paper. Convergence properties are compared and discussed using a simple network 
with three loops. In a municipal gas pipeline, natural gas can be treated as incompressible fluid. Even 
under this circumstance, calculation of water pipelines cannot be literary copied and applied for 
calculation of gas pipelines. Some differences in calculations of networks for distribution of these two 
fluids, i.e. water apropos natural gas are also noted. 
 
 
 
 



Dear editor, 

All your suggestions are now accepted. 

Sincerely yours,  

Dejan Brkić, PhD 

Response to reviewer's comments
Click here to download Response to reviewer's comments: WARM editor.doc

http://www.editorialmanager.com/warm/download.aspx?id=38102&guid=2de0d62d-80e5-40d6-9fcb-369f3eb10e30&scheme=1


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

 

Iterative methods for looped network pipeline calculation 
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PhD, Ministry of Science and Technological Development, Strumička 88, 11050 Beograd, 

Serbia 

Tel. +381642543668, e-mail: dejanrgf@tesla.rcub.bg.ac.rs 

 

Abstract: 

Since the value of the hydraulic resistance depends on flow rate, problem of flow distribution 

per pipes in a gas or water distributive looped pipelines has to be solved using iterative 

procedure. A number of iterative methods for determining of hydraulic solution of pipeline 

networks, such as, Hardy Cross, Modified Hardy Cross, Node-Loop method, Modified Node 

method and M.M. Andrijašev method are shown in this paper. Convergence properties are 

compared and discussed using a simple network with three loops. In a municipal gas pipeline, 

natural gas can be treated as incompressible fluid. Even under this circumstance, calculation 

of water pipelines cannot be literary copied and applied for calculation of gas pipelines. Some 

differences in calculations of networks for distribution of these two fluids, i.e. water apropos 

natural gas are also noted. 

 

Keywords: Pipeline networks, Water distribution system, Natural gas distribution system, 

Calculation methods, Flow, Hydraulic pipeline systems 

 

1. Introduction 

A number of iterative methods for determining the hydraulic solution of water and natural gas 

pipeline networks which take ring-like form, such as, Hardy Cross, Modified Hardy Cross 

(including Andrijašev method), Node-Loop method and Modified Node method are compared 
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in this paper. All presented methods assume equilibrium among pressure and friction forces in 

steady and incompressible flow. As a result, they cannot be successfully used in unsteady and 

compressible flow calculations with large pressure drops where inertia force is important. 

Problem of flow in pipes and open conduits was one which had been of considerable interest to 

engineers for nearly 250 years. Even today, this problem is not solved definitively. The difficulty 

to solve the turbulent flow problems lies in the fact that the friction factor is a complex function 

of relative surface roughness and Reynolds number. Precisely, hydraulic resistance depends on 

flow rate and hence flow problem in hydraulic networks has to be solved iteratively. Similar 

situation is with electric current when diode is in circuit. With common resistors in electrical 

circuits where the electric resistances do not depend on the value of electric current in the 

conduit, problem is linear and no iterative procedure has to be used. So problem of flow through 

a single tube is already complex. Despite of it, very efficient procedures are available for solution 

of flow problem in a complex pipeline such as looped pipeline like waterworks or natural gas 

distribution network is. Most of the shown methods are based on solution of the loop equations 

while the node equations are used only as control of accuracy. Node-Loop method is also based 

on solution of the loop equations but the node equations are also used in calculation and not only 

for control purposes. Node method and here shown Modified Node method is based on solution 

of the node equations while the loop equations is used for control purposes.  

 

In this paper, speed of convergence of presented methods are compared and discussed. This is 

done for one simple network with three loops, both, for water and gas distribution networks. 

Similar example can be done for the air ventilation systems in the buildings or mines. For 

ventilation problem readers can consult paper of Aynsley (1997), Mathews and Köhler (1995), 

Wang and Hartman (1967), etc. While the disposal of water or gas distribution system is in 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 

 

single plane with certain elevation of pipes, ventilation network is almost always spatial (Brkić 

2009). 

 

2. Hydraulics frictions and flow rates in pipes 

Each pipe is connected to two nodes at its ends. In a pipe network system, pipes are the channels 

used to convey fluid from one location to another. Pipes are sometimes referred to as tubes or 

conduits, and as a part of network to as lines, edges, arcs or branches (in the graph theory, special 

kinds of branches are referred to as trees). The physical characteristics of a pipe include the 

length, inside diameter, roughness, and minor loss coefficient. When fluid is conveyed through 

the pipe, hydraulic energy is lost due to the friction between the moving fluid and the stationary 

pipe surface. This friction loss is a major energy loss in pipe flow (Farshad et al. 2001, Kumar 

2010). 

 

Various equations were proposed to determinate the head losses due to friction, including the 

Darcy-Weisbach, Fanning, Chezy, Manning, Hazen-Williams and Scobey formulas. These 

equations relate the friction losses to physical characteristics of the pipe and various flow 

parameters. The Darcy-Weisbach formula for calculating of friction loss is more accurate than 

the Hazen-Williams. Beside this, the Hazen-Williams relation is only for water flow. 

 

2.1 Gas flow rates and pressure drops in pipes 

When a gas is forced to flow through pipes it expands to a lower pressure and changes its 

density. Flow-rate, i.e. pressure drop equations for condition in gas distribution networks 

assumes a constant density of a fluid within the pipes. This assumption applies only to 

incompressible, i.e. for liquids flows such as in water distribution systems for municipalities (or 

any other liquid, like crude oil, etc.). For the small pressure drops in typical gas distribution 
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networks, gas density can be treated as constant, which means that gas can be treated as 

incompressible fluid (Pretorius et al. 2008), but not as liquid flow. Assumption of gas 

incompressibility means that it is compressed and forced to convey through pipes, but inside the 

pipeline system pressure drop of already compressed gas is small and hence further changes in 

gas density can be neglected. Fact is that gas is actually compressed and hence that volume of 

gas is decreased and then such compressed volume of gas is conveying with constant density 

through gas distribution pipeline. So, mass of gas is constant, but volume is decreased while gas 

density is according to this, increased. Operate pressure for distribution gas network is 4·10
5
 Pa 

abs i.e. 3·10
5
 Pa gauge and accordingly volume of gas is decreased four times compared to 

volume of gas at normal conditions.  

 

Inner surface of polyethylene pipes which are almost always used in gas distribution networks 

are practically smooth and hence flow regime in the typical network is hydraulically „smooth‟ 

(Sukharev et al 2005). For this regime is suitable Renouard‟s equation adjusted for natural gas 

flow (1): 

82.4

82.1
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2

2
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4810
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rn
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LQ
ppCF


        

 (1) 

Regarding to Renouard‟s formula has to be careful since it does not relate pressure drop but 

actually difference of the quadratic pressure at the input and the output of pipe. This means that 

C  is not actually pressure drop in spite of the same unit of measurement, i.e. same unit is used 

for the pressure (Pa). For gas pipeline calculation is very useful fact that when C →0 this 

consecutive means that also C→0. Parameter C  can be noted as pseudo-pressure drop. 

 

2.2. Liquid flow in pipes 
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In Renoard‟s equation adjusted for gas pipelines (1) friction factor is rearranged in the way to 

be expressed using other flow parameters and also using some thermodynamic properties of 

natural gas. Using formulation for Darcy friction factor in hydraulically smooth region 

Renouard suggests his equation for liquid flow (2): 

18.0Re

172.0
            (2) 

Then pressure drop (Ekinci and Konak 2009) can be found very easily using Darcy-Weisbach 

equation (3): 
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 (3) 

Renouard‟s equation (2) is based on power law. Liquid flow is better fit using some kind of 

logarithmic formula like Colebrook‟s (4): 



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
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







inD71.3Re

51.2
log2

1 


        (4) 

Colebrook‟s equation is suitable especially for flow through steel pipes (Colebrook 1939). 

Some researchers adopt a modification of the Colebrook equation, using the 2.825 constant 

instead of 2.51 especially for gas flow calculation (Haaland 1983, Coelho and Pinho 2007). 

 

In the case of waterworks, pressures will also be expressed in Pa, not in meter (m) 

equivalents. In that way, clear comparison with gas distribution network can be done. 

Pressures expressed in Pa can be very easily recalculated in heads expressed in meters (m) for 

water networks knowing water density. Example network is located in a single-flat area with 

no variation in elevation (otherwise the correction term must be used which is significant for 

water network). 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 

 

3. Looped pipeline networks for distribution of fluids 

A pipeline network is a collection of elements such as pipes, compressors, pumps, valves, 

regulators, tanks, and reservoirs interconnected in a specific way. In this article focus is on 

pipes. The behavior of the network is governed by the specific characteristics of the elements 

and how the elements are connected together. Our assumption is that pipes are connected in a 

smooth way, i.e. so called minor hydraulic loses are neglected. Including other elements 

different than pipes is a subject of sufficient diversity and complexity to merit a separate 

review. 

 

The analysis of looped pipeline systems by formal algebraic procedures is very difficult if the 

systems are complex. Electrical models had been used in study of this problem in the time 

before advanced computer became available as background to support demandable numerical 

procedures (Mah and Shacham 1978). Here presented methods use successive corrections or 

better to say these methods require iterative procedure. The convergence properties of 

presented methods are the main subject of this article. All of such methods can be divided into 

two groups (1) Methods based on solution of the loop equations, and (2) Methods based on 

solution of the node equations. 

 

Most of the methods used commonly in engineering practice belong to the group based on 

solution of the loop equations. Such method presented in this paper is Hardy Cross method 

(Cross 1936). Method of Andrijašev is variation of Hardy Cross method (Andrijašev 1964)
1
. 

                                                
1
 There are some difficulties with citation of Russian methods. Both methods, Lobačev and 

Andrijašev, are actually from 1930‟s but original papers from Soviet time are problem to be 

found. Many books in Russian language explain methods of Lobačev and Andrijašev but in 

these books reference list is not available. 
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Contemporary with Hardy Cross, soviet author V.G. Lobačev (Latišenkov and Lobačev 1956) 

developed very similar method compared to original Hardy Cross method. Modified Hardy 

Cross method proposed Epp and Fowler (1970) which considers entire system simultaneously 

is also sort of loop method. Node-Loop method proposed by Wood and Charles (1972) and 

later improved by Wood and Rayes (1981) is combination of the loop and node oriented 

methods, but despite of its name is essentially belong to the group of loop methods. Node-

Loop method is based on solution of the loop equations while the node equations are also 

involved in calculation. Only Node method proposed by Shamir and Howard (1968) is real 

representative of node oriented methods. Node method uses idea of Hardy Cross but to solve 

node equations instead of loops ones. Improved Node method uses similar idea as Epp and 

Fowler (1970) suggested for the improvement of original Hardy Cross method, but of course 

here applied to the Node method. 

 

Example network with three loops is shown in the figure 1. Before calculation, maximal 

consumption for each node including one of more inlet nodes has to be determined. Pipe 

diameters and node inputs and outputs cannot be changed during the iterative procedure. Goal 

is to find final flow distribution for this pipeline system (simulation problem). 

 

Figure 1. Example of pipeline network 

 

Pipe lengths and pipes diameters are listed in figure 1. Final flows do not depend on first 

assumed fluid flows per pipes in the case of loop oriented methods or on first assumed 

pressure drops or pseudo-pressure drops in the case of node oriented methods. To have a 

better appreciation of the utility of these representations, first will be considered the laws that 

govern flow rates and pressure drops in a pipeline network. These are the counterparts to 
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Kirchhoff‟s laws for electrical circuits and accordingly for hydraulic networks, namely, (i) the 

algebraic sum of flows at each node must be zero; and (ii) the algebraic sum of pressure drops 

for water network (i.e. pseudo-pressure drop for gas network) around any cyclic path (loop) 

must be approximately zero. For a hydraulic network, fact that both laws are satisfied 

simultaneously means that calculation for steady state for simulation problem is finished. 

 

3.1 Methods based on solution of the loop equations 

Loops are sometimes referred also to as contours or paths. Note that contours and loops are 

not synonyms in the M.M. Andrijašev method. 

 

For the loop oriented methods first Kirchhoff‟s law must be satisfied for all nodes in all 

iterations. Second Kirchhoff‟s law for each loop must be satisfied with acceptable tolerance at 

the end of the calculation. Or, in other words, final flows are these ones which values are not 

changed between two successive iterations (must be satisfied for flow in each pipe). 

 

In a loop oriented methods, first initial flow pattern must be chosen to satisfied first 

Kirchhoff‟s law. Endless number of flow combinations can satisfy this condition. Someone 

can conclude that it is crucial to start with good initial guesses. But, how does one obtain 

good initial guesses? And how sensitive are the methods to the initial guesses? Answer is that 

initial flow pattern does not have significant influence on convergence properties of observed 

method. These indicate that the choice of initial flows is not critical and need to be chosen 

only to satisfied first Kirchhoff‟s law for all nodes (Gay and Middleton 1971). It would be 

equally satisfactory to generate the initial distribution within the computer program. Initial 

flow pattern for our example network is shown in the figure 2. Loops are also defined in the 

figure 2.  
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Figure 2. Example network initial parameters prepared for loop oriented calculation 

 

Results of calculation using original Hardy Cross, Modified Hardy Cross, M.M. Andrijašev 

method are not actually flows Q but correction of flows ΔQ calculated for each loop. These 

corrections have to be added algebraically to flows from previous iteration for each pipe 

according to specific rules. A pipe common to two loops receives two corrections. The upper 

plus or minus sign (shown in tables 1-8) indicates direction of flow in that conduit in these 

two loops and is obtained from Q for previous iteration. The upper sign is the same as the sign 

in front of Q if the flow direction in each loop coincides with the assumed flow direction in 

the particular loop under consideration, and opposite if it does not. The lower sign is copied 

from the primary loop for this correction (sign from the loop where this correction is first, 

sign preceding the first iteration from adjacent contour for the conduit taken into 

consideration). The rules for sign of corrections ΔQ2 are: (1). the algebraic operation for 

correction ΔQ1 should be the opposite of its sign; i.e. add when the sign is minus. (2). the 

algebraic operation for corrections ΔQ2 should be the opposite of their lower signs when their 

upper signs are the same as the sign in front of Q, and as indicated by their lower signs when 

their upper signs are opposite to the sign in front of Q. For details of sing of corrections 

consult paper of Brkić (2009) and article Corfield et al (1974) from Gas Engineers Handbook. 

 

3.1.1 Hardy Cross method for the pipeline calculation 

Hardy Cross, American engineer, developed method in 1936, later named after him (Cross 

1936). Hardy Cross calculation for gas pipeline network is shown in table 1 and for water 

network in table 2. Only two iterations will be shown in details. Flow Q1 calculated in first 

iteration become initial flow Q for second iteration. The plus or minus preceding the flow Q, 
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indicates the direction of the conduit flow for the particular loop (Figure 2). A plus sign 

denotes clockwise flow in the conduit within the loop; a minus sign, counter-clockwise. A 

flow correction ΔQ1 as shown in table 1 and 2 is computed for each loop. This correction 

must be subtracted algebraically from the assumed gas flow according to specific rules 

explained previously. 

 

Correction for each loop ΔQ1 is calculated using first derivative of pressure function C for 

pipes defined by Renouard‟s equation for gas networks (5) and derivative of pressure drop Δp 

for pipes defined by Darcy-Weisbach for water networks (6) where flow Q is treated as 

variable: 
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Derivative for loops is calculated using assumed loop shown in the figure 2 with no reference 

to direction. For the loop I this derivative for gas network (7) and for water network (8) can 

be written: 
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In presented example loop I begins and ends in node II via pipes 3, 4, and 7. 

 

Correction of flow (ΔQ1) for each loop can be calculated (9): 

'1
F

F
Q 

          (9) 

 

Table 1. Hardy Cross calculation for example gas network 

 

Table 2. Hardy Cross calculation for example water network 

 

In the original Hardy Cross method, each loop correction is determined independently of 

other loops. Original Hardy Cross method is a sort of Newton–Raphson method but used to 

solve each single loop equation solely, one by one. Hence, Hardy Cross method is also known 

as the single contour adjustment method. In matrix form, original Hardy Cross method for the 

example network for water distribution from figure 1 can be noted as (10): 
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Using numerical values from table 2 for the first iteration of calculation of water network matrix 

equation can be written (11): 
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Then set of correction for water network calculation in the first iteration is [ΔQI, ΔQII, ΔQIII]
T
=[-

12306·10
-5
, 9349·10

-5
, 1068·10

-5
]
T
 which is identical as in table 2. 

 

3.1.2 Modified Hardy Cross method for the pipeline calculation 

Modified Hardy Cross method (somewhere called improved) is also known as the 

simultaneous loop adjustment method. As seen in figure 1, several loops have common pipes, 

so corrections to these loops will cause energy losses around more than one loop. In figure 1, 

pipe 4 belongs to two loops (loop I and II), pipe 7 to loop I and III, and finally pipe 5 to II and 

III. Modified Hardy Cross method is a sort of Newton–Raphson method used to solve 

unknown flow corrections taking into consideration whole system simultaneously. Epp and 

Fowler (1970) gave idea for this approach. To increase efficiency of Hardy Cross method 

zeros from non-diagonal term in matrix equation (10) will be replaced to include influence of 

pipes mutual with adjacent loop (12). 
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Presented matrix is symmetrical; for example (13): 
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This is because pipe 7 is mutual for two adjacent loops (loop I and loop III). Non-diagonal 

terms have always opposite sign than diagonal. Spatial networks common for ventilation 

systems in buildings or mines are exceptions (Brkić 2009). 

 

Using numerical values from table 2 for the first iteration of calculation of water network matrix 

equation can be written (14): 
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First two iterations from our example using the modified Hardy Cross method is shown in 

table 3 for gas network and in table 4 for water network. 

 

Table 3. Calculation after the modified Hardy Cross method for example gas network 

 

Table 4. Calculation after the modified Hardy Cross method for example water network 

 

3.1.2 Modified Andrijašev method for the pipeline calculation 

Andrijašev method can be used in the formulation as in the original Hardy Cross method and 

as in Modified Hardy Cross method. Here it will be given in notation as improved method 

because this approach shows better convergence performance (example for two iteration of 

gas network calculation is shown in table 5 and for water network in table 6). It can be noted 

that some pipes in table 1-4 received only one correction per iteration (for example pipe 3 in 

contour I). This means that pipe 3 belongs only to one loop. In method of M.M. Andrijašev 

contours can be defined to include few loops. Thus, contours can be defined in other way and 

then each pipe in the network belongs to two contours (Figure 3). Loop is not synonym with 
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contour in M.M. Andrijašev method as in Hardy Cross approach. Andrijašev‟s contour will be 

marked with special sign (
O
). 

 

Figure 3. Contours for method of M.M. Andrijašev calculation 

 

Now contour I
O
 (red circuit in figure 3) starting and ending in node I via pipes 4, 5. 6, 8, 3, 

contour II
O
 (green circuit in figure 3) starting and ending in referent node via pipes 1, 6, 8, 7, 

4, 2, and finally contour III
O
 (blue circuit in figure 3) starting and ending in referent node via 

pipes 1, 5, 7, 3, 2. 

 

Matrix formulation of this method for example gas network can be written as (15): 
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Here has to be very careful because non-diagonal terms are not always negative as in 

modified Hardy Cross method (16): 
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For example term in first row and second column from (16) is 

25862392143=4298435730+22897756035-1333799622 according to table 5. Same value has 

term in second row, first column, etc. Presented matrix is symmetrical. Similar can be done 

for water network (table 6). 

 

Table 5. Calculation after Modified M.M. Andrijašev method for example gas network 
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Table 6. Calculation after Modified M.M. Andrijašev method for example water network 

 

M.M. Andrijašev method does not improve convergence properties compared with Modified 

Hardy Cross method. It only complicates calculation of non-diagonal terms in the matrix 

which is used for calculation. Furthermore, calculation of single-flat pipeline networks using 

M.M. Andrijašev method is equally complex as calculation of spatial, multidimensional 

network, using Modified Hardy Cross method (Brkić 2009). 

 

3.2 Methods based on solution of the node equations 

Nodes are sometimes also referred to as junctions, points or vertices. 

 

Shamir and Howard (1968) introduced first node oriented method. For the node oriented 

methods second Kirchhoff‟s law must be satisfied for each loop in all iterations. First 

Kirchhoff‟s law for each node must be satisfied with acceptable tolerance at the end of the 

calculation. Here will be presented only one method. Improvement of presented method is 

done according to the same idea as used to improve original Hardy Cross method but here 

applied to the matrix solution for the node equations. 

 

3.2.1 Node method 

Pipe equations in previous text were expressed as Δp=F(Q) for waterworks, or 

C= 2

2

2

1 pp  =F(Q) for gas networks. These relations can be rewritten in form as Q=f(Δp) for 

waterworks or Q=f(C) for gas networks. After that, Renouard‟s equation (1) can be 

rearranged (17): 
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Similar, can be done for Darcy-Weisbach equation (18): 
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In Node method, (C) for each pipe in a gas network and (Δp) for each pipe in a water network 

has to be assumed, not flows. These assumed functions of pressure must be chosen to satisfy 

second Kirchhoff‟s law (Figure 4). First Kirchhoff‟s law will be fulfilled with demanded 

tolerance at the end of calculation. For gas network, correction of C, noted as ΔC must be 

calculated, and for water network, correction of Δp, here noted as ΔΔp. Same algebraic rules as 

for loop oriented methods are valid. Correction ΔC or ΔΔp will be calculated using first 

derivative of Q=f(Δp) for waterworks and Q=f(C) for gas networks, where Δp, i.e. C is treated 

as variable (19): 

'f

f
x 

          (19) 

In previous equation x is Δp or C. Example network adjusted for node oriented calculation is 

shown in figure 4 (red letters for gas network and blue for water network). 

 

Figure 4. Example of pipeline gas network with three loops adjusted for node oriented 

methods 

 

Calculation of the network using non-improved Node method is not shown here. 

 

3.2.2 Modified Node method 

Modified Node method is also referred to as the simultaneous node adjustment method. For 

the improvement of Node method, same idea as for the improvement of the Hardy Cross 
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method is used. One node must be chosen to be omitted from the calculation shown in table 7 

and 8, because linear independency among node equations is preserved in that way (Mathews 

and Köhler 1995, Mah and Shacham 1978). More details about graph theory of networks will 

be explained in further text (section 3.4). Gas network calculation after Modified Node 

method is shown in table 7: 

 

Table 7. Calculation after Modified Node method for example gas network with three loops 

 

Corrections in the table 7 and 8 are calculated using matrix equation (20): 
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When non-diagonal terms in the first matrix (21) are equalized with zero, results are equal as for 

Node method in basic form (19). For the first iteration, numerical values for the matrix equation 

are extracted from table 6 (21): 
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For the node oriented calculation applied for water networks, pressure function (C) must be 

replaced with pressure drop (Δp). Further analogy is clear (Table 8). 

 

Table 8. Calculation after Modified Node method for example water network with three loops 
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3.4 Node-Loop method 

Conditionally, Node-Loop method can be sorted in the group of methods based on solution of 

the loop equations according to the previous discussion, but better solution is to be treated as 

combination of the loop and node oriented methods as its name unambiguously suggest. 

Node-Loop method is also known as the flow adjustment method. 

 

Wood and Charles (1972) developed the flow adjustment method by coupling the loop 

equations with the node equations. Wood and Rayes (1981) improved this method. Rather 

than solve for loop corrections, in this method, conservation of energy around a loop is 

written directly in the terms of the pipe flow rates. Final result after this method is not flow 

correction, but even better flow itself. 

 

Pipeline network with three loops and six nodes is used as example in this article. Graph has 

X branches (pipes) and Y nodes where in our example, X=8 and Y=6. Graph with Y nodes (in 

our case 6) has Y-1 independent nodes (in our case 5) and X-Y+1 independent loops (in our 

case 3). Tree is a set of connected branches chosen to connect all nodes, but not to make any 

closed path (not to form a loop). Branches, which do not belong to a tree, are links (number of 

links are X-Y+1). Loops in the network are formed using pipes from tree and one more 

chosen among the link pipes. Number of the loops is determined by number of links. Network 

from example has six nodes and five independent nodes. One node can be omitted from 

calculation while no information on the topology in that way will be lost. Rows in the node 

matrix with all node included are not linearly independent. To obtain linear independence any 

row of the node matrix has to be omitted. For example, pipe 6 is between node IV and V, and 

reasonable assumption is that if node IV is output node for flow through pipe 6, then node V 

must be input node for flow through this pipe. In our example, node VI will be omitted. First 
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Kirchhoff's law for the initial flow pattern shown in figure 2 can be written using set of 

equations (22): 
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Node VI will be omitted from the node matrix to assure linear independency of the rows as 

shown in figure 4 (23): 
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First Kirchhoff's law must be fulfilled in all iterations for all nodes. Second Kirchhoff's law 

for the initial water flow pattern shown in the figure 1 can be written using set of equations 

(24): 
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Second Kirchhoff's law for the initial flow pattern shown in the figure 1 also can be noted in 

matrix form using loop matrix (25): 
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Second Kirchhoff's law must be fulfilled for all loops at the end of calculation with demanded 

accuracy (i.e. FI→0, FII→0 and FIII→0). 

 

In Node-Loop method these two matrices become one with some modifications. The nodes 

and the loops equations shown in previous text here will be united in one coherent system by 

coupling these two set of equations. To introduce matrix calculation, the node-loop matrix 

[NL], matrix of calculated flow in observed iteration [Q], and [V] matrix will be defined (26):  

 

 
 
 










































'

88

'

77

'

66

'

55

'

55

'

44

'

22

'

11

'

77

'

44

'

33

FFFFFFFFF

FFFFFFFFF

FFFFFFF

Q

Q

Q

Q

Q

V

III

II

I

V

IV

III

II

I

   (26) 

Sign minus preceding some of the flows Q in matrix [V] means that this particular Q is not 

consumption (sing minus represent inlet of fluid). Node-Loop matrix [NL] can be defined 

using node matrix, loop matrix and first derivative of Renouard‟s function for gas pipes or of 

Darcy-Weisbach for water networks, as follows (27): 
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Further, vector [Q] of the unknown flows can be calculated in the first iteration (28).  
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Possible sign minus in a front of flow Q in the matrix [Q] means that calculated flow direction 

is opposite compared to shown one in the previous iteration (or in the figure 1 in our case for 

the first calculated values of flows compared with initials flow pattern). If all values of 

pressure drops sums calculated after (24) are not approximate zero with reasonable accuracy, 

calculation has to be repeated using values calculated in previous iteration. At the end of 

calculation calculated set of flows [Q] stays unchanged. 

 

Here will be used values from table 1 for gas network (29) and from table 2 for water network 

(30) as example. These values are valid for the first iteration. First five rows (first matrix) are 

from node equation, and next three is from loop equation but multiplied with first derivate 

marked in tables as F‟: 
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 (30) 

For gas network last three rows are calculated as follows using values from table 1,  

for loop I; -2988241676= 

=-3644197165+(-0.194·11839776055+0.027·1333799622+(-0.305)·14293015047) 

for loop II; 923187587=1125838521+ 

+(0.277·8812326713+(-0.277·1314432601)+(-0.027)·1333799622)+0.027·119798452) 

for loop III; 300557365=366533372+ 

+(-0.027·119798452+0.027·4298435730+0.305·14293015047+(-0.166·22897756035)) 

 

After first iteration for gas network vector of flows is [0.198409265, 0.357146291, 

0.043307855, 0.25828288, -0.094469817, 0.07065686, 0.197298048, 0.123787585]
T
. Minus 

in front of flow in pipe 5 means: change assumed flow direction from previous iteration. After 

first iteration for water network vector of flows is [0.197719798, 0.357835758, 0.052496097, 

0.249784106, -0.092806697, 0.068304272, 0.204133702, 0.126140172]
T
. Flows are 

expressed in m
3
/s. 

 

Excellent book for waterworks calculation by Boulos et al. (2006) can be recommended for 

further reading. In this book, authors instead to omit one node in the node matrix to preserve 
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linear independency of rows in this matrix introduce one pseudo-loop in loop matrix. This 

procedure is not practical because at least two nodes with equal pressure must be found in the 

network. This is not always possible. Further in that way the node-loop matrix has two additional 

rows which could be avoided. Mathews and Köhler (1995) in his discussion use simplest way, 

i.e. they omit one row. 

 

4. Comparison of solution techniques for looped piping networks 

Final flows are unique after all presented methods, and will be listed in table 9, both for water 

and for gas network. 

 

Table 9. Final flows for network presented in this paper 

 

Each method has advantages and shortcomings. Convergence performances will be compared 

for all presented methods in figure 5. Note that Modified Node method cannot be compared 

literary because initial values cannot be equalized. In all other methods initial patterns are 

given in the form of flows and equalized, while in Node method initial pattern is in the form 

of pressures (better to say function of pressure). 

 

Figure 5. Comparisons of convergence for presented methods (gas network) 

 

Best way to compare water and gas distribution network is to compare velocity of gas and 

water through pipes. For water, this can be done using (31): 
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Velocity of gaseous fluids depends on the pressure in pipe since they are compressible (32): 
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Velocities for water and gas for calculated flows through the pipes in our example is listed in 

table 10: 

 

Table 10: Velocities for water and gas for calculated flows from example network 

 

5. Conclusion 

Comparison between analyzed methods was carried out, taking as a criterion the number of 

iteration to achieve final results. Modified Hardy Cross method, Modified M.M. Andrijahshev 

method and Node-Loop method have equal performances according to above adopted criterion. 

For more complex networks, using Node-Loop method, number of required iterations is smaller 

even compared with Modified Hardy Cross method. Among these three methods, Node-Loop 

method is superior because it does not require complex numerical scheme for algebraic addition 

of corrections in each of iterations. In Node-Loop method, final results of each of the iterations 

are flows directly and not correction of flows. Modified Andrijašev method is more complex 

compared with Modified Hardy Cross method but without any improvement in the properties of 

the convergence. Node method has the worst performance of convergence, but this method is 

different in its approach compared with all other methods shown in this paper. Node method 

cannot be rejected easily based only on calculation shown in this paper. Hardy Cross method in 

original form has historical value and should be replaced with Modified Hardy Cross method, or 

even better with Node-Loop method. 

 

Node-Loop method, presented among others in the text, is powerful numerical procedure for 

calculation of flows in looped fluid distribution networks. Main advantage is that flow in each 

pipe can be calculated directly, which is not possible after other available methods. In other 
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methods, results of calculation are flow corrections which have to be added to flows calculated in 

previous iteration using complex algebraic rules. Node-Loop method is recommended to be 

used. 

 

In the real network, consumers are not concentrated in the nodes. This can cause two-way flow 

in some pipes (Brkić 2009). This can cause disturbance in convergence properties of certain 

method. In such case, method should be changed. Some details on convergence properties can be 

found in the paper of Mah (1974), Mah and Lin (1980) and Altman and Boulos (1995). 

Simulation problem today can be solved using different software (Huddleston et al 2004, 

Lopes 2004) in which can be implemented shown methods. Method for solution of pipe 

equations proposed by Hamam and Brameller (1971) for gas networks and Todini and Pilati 

(1988) for water networks is available, but not shown here.  
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Notations: 

p-pressure (Pa) 

Δp-pressure drop (Pa) 

C-pressure function in gas pipelines (Pa
2
) 

F-pressure function C or Δp (Pa
2
 or Pa) 

f- flow function (m
3
/s) 

λ-Darcy friction factor (-) 

L-pipe length (m) 
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ρ-water density (kg/m
3
) 

ρr-relative gas density (-) 

Q-flow (m
3
/s) 

D-pipe diameter (m) 

Re-Reynolds number (-) 

ε-pipe roughness (m) 

ΔQ-correction of flow (m
3
/s) 

Δx-correction of pressure function (Pa
2
 or Pa) 

π~3.1415 

subscripts  

n-normal (~101325 Pa, ~274 K) 

in-inner 

r-relative 

w-water 

g-gas 

 

References: 

Altman T, Boulos PF (1995) Convergence of Newton method nonlinear network analysis. 

Math Comput Model 21(4):35–41 doi:10.1016/0895-7177(95)00004-L 

Andrijašev MM. (1964) Hydraulics calculation of water distribution networks. Stroizdat, 

Moscow (in Russian) 

Aynsley RM (1997) A resistance approach to analysis of natural ventilation airflow networks. 

J Wind Eng Ind Aerod 67-68:711-719 doi:10.1016/S0167-6105(97)00112-8 

Boulos PF, Lansey KE, Karney BW (2006) Comprehensive water distribution systems 

analysis handbook for engineers and planners. MWH Soft, Hardback 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

27 

 

Brkić D (2009) An Improvement of Hardy Cross method applied on looped spatial natural gas 

distribution networks. Appl Energ 86(7-8):1290-1300 doi:10.1016/j.apenergy.2008.10.005 

Coelho PM, Pinho C (2007) Considerations about equations for steady state flow in natural 

gas pipelines. J Braz Soc Mech Sci Eng 29(3):262–273 doi:10.1590/S1678-

58782007000300005 

Colebrook CF (1939) Turbulent flow in pipes with particular reference to the transition region 

between the smooth and rough pipe laws. J Inst Civil Eng (London) 11(4):133-156 

doi:10.1680/ijoti.1939.13150 

Corfield G, Hunt BE, Ott RJ, Binder GP, Vandaveer FE (1974) Distribution design for 

increased demand. In: Segeler CG (ed) Gas Engineers Handbook, Industrial Press, New York, 

pp 63–83 

Cross H (1936) Analysis of flow in networks of conduits or conductors. Engineering 

Experimental Station 286(34):3–29 

Ekinci Ö, Konak H (2009) An optimization strategy for water distribution networks. Water 

Resour Manag 23(1):169-185 doi:10.1007/s11269-008-9270-8 

Epp R, Fowler AG (1970) Efficient code for steady flows in networks. J Hydraul Div ASCE 

96(1):43–56 

Farshad F, Rieke H, Garber J (2001) New developments in surface roughness measurements, 

characterization, and modeling fluid flow in pipe. J Petrol Sci Eng 29(2):139–150 

doi:10.1016/S0920-4105(01)00096-1 

Gay B, Middleton P (1971) The solution of pipe network problems. Chem Eng Sci 26(1):109-

123 doi:10.1016/0009-2509(71)86084-0 

Haaland SE (1983) Simple and explicit formulas for friction factor in turbulent pipe flow, J. 

Fluid. Eng. T. ASME 105(1): 89-90 doi:10.1115/1.3240948 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

28 

 

Hamam YM, Brameller A (1971) Hybrid method for the solution of piping networks. Proc. 

IEE 118(11):1607-1612 doi:10.1049/piee.1971.0292 

Huddleston DH, Alarcon VJ, Chen W (2004) Water distribution network analysis using 

Excel. J Hydraul Eng ASCE 130(10):1033-1035 doi:10.1061/(ASCE)0733-9429(2004) 

Kumar SM, Narasimhan S, Bhallamudi SM (2010) Parameter estimation in water distribution 

networks. Water Resour Manag 24(6):1251–1272 doi:10.1007/s11269-009-9495-1 

Latišenkov AM, Lobačev VG (1956) Hydraulics. Gosstroizdat, Moscow (in Russian) 

Lopes AMG (2004) Implementation of the Hardy-Cross method for the solution of piping 

networks. Comput Appl Eng Educ 12(2):117-125 doi:10.1002/cae.20006 

Mah RSH (1974) Pipeline network calculations using sparse computation techniques. Chem 

Eng Sci 29(7):1629-1638 doi:10.1016/0009-2509(74)87014-4 

Mah RSH, Lin TD (1980) Comparison of modified Newton‟s methods. Comput Chem Eng 

4(2):75-78 doi:10.1016/0098-1354(80)80018-4 

Mah RSH, Shacham M (1978) Pipeline network design and synthesis. Adv in Chem Eng 

10:125-209 doi:10.1016/S0065-2377(08)60133-7 

Mathews EH, Köhler PAJ (1995) A numerical optimization procedure for complex pipe and 

duct network design. Int J Num Method Heat Fluid Flow 5(5):445-457 

doi:10.1108/EUM0000000004072 

Pretorius JJ, Malan AG, Visser JA (2008) A flow network formulation for compressible and 

incompressible flow. Int J Num Method Heat Fluid Flow 18(2):185-201 

doi:10.1108/09615530810846338 

Shamir U, Howard CDD (1968) Water distribution systems analysis. J Hydraul Div ASCE 

94:219–234 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

29 

 

Sukharev MG, Karasevich AM, Samoilov RV, Tverskoi IV (2005) Investigation of the 

hydraulic resistance in polyethylene pipelines. J Eng Phys Thermophys 78(2):350-359 

doi:10.1007/s10891-005-0068-8 

Todini E, Pilati S (1988) A gradient method for the analysis of pipe networks. In “Computer 

Applications for Water Supply and Distribution”, Vol. 1, John Wiley and Sons, pp. 1–20. 

Wang Y-J, Hartman HL (1967) Computer solution of three-dimensional mine ventilation 

networks with multiple fans and natural ventilation. Int J Rock Mech Min Sci 4(2):129-154 

doi:10.1016/0148-9062(67)90039-3 

Wood DJ, Charles COA (1972) Hydraulic network analysis using linear theory. J Hydraul 

Div ASCE 98(7):1157–1170 

Wood DJ, Rayes AG (1981) Reliability of algorithms for pipe network analysis. J Hydraul 

Div ASCE 107(10):1145–1161 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

30 

 

List of figures: 

Figure 1. Example of pipeline network 

Figure 2. Example network initial parameters prepared for loop oriented calculation 

Figure 3. Contours for method of M.M. Andrijašev calculation 

Figure 4. Example of pipeline network with three loops adjusted for node oriented methods 

Figure 5. Comparisons of convergence for presented methods (gas network) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

31 

 

List of tables: 

Table 1. Hardy Cross calculation for example gas network 

Table 2. Hardy Cross calculation for example water network 

Table 3. Calculation after the modified Hardy Cross method for example gas network 

Table 4. Calculation after the modified Hardy Cross method for example water network 

Table 5. Calculation after Modified M.M. Andrijašev method for example gas network 

Table 6. Calculation after Modified M.M. Andrijašev method for example water network 

Table 7. Calculation after Modified Node method for example gas network with three loops 

Table 8. Calculation after Modified Node method for example water network with three loops 

Table 9. Final flows for network presented in this paper 

Table 10: Velocities for water and gas for calculated flows from example network 

 



line figure 1 DB
Click here to download high resolution image

http://www.editorialmanager.com/warm/download.aspx?id=38087&guid=f6095a03-75e6-4993-bfff-2a389b746b69&scheme=1


line figure 2 DB
Click here to download high resolution image

http://www.editorialmanager.com/warm/download.aspx?id=38088&guid=a2a31f6b-0416-408c-ba38-23ab5b0093d9&scheme=1


colour figure 3 DB
Click here to download high resolution image

http://www.editorialmanager.com/warm/download.aspx?id=38089&guid=d1e3086b-c9c7-4803-ad24-ebc58584bf18&scheme=1


colour figure 4 DB
Click here to download high resolution image

http://www.editorialmanager.com/warm/download.aspx?id=38090&guid=b9aa99f2-c5bc-414d-9552-9c2b5cdc79c0&scheme=1


colour figure 5 DB
Click here to download high resolution image

http://www.editorialmanager.com/warm/download.aspx?id=38091&guid=ac8475a7-d70a-4a61-87e3-de22d95c3281&scheme=1


Table 1. The Hardy Cross calculation for example gas network 
 Iteration 1  Iteration 2    

Loop Pipe aQ bC=
2 2

1 2p p  

F’=

 C Q

Q




 

cΔQ1=
'

F

F
 

dΔQ2 
eQ1=Q  bC=

2 2

1 2p p  

F’=

 C Q

Q




 

cΔQ1=
'

F

F
 

dΔQ2
 Q2=Q 

I 

3 -19444·10-5 -1264933339 11839776055 +13268·10-5 - -6177·10-5  -156904917 4623293467 -1128·10-5 - -7305·10-5 

4 +2778·10-5 +20357137 1333799622 +13268·10-5 +9722·10-5  +25767·10-5  +1173109335 8285863414 -1128·10-5 -5572·10-5= +19067·10-5 

7 -30556·10-5 -2399620963 14293015047 +13268·10-5 +881·10-5‡ -16407·10-5  -773797561 8583648143 -1128·10-5 -4154·10-5  -21689·10-5 

  Σ FI=-3644197165 27466590725     FI=+242406855 21492805024    

II 

1 +27778·10-5 +1344982709 8812326713 -9722·10-5 - +18056·10-5  +614087396 6189913452 +5572·10-5 - +23628·10-5 

2 -27778·10-5 -200615476 1314432601 -9722·10-5 - -37500·10-5  -346390930 1681162091 +5572·10-5 - -31927·10-5 

4 -2778·10-5 -20357137 1333799622 -9722·10-5 -13268·10-5  -25767·10-5  -1173109335 8285863414 +5572·10-5 +1128·10-5‡ -19067·10-5 

5 +2778·10-5 +1828425 119798452 -9722·10-5 +881·10-5  -6063·10-5f  -7569671 227216622.4 +5572·10-5 -4154·10-5  -4645·10-5 

  Σ FII=+1125838521 11580357388     FII=-912982541 16384155579    

III 

5 -2778·10-5 -1828425 119798452 -881·10-5 +9722·10-5‡ +6063·10-5f  +7569671 227216622 +4154·10-5 -5572·10-5= +4645·10-5 

6 +2778·10-5 +65604940 4298435730 -881·10-5 - +1897·10-5  +32767180 3143915857 +4154·10-5 - +6051·10-5 

7 +30556·10-5 +2399620963 14293015047 -881·10-5 -13268·10-5= +16407·10-5  +773797561 8583648143 +4154·10-5 +1128·10-5  +21689·10-5 

8 -16667·10-5 -2096864105 22897756035 -881·10-5 - -17548·10-5  -2302927589 23885524961 +4154·10-5 - -13394·10-5 

  Σ FIII=+366533372 41609005264     FIII=-1488793175 35840305583    

Pipe lengths and diameters are shown in figure 1 and initial flow patterna in figure 2; 6 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) 
bthis is F calculated using (1), calso using (9), dΔQ2 is ΔQ1 from adjacent loop, efinal calculated flow in the first iteration is used for the calculation in the second iteration, fopposite flow direction than in 

previous iteration 
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Table 2. The Hardy Cross calculation for example water network 
 Iteration 1  Iteration 2    

Loop Pipe aQ bΔp=p1-p2 

F’=

 p Q

Q




 

cΔQ1=
'

F

F
 

dΔQ2 
eQ1=Q  bΔp=p1-p2 

F’=

 p Q

Q




 

cΔQ1=
'

F

F
 

dΔQ2
 Q2=Q 

I 

3 -19444·10-5 -5279095 54299272 +12306·10-5 - -7138·10-5  -750378 21023936 -400·10-5 - -7538·10-5 

4 +2778·10-5 +69146 4978573 +12306·10-5 +9349·10-5  +24433·10-5  +4596449 37625131 -400·10-5 -4573·10-5= +19459·10-5 

7 -30556·10-5 -10718549 70157780 +12306·10-5 +1068·10-5‡ -17181·10-5  -3450640 40167998 -400·10-5 -3920·10-5  -21501·10-5 

  Σ FI=-15928498 129435625     FI=+395430 98817066    

II 

1 +27778·10-5 +5919850 42622924 -9349·10-5 - +18429·10-5  +2639603 28646495 +4573·10-5 - +23002·10-5 

2 -27778·10-5 -816585 5879413 -9349·10-5 - -37127·10-5  -1443784 7777597 +4573·10-5 - -32553·10-5 

4 -2778·10-5 
-69146 4978573 

-9349·10-5 
-12306·10-

5  

-24433·10-5  -4596449 37625131 +4573·10-5 +400·10-5‡ -19459·10-5 

5 +2778·10-5 +5967 429677 -9349·10-5 +1068·10-5  -5503·10-5f  -21346 775842 +4573·10-5 -0.03920  -4850·10-5 

  Σ FII=+5040086 53910587     FII=-3421977 74825067    

III 

5 -2778·10-5 -5967 429677 -1068·10-5 +9349·10-5‡ +5503·10-5f  +21346 775842 +3920·10-5 -4573·10-5= +4850·10-5 

6 +2778·10-5 +232186 16717415 -1068·10-5 - +1709·10-5  +92718 10848205 +3920·10-5 - +5629·10-5 

7 +30556·10-5 +10718549 70157780 -1068·10-5 -12306·10-5= +17181·10-5  +3450640 40167998 +3920·10-5 +400·10-5  +21501·10-5 

8 -16667·10-5 -8874257 106491089 -1068·10-5 - -17735·10-5  -10028129 113088168 +3920·10-5 - -13815·10-5 

  Σ FIII=+2070510 193795963     FIII=-6463424 164880214    

Pipe lengths and diameters are shown in figure 1 and initial flow patterna in figure 2; 6 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) 
bthis is F calculated using (3), calso using (9) or (10), dΔQ2 is ΔQ1 from adjacent loop, efinal calculated flow in the first iteration is used for the calculation in the second iteration, fopposite flow direction 

than in previous iteration 

 

 

table 2 DB
Click here to download table: Table 2 DB.doc

http://www.editorialmanager.com/warm/download.aspx?id=38093&guid=d4a92e5b-a469-4d40-8d71-ff607559c836&scheme=1


Table 3. Calculation after the modified Hardy Cross method for example gas network 
 Iteration 1  Iteration 2    

Loop Pipe aQ bC=
2 2

1 2p p  

F’=

 C Q

Q




 

cΔQ1 
dΔQ2 

eQ1=Q  bC=
2 2

1 2p p  

F’=

 C Q

Q




 

cΔQ1 
dΔQ2

 Q2=Q 

I 

3 -19444·10-5 -1264933339 11839776055 +15114·10-5 - -4331·10-5  -82226369 3455539181 +2078·10-5 - -2253·10-5 

4 +2778·10-5 +20357137 1333799622 +15114·10-5 +7937·10-5  +25828·10-5  +1178151884 8301891430 +2078·10-5 -5572·10-5= +22263·10-5 

7 -30556·10-5 -2399620963 14293015047 +15114·10-5 -4288·10-5  -19730·10-5  -1082435403 9985057887 +2078·10-5 -4154·10-5‡ -17620·10-5 

  Σ FI=-3644197166 27466590725     FI=+13490112 21742488499    

II 

1 +27778·10-5 +1344982710 8812326713 -7937·10-5 - +19841·10-5  +729037716 6687432899 +5643·10-5 - +25484·10-5 

2 -27778·10-5 -200615476 1314432601 -7937·10-5 - -35715·10-5  -316967670 1615251716 +5643·10-5 - -30072·10-5 

4 -2778·10-5 -20357137 1333799622 -7937·10-5 -15114·10-5  -25828·10-5  -1178151884 8301891430 +5643·10-5 +1128·10-5  -22263·10-5 

5 +2778·10-5 +1828426 119798452 -7937·10-5 -4288·10-5= -9447·10-5f  -16966070 326858346.3 +5643·10-5 -4154·10-5‡ -3772·10-5 

  Σ FII=+1125838522 11580357388     FII=-783047908 16931434392    

III 

5 -2778·10-5 -1828425 119798452 +4288·10-5 +7937·10-5‡ +9447·10-5f  +16966070 326858346.3 -32·10-5 -5572·10-5= +3772·10-5 

6 +2778·10-5 +65604940 4298435730 +4288·10-5 - +7066·10-5  +358812846 9242405949 -32·10-5 - +7034·10-5 

7 +30556·10-5 +2399620963 14293015047 +4288·10-5 -15114·10-5= +19730·10-5  +1082435403 9985057887 -32·10-5 +1128·10-5= +17620·10-5 

8 -16667·10-5 -2096864105 22897756035 +4288·10-5 - -12379·10-5  -1220331619 17942054130 -32·10-5 - -12411·10-5 

  Σ FIII=+366533372 41609005264     FIII=+237882701 37496376312    

Pipe lengths and diameters are shown in figure 1 and initial flow patterna in figure 2; 3 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) 
bthis is F calculated using (1), cusing (12) where (Δp) is replaced with (C), dΔQ2 is ΔQ1 from adjacent loop, efinal calculated flow in the first iteration is used for the calculation in the second iteration, fopposite 

flow direction than in previous iteration 
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Table 4. Calculation after the modified Hardy Cross method for example water network 
 Iteration 1  Iteration 2    

Loop Pipe aQ bΔp=p1-p2 

F’=

 p Q

Q




 

cΔQ1 
dΔQ2 

eQ1=Q  bΔp=p1-p2 

F’=

 p Q

Q




 

cΔQ1 
dΔQ2

 Q2=Q 

I 

3 -19444·10-5 -5279095 54299272 +14195·10-5 - -5250·10-5  -416024 15849700 +2505·10-5 - -2744·10-5 

4 +2778·10-5 +69146 4978573 +14195·10-5 +8006·10-5  +24978·10-5  +4800902 38440414 +2505·10-5 -5312·10-5= +22172·10-5 

7 -30556·10-5 -10718549 70157780 +14195·10-5 -4053·10-5  -20413·10-5  -4840373 47423556 +2505·10-5 -107·10-5  -18015·10-5 

  Σ FI=-15928498 129435625     FI=-455494 101713670    

II 

1 +27778·10-5 +5919850 42622924 -8006·10-5 - +19772·10-5  +3030676 30656275 +5312·10-5 - +25084·10-5 

2 -27778·10-5 -816585 5879413 -8006·10-5 - -35784·10-5  -1342790 7505063 +5312·10-5 - -30472·10-5 

4 -2778·10-5 -69146 4978573 -8006·10-5 -14195·10-5  -24978·10-5  -4800902 38440414 +5312·10-5 -2505·10-5  -22172·10-5 

5 +2778·10-5 +5967 429677 -8006·10-5 -4053·10-5= -9281·10-5  -57430 1237632 +5312·10-5 -107·10-5  -4076·10-5 

  Σ FII=+5040086 53910587     FII=-3170446 77839384    

III 

5 -2778·10-5 -5967 429677 +4053·10-5 +8006·10-5‡ +9281·10-5  +57430 1237632 +107·10-5 -5312·10-5= +4076·10-5 

6 +2778·10-5 +232186 16717415 +4053·10-5 - +6830·10-5  +1312311 38425447 +107·10-5 - +6937·10-5 

7 +30556·10-5 +10718549 70157780 +4053·10-5 -14195·10-5= +20413·10-5  +4840373 47423556 +107·10-5 -2505·10-5= +18015·10-5 

8 -16667·10-5 -8874257 106491089 +4053·10-5 - -12614·10-5  -5136681 81444010 +107·10-5 - -12507·10-5 

  Σ FIII=+2070510 193795963     FIII=+1073434 168530645    

Pipe lengths and diameters are shown in figure 1 and initial flow patterna in figure 2; 3 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) 
bthis is F calculated using (3), cusing (12), dΔQ2 is ΔQ1 from adjacent loop, efinal calculated flow in the first iteration is used for the calculation in the second iteration, fopposite flow direction than in 

previous iteration 
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Table 5. Calculation after Modified M.M. Andrijašev method for example gas network 
 Iteration 1  Iteration 2    

ContourO Pipe aQ bC=
2 2

1 2p p  

F’=

 C Q

Q




 1

c oQ  2

d oQ  
eQ1=Q  bC=

2 2

1 2p p  

F’=

 C Q

Q




 1

c oQ  2

d oQ  Q2=Q 

IO 

6 +2778·10-5 65604941 4298435730 +13669·10-5 -9381·10-5‡ +7066·10-5  358812846 9242405949 -1798·10-5 +1767·10-5  +7034·10-5 

8 -16667·10-5 -2096864106 22897756035 +13669·10-5 -9381·10-5  -12379·10-5  -1220331619 17942054130 -1798·10-5 +1767·10-5= -12411·10-5 

3 -19444·10-5 -1264933339 11839776055 +13669·10-5 +1444·10-5= -4331·10-5  -82226369 3455539181 -1798·10-5 +3876·10-5= -2253·10-5 

4 +2778·10-5 20357137 1333799622 +13669·10-5 +9381·10-5  +25828·10-5  1178151884 8301891430 -1798·10-5 -1767·10-5= +22263·10-5 

5 -2778·10-5 -1828426 119798452 +13669·10-5 -1444·10-5  +9447·10-5f  16966070 326858346 -1798·10-5 -3876·10-5= +3772·10-5 

  Σ F°=-3277663793 40489565894     F°=251372813 39268749037    

IIO 

6 +2778·10-5 65604941 4298435730 -9381·10-5 +13669·10-5  +7066·10-5  358812846 9242405949 +1767·10-5 -1798·10-5‡ +7034·10-5 

8 -16667·10-5 -2096864106 22897756035 -9381·10-5 +13669·10-5= -12379·10-5  -1220331619 17942054130 +1767·10-5 -1798·10-5  -12411·10-5 

7 +30556·10-5 2399620963 14293015047 -9381·10-5 -1444·10-5= +19730·10-5  1082435403 9985057887 +1767·10-5 -3876·10-5= +17620·10-5 

4 -2778·10-5 -20357137 1333799622 -9381·10-5 -13669·10-5  -25828·10-5  -1178151884 8301891430 +1767·10-5 +1798·10-5‡ -22263·10-5 

2 -27778·10-5 -200615476 1314432601 -9381·10-5 +1444·10-5= -35715·10-5  -316967670 1615251716 +1767·10-5 +3876·10-5= -30072·10-5 

1 +27778·10-5 1344982710 8812326713 -9381·10-5 +1444·10-5  +19841·10-5  729037716 6687432899 +1767·10-5 +3876·10-5  +25484·10-5 

  Σ F°=1492371895 52949765748     F°=-545165207 53774094012    

IIIO 

1 +27778·10-5 1344982710 8812326713 +1444·10-5 -9381·10-5‡ +19841·10-5  729037716 6687432899 +3876·10-5 +1767·10-5  +25484·10-5 

5 +2778·10-5 1828426 119798452 +1444·10-5 -13669·10-5= -9447·10-5f  -16966070 326858346 +3876·10-5 +1798·10-5‡ -3772·10-5 

7 -30556·10-5 -2399620963 14293015047 +1444·10-5 +9381·10-5‡ -19730·10-5  -1082435403 9985057887 +3876·10-5 -1767·10-5  -17620·10-5 

3 -19444·10-5 -1264933339 11839776055 +1444·10-5 +13669·10-5= -4331·10-5  -82226369 3455539181 +3876·10-5 -1798·10-5  -2253·10-5 

2 -27778·10-5 -200615476 1314432601 +1444·10-5 -9381·10-5  -35715·10-5  -316967670 1615251716 +3876·10-5 +1767·10-5= -30072·10-5 

  Σ F°=-2518358644 36379348868     F°=-769557797 22070140031    

Pipe lengths and diameters are shown in figure 1, initial flow pattern in figure 3 and numerical values for initial flowsa in figure 2; 3 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) 

bthis is F calculated using (1), cusing (15), 2

d oQ  is 1

oQ  from adjacent contour, efinal calculated flow in the first iteration is used for the calculation in the second iteration, fopposite flow direction than in 

previous iteration 
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Table 6. Calculation after Modified M.M. Andrijašev method for example water network 
 Iteration 1  Iteration 2    

ContourO Pipe aQ bΔp=p1-p2 

F’=

 p Q

Q




 1

c oQ  2

d oQ  
eQ1=Q  bΔp=p1-p2 

F’=

 p Q

Q




 1

c oQ  2

d oQ  Q2=Q 

IO 

6 +2778·10-5 +232186 16717415 +13127·10-5 -9074·10-5‡ +6830·10-5  +1312311 19212723 -1350·10-5 +1457·10-5  +6937·10-5 

8 -16667·10-5 -8874257 106491089 +13127·10-5 -9074·10-5  -12614·10-5  -5136681 40722005 -1350·10-5 +1457·10-5= -12507·10-5 

3 -19444·10-5 -5279095 54299272 +13127·10-5 +1068·10-5= -5250·10-5  -416024 7924850 -1350·10-5 +3855·10-5= -2744·10-5 

4 +2778·10-5 +69146 4978573 +13127·10-5 +9074·10-5  +24978·10-5  4800902 19220207 -1350·10-5 -1457·10-5= +22172·10-5 

5 -2778·10-5 -5967 429677 +13127·10-5 -1068·10-5  +9281·10-5f  +57430 618816 -1350·10-5 -3855·10-5= +4076·10-5 

  Σ F°=-13857988 182916028     F°=617939 87698601    

IIO 

6 +2778·10-5 +232186 16717415 -9074·10-5 +13127·10-5  +6830·10-5  1312311 19212723 +1457·10-5 -1350·10-5‡ +6937·10-5 

8 -16667·10-5 -8874257 106491089 -9074·10-5 +13127·10-5= -12614·10-5  -5136681 40722005 +1457·10-5 -1350·10-5  -12507·10-5 

7 +30556·10-5 +10718549 70157780 -9074·10-5 -1068·10-5= +20413·10-5  4840373 23711778 +1457·10-5 -3855·10-5= +18015·10-5 

4 -2778·10-5 -69146 4978573 -9074·10-5 -13127·10-5  -24978·10-5  -4800902 19220207 +1457·10-5 +1350·10-5‡ -22172·10-5 

2 -27778·10-5 -816585 5879413 -9074·10-5 +1068·10-5= -35784·10-5  -1342790 3752532 +1457·10-5 +3855·10-5= -30472·10-5 

1 +27778·10-5 +5919850 42622924 -9074·10-5 +1068·10-5  +19772·10-5  3030676 15328137 +1457·10-5 +3855·10-5  +25084·10-5 

  Σ F°=+7110597 246847196     F°=-2097013 121947382    

IIIO 

1 +27778·10-5 +5919850 42622924 +1068·10-5 -9074·10-5‡ +19772·10-5  3030676 15328137 +3855·10-5 +1457·10-5  +25084·10-5 

5 +2778·10-5 +5967 429677 +1068·10-5 -13127·10-5= -9281·10-5f  -57430 618816 +3855·10-5 +1350·10-5‡ -4076·10-5 

7 -30556·10-5 -10718549 70157780 +1068·10-5 +9074·10-5‡ -20413·10-5  -4840373 23711778 +3855·10-5 -1457·10-5  -18015·10-5 

3 -19444·10-5 -5279095 54299272 +1068·10-5 +13127·10-5= -5250·10-5  -416024 7924850 +3855·10-5 -1350·10-5  -2744·10-5 

2 -27778·10-5 -816585 5879413 +1068·10-5 -9074·10-5  -35784·10-5  -1342790 3752532 +3855·10-5 +1457·10-5= -30472·10-5 

  Σ F°=-10888413 173389067     F°=-3625941 51336113    

Pipe lengths and diameters are shown in figure 1, initial flow pattern in figure 3 and numerical values for initial flowsa in figure 2; 3 iterations are enough to achieve results shown in table 9 (this is for ΣF→0) 

bthis is F calculated using (3), cusing (15), 2

d oQ  is 1

oQ  from adjacent contour, efinal calculated flow in the first iteration is used for the calculation in the second iteration, fopposite flow direction than in 

previous iteration 
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Table 7. Calculation after Modified Node method for example gas network with three loops 
 Iteration 1  Iteration 2    

Node Pipe C (Pa2)
 aQ=f(C) bf’ cΔC1 

dΔC2 
eC1=C

  aQ=f(C)
 

bf’
 

cΔC1
 dΔC2

 C2=C
 

I 

2 +0.25·1010 +1.1108 24415·10-14 -36.1·108 - -11.1·108f  -0.7109 35204·10-14 +28.4·108 - +17.3·108f 

3 +0.25·1010 +0.2827 6214·10-14 -36.1·108 -6.99·108= -18.1·108f  -0.2367 7189·10-14 +28.4·108 +4.57·108‡ +14.9·108f 

4 -0.50·1010 -0.5715 6280·10-14 -36.1·108 +97.0·108‡ +10.9·108f  +0.2475 12474·10-14 +28.4·108 -66.9·108‡ -27.6·108f 

Constant output flow -0.0555      -0.0555     

 Σf=+0.7665 36909·10-14     Σf=-0.7557 54868·10-14    

II 

3 -0.25·1010 -0.2827 6214·10-14 +6.99·108 +36.1·108‡ +18.1·108f  +0.2367 7189·10-14 -4.57·108 -28.4·108= -14.9·108f 

7 -0.75·1010 -0.5715 4187·10-14 +6.99·108 +97.0·108‡ +29.0·108f  +0.3390 6425·10-14 -4.57·108 -66.9·108= -42.5·108f 

8 -0.75·1010 -0.3357 2459·10-14 +6.99·108 +78.0·108‡ +9.99·108f  +0.1109 6099·10-14 -4.57·108 -39.4·108= -34.0·108f 

Constant input flow +0.2777      +0.2777     

 Σf=-0.9121 12860·10-14     Σf=+0.9644 19713·10-14    

III 

4 +0.50·1010 +0.5715 6280·10-14 -97.0·108 +36.1·108  -10.9·108f  -0.2475 12474·10-14 +66.9·108 -28.4·108  +27.6·108f 

5 +0.50·1010 +2.1483 23608·10-14 -97.0·108 +7.52·108  -39.5·108f  -1.8867 26260·10-14 +66.9·108 5.29·108‡ +32.7·108f 

7 +0.75·1010 +0.5715 4187·10-14 -97.0·108 -6.99·108= -29.0·108f  -0.3390 6425·10-14 +66.9·108 4.57·108‡ +42.5·108f 

Constant output flow -0.3611      -0.3611     

   Σf=+2.9302 34075·10-14     Σf=-2.8343 45160·10-14    

IV 

1 +0.25·1010 +0.3905 8582·10-14 -7.52·108 - +17.5·108  +0.3208 10084·10-14 -5.29·108 - +12.2·108 

5 -0.50·1010 -2.1483 23608·10-14 -7.52·108 +97.0·108‡ +39.5·108f  +1.8867 26260·10-14 -5.29·108 -66.9·108= -32.7·108f 

6 -0.50·1010 -0.3004 3302·10-14 -7.52·108 +78.0·108‡ +20.5·108f  +0.1840 4937·10-14 -5.29·108 -39.4·108= -24.3·108f 

Constant output flow -0.2222      -0.2222     

   Σf=-2.2805 35492·10-14     Σf=2.1693 41281·10-14    

V 
6 +0.50·1010 +0.3004 3302·10-14 -78.0·108 +7.52·108  -20.5·108f  -0.1840 4937·10-14 39.4·108 5.29·108‡ +24.3·108f 

8 +0.75·1010 +0.3357 2459·10-14 -78.0·108 -6.99·108= -9.99·108f  -0.1109 6099·10-14 39.4·108 4.57·108‡ +34.0·108f 

Constant output flow -0.1944      -0.1944     

   Σf=+0.4417 5761·10-14     Σf=-0.4893 11036·10-14    

Pipe lengths and diameters are shown in figure 1; see figure 4 for initial pattern (red letters); 26 iterations are enough to achieve results shown in table 9 (this is for Σf→0) 
ausing (17), bF’=|∂Q(C)/∂C|,cΔC1 after eq. (20), dΔC2 is ΔC1 from adjacent node, efinal calculated pressure function in the first iteration is used for the calculation in the second iteration, fopposite 

flow direction than in previous iteration 
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Table 8. Calculation after Modified Node method for example water network with three loops 
 Iteration 1  Iteration 2    

Node Pipe Δp (Pa)
 aQ=f(Δp) bf’ cΔΔp1 

dΔΔp2 
eΔp1=Δp

  aQ=f(Δp)
 

bf’
 

cΔΔp1
 dΔΔp2

 Δp2=Δp
 

I 

2 +25·103 +4953·10-5 9907·10-10 +177553 - +202553  +12974·10-5 3203·10-10 +552198 - +754750 

3 +25·103 +1360·10-5 2720·10-10 +177553 -167854= +34699  +1396·10-5 2010·10-10 +552198 -730668= -143771f 

4 -50·103 -2580·10-5 2500·10-10 +177553 -798781  -671229  -8616·10-5 642·10-10 +552198 -2779111  -2898142 

Constant output flow -5556·10-5      -5556·10-5     

Σf -1823·10-5 15207·10-10     +198·10-5 5856·10-10    

II 

3 -25·103 -1360·10-5 2720·10-10 +167854 -177553  -34699  -1396·10-5 2010·10-10 +730668 -552198  +143771f 

7 -75·103 -2580·10-5 1720·10-10 +167854 -798781  -705927  -7214·10-5 511·10-10 +730668 -2779111  -2754371 

8 -75·103 -1555·10-5 1037·10-10 +167854 -1244652  -1151798  -5453·10-5 237·10-10 +730668 -3619538  -4040669 

Constant input flow 27778·10-5      +27778·10-5     

Σf 22282·10-5 5477·10-10     +13715·10-5 2759·10-10    

III 

4 +50·103 +2580·10-5 2580·10-10 +798781 -177553= +671229  +8616·10-5 642·10-10 +2779111 -552198= +2898142 

5 +50·103 +9206·10-5 9206·10-10 +798781 -854621= -5840f  -2958·10-5 25329·10-10 +2779111 -2785111  -11840 

7 +75·103 +2580·10-5 1720·10-10 +798781 -167854= +705927  +7214·10-5 511·10-10 +2779111 -730668= +2754371 

Constant output flow -36111·10-5      -36111·10-5     

  Σf -21744·10-5 13507·10-10     -23239·10-5 26482·10-10    

IV 

1 +25·103 +1825·10-5 3649·10-10 +854621 - +879621  +9639·10-5 548·10-10 +2785111 - +3664732 

5 -50·103 -9206·10-5 9206·10-10 +854621 -798781  +5840f  +2958·10-5 25329·10-10 +2785111 -2779111= +11840 

6 -50·103 -1372·10-5 1372·10-10 +854621 -1244652  -440031  -3672·10-5 417·10-10 +2785111 -3619538  -1274458 

Constant output flow -22222·10-5      -22222·10-5     

  Σf -30976·10-5 14228·10-10     -13297·10-5 26294·10-10    

V 
6 +50·103 +1372·10-5 1372·10-10 +1244652 -854621= +440031  +3672·10-5 417·10-10 +3619538 -2785111= +1274458 

8 +75·103 +1555·10-5 1037·10-10 +1244652 -167854= +1151798  +5453·10-5 237·10-10 +3619538 -730668= +4040669 

Constant output flow -19444·10-5      -19444·10-5     

  Σf -16517·10-5 2409·10-10     -10320·10-5 654·10-10    

Pipe lengths and diameters are shown in figure 1; see figure 4 for initial pattern (blue letters); 9 iterations are enough to achieve results shown in table 9 (this is for Σf→0) 
ausing (18); to calculate friction factor λ, Reynolds number has to be calculated and for this velocity have to be chosen (this velocity does not have effect on final results, here is chosen extremely 

large velocity 100 m/s), bF’=|∂Q(Δp)/∂Δp|,cΔΔp1 after eq. (20), dΔΔp2 is ΔΔp1 from adjacent node, efinal calculated pressure function in the first iteration is used for the calculation in the second 

iteration, fopposite flow direction than in previous iteration 

 

 

table 8 DB
Click here to download table: Table 8 DB.doc

http://www.editorialmanager.com/warm/download.aspx?id=38099&guid=429ff165-00a9-4b48-bce5-1b9903946e0a&scheme=1


Table 9. Final flows for network presented in this paper 

Flows (m
3
/h) 

Pipe 1 2 3 4 5 6 7 8 

Water 902.27 1097.73 94.86 802.87 -146.23
a 

248.50 643.36 451.50 

Gas 913.72 1086.28 82.01 804.27 -137.86
a 

251.58 633.60 448.42 
a
sing minus means flow direction opposite than first assumed in figure 2 
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Table 10: Velocities for water and gas for calculated flows from example network 

Velocity (m/s) 

Pipe 1 2 3 4 5 6 7 8 

Water 21.0 15.4 2.2 18.6 -1.7
a 

9.4 14.9 13.2 

Gas 5.3 3.8 0.5 4.7 -0.4
a 

2.4 3.7 3.3 
a
sing minus means flow direction opposite than first assumed in figure 2 
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