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Can pipes be actually really that smooth? 

Dejan Brkić, Ph.D., Petroleum and Natural Gas Engineer, Strumička 88, 11050 Beograd, 

Serbia; Tel. +381642543668, e-mail: dejanrgf@tesla.rcub.bg.ac.rs 

 

Abstract: In some recent papers a few approximations to the implicit Nikuradse–Prandtl–

Karman equation were shown. The Nikuradse–Prandtl–Karman equation for calculation of the 

hydraulic friction factor is valid for the hydraulically smooth regime of turbulence. Accuracy 

of these approximations for the friction factor in so called smooth pipes is checked and related 

problems from the hydraulics are analyzed in the spotlight of the recently developed 

equations. It can be concluded that pipes can be treated as smooth below certain value of the 

Reynolds number but after that even new polished pipes with a minor roughness follow the 

transitional and subsequently the rough law of flow at a higher values of the Reynolds 

number.  

Keywords: Accuracy; Comparison; Flow rate; Friction; Hydraulics; Piping 

Mots clés: Precision; Comparaison; Debit; Frottement; Hydraulique; Tuyauterie 

 

Nomenclature: 

λ Darcy (Darcy-Weisbach), i.e. Moody friction factor (-) 

f Fanning friction factor (-) 

Re Reynolds number (-) 

ε average height of protrusion of inner pipe surface (m) 

D inner diameter of pipe (m) 

ε/D relative roughness (-) 

A, B, Co, ξ auxiliary terms defined in the text 
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Abbreviations: 

NPK Nikuradse–Prandtl–Karman 

PNK Prandtl–Nikuradse–Karman 

CPU Central Processor Unit 

 

1. Introduction 

Perfectly smooth surfaces do not exist (Taylor et al., 2006). Hydraulically smooth regime 

does not occur only in absence of the roughness (i.e. only when ε/D=0). This means that 

smooth regime can occur even if the relative roughness exists (if it is minor, i.e. if ε/D→0). 

This problem is shown in the spotlight of some recent new formulas.  

 

2. Different hydraulic regimes 

In their recent paper Li et al. (2011) analyze the flow friction factor with the special attention 

to so called “smooth” pipes. They note that the implicit equation developed by Colebrook 

(1939) is valid for rough pipes which should imply that its accuracy for “smooth” pipes can 

be disputed. The Colebrook equation is valid for the entire turbulent regime which includes 

the turbulent regime in the hydraulically smooth pipes, the transient (partially) turbulent 

regime and the fully turbulent regime in the hydraulically rough pipes. This is obvious from 

the title of the paper of Colebrook “Turbulent flow in pipes with particular reference to the 

transition region between the smooth and rough pipe laws”. The Colebrook equation is not 

valid for the laminar regime which occurs for approximately Re<2320. It is valid for 

2320<Re<10
8
 (the turbulent regime). It has to be noted that for the laminar regime, there are 

no smooth and rough pipes (Figure 1). Furthermore, in the laminar regime, all pipes are 

hydraulically smooth. If the pipe roughness (protrusions of inner pipe surface) is completely 

covered by the laminar sub-layer, the surface is smooth from the hydraulic point of view. In 
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the laminar flow there is no laminar sub-layer, or better to say the main and only layer of flow 

is laminar, hence, the prefix „sub‟ is sufficient (there is no turbulent layer). In other words, in 

the laminar regime, all pipes are “smooth” as mentioned before. With further increasing of the 

Reynolds number, thickness of the laminar sub-layer decreases baring the protrusions and 

fluid flow through a pipe becomes consequently hydraulically smooth, and then gradually 

roughs, both from the hydraulic point of view (Figure 1). Hence the introductory turbulent 

flow through the rough pipes (because the perfectly smooth pipes do not exist) can be noted 

as the hydraulically smooth. In the turbulent regime a rough pipe can be treated as smooth or 

rough which depends on the circumstances (Figure 1). 

 

Figure 1. Different hydraulic regimes 

  

Accuracy of the Colebrook equation can perhaps be disputed, but up to date it has been an 

accepted standard for the calculation of the friction factor in the turbulent flow both in, 

“smooth” and rough pipes. The well known Rouse and Moody diagrams (or better to say, 

their turbulent part) had been constructed using Colebrook‟s formula (1): 




















 D71.3Re

51.2
log2

1
10

     (1) 

For flow of natural gas or other gaseous fluids the coefficient 2.51 should be replaced with 

2.825 according to the recommendation by AGA (American Gas Association) and American 

Bureau of Mines.  

 

All equations in this short report are presented using the Darcy friction factor where the 

Darcy-Weisbach or the Moody friction factors are synonyms (here noted as λ). In the other 

hand, some researchers use the Fanning friction factor (f). This is also correct where the 
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connection between these two factors is (λ=4·f). The Fanning friction factor is Cf in Li et al. 

(2011). 

 

3. Determination of hydraulic regime  

As noted before, the turbulent regime can be divided into the three sub-regimes; i.e. in the 

“smooth” (introductory) turbulent regime, the partially (transient) turbulent regime and the 

rough (fully) turbulent regime.  

 

The turbulent regime usually occurs when Re>2300 or slightly above. The Reynolds number 

was introduced by Reynolds (1883a,b) first in the “Proceedings of the Royal Society” 

followed by a longer paper in the “Philosophical Transactions of the Royal Society”. Special 

issue of the “Philosophical Transactions of the Royal Society” dedicated to these papers was 

published in 2008 with title “Turbulence transition in pipe flow: 125th anniversary of the 

publication of Reynolds‟ paper”. Further about the history of the Reynolds number can be 

seen in Rott (1990). 

 

As shown in Brkić (2011a), the smooth regime of turbulence occurs only if ξ<16 and if 

Re>2320 while the rough turbulent regime occurs if ξ>200. Between is the transient (partial) 

turbulent regime (16<ξ<200). The Reynolds number (Re) is a well known parameter while a 

parameter ξ is defined by (3): 




  Re
D

    (3) 

 

The value of parameter ξ as defined is valid for the Darcy friction factor (regarding the value 

of ξ for the Fanning friction factor readers can consult Abodolahi et al. (2007) where the 

hydraulically smooth regime occurs if ξf<8 and if Re>2320).  
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The NPK, i.e. the Nikuradse–Prandtl–Karman equation is Colebrook‟s equation in the total 

absence of roughness (when ε/D=0). The implicit NPK equation (2) cannot be derived from 

the Colebrook equation if the relative roughness is very small (ε/D→0). But hydraulically 

smooth regime also occurs in the technical systems when the relative roughness is 

significantly low (ε/D→0) and not only in the absence of roughness as can be seen from the 

figure 2 (the hydraulically smooth regime exist not only when ε/D=0 and Re>2300, but also 

when ξ<16 and Re>2300). 

  8.0Relog2
51.2

Re
log2

1
1010 













 



    (2) 

The NPK equation is actually the PNK (Prandtl-Nikuradse-Karman) in Li et al. (2011). 

 

The Colebrook, as well as the NPK equation can be calculated only by using an iterative 

calculus or using approximate formulas. So, the main problem is not to find an approximate 

formula for the NPK equation which is valid only for the smooth part of turbulent regime, or 

better to say, for the turbulent regime in the absence of roughness (when ε/D=0). Problem is 

to find an approximate formula for the implicit Colebrook equation which is valid for the 

whole turbulent regime, including the smooth, transient and the rough portion of the turbulent 

regime.  

 

Today, the NPK equation can be used only as an approximation for the Colebrook equation 

valid only for the “smooth” portion of the turbulent regime when the roughness can be 

neglected entirely (ε/D=0). This is a standard since 1939 when the paper of Colebrook was 

published and especially since 1944 when the paper of Moody was published (Moody, 1944).  

 

4. Turbulent smooth regime  
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The NPK equation can be used only if ξ<16, calculated using the Darcy friction factor (and 

even then with disputed accuracy) and if Re>2300. As can be seen from figure 2, for 

ε/D=0.01, the upper limit for “smooth” regime is for Re≈6500 (the lower is 2300). This 

means that the NPK relation produces a relative error for this value of the relative roughness 

compared to the standard Colebrook equation of up to 24% (δ1 from figure 2 with additionally 

Δδ1 compared with the equation for the hydraulically smooth regime by Buzzelli). Similar, for 

e.g. ε/D=0.0005, “smooth” regime is up to Re≈2·10
5
 (and not below 2300) where the relative 

error compared to Colebrook is up to 17% (δ2 from the figure 2 with additionally Δδ2 

compared to the equation for the hydraulically smooth regime by Buzzelli). In theory, as 

relative roughness decreases (ε/D→0), the relative error also decreases rapidly (δ→0). 

 

Figure 2. Examined hydraulic problem 

 

When the turbulent smooth regime is indicated, it is better to use an equation with the relative 

roughness included, such as those by Colebrook (1939) and Buzzelli (2008), and not those 

developed for use in the total absence of roughness. The bigger problem is how to measure or 

estimate the value of roughness accurately (Sletfjerding and Gudmundsson, 2003; Farshad et 

al., 2001). 

 

4.1. Turbulent smooth regime in the absence of roughness 

Li et al. (2011) have examined few equations valid for the “smooth” turbulent regime such as 

Blasius, Filonenko, etc (Table 1). Also, in their recent paper Danish et al. (2011) used the 

Adomian decomposition method (ADM) and the Restarted Adomian Decomposition Method 

(RADM) to develop their explicit approximation of the NPK equation (Table 1). Also Fang et 
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al. (2011) have analyzed correlations of a single-phase friction factor for the turbulent pipe 

flow, also with the special attention to so called “smooth” pipes (Table 1). 

 

Table 1: Equations for hydraulically smooth regime developed for the total absence of 

roughness 

 

According to figure 2, equations proposed by Li et al. (2011), Danish et al. (2011), and Fang 

et al. (2011) can be used to substitute the implicit NPK equation very accurately (these are 

actually non-iterative explicit approximations to the implicit NPK equation). But also, they 

are very complex, hence, the equation by Filonenko or even simple power-law equations such 

Blasius can be used as an adequate and not that complex substitution to the implicit NPK 

equation.  

 

Also as shown in Brkić (2011b), equations for the smooth regime in total absence of the 

roughness can be used as the base for the new approximations to the Colebrook equation if 

they are in suitable form for such transformation. Equations by Fang et al. (2011) and Li et al. 

(2011) are in such suitable form.  

 

4.2. Turbulent smooth regime with presence of roughness 

The equations by Buzzelli (2008) are very accurate explicit approximation of the Colebrook 

equation. Also, in addition, Buzzelli (2008) presented his equation specially developed for the 

“smooth” conditions (3): 

































B

B
A

A
18.2

1

Re
log2

1
10


  (3) 
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Where parameters A and B are defined as (3a,b): 

   41.1Reln774.0 A    (3a) 

A
D

B 







 51.2

7.3

Re 
   (3b) 

 

Approach by Buzzelli (2008) is good one because he uses the relative roughness even for the 

“smooth” regime of turbulence (Figure 2). 

 

5. New equations developed at the Princeton and the Oregon University 

According to Barenblatt et al. (1997) and Cipra (1996), the new reexaminations of classical 

and historically adopted relations for determination of hydraulic friction factor show that 

some of them are off by as much 65%. As noted in Cipra (1996), it seems that the many 

classical textbooks for hydraulics will have to be revised. For example, recent experiments at 

the Princeton University have revealed aspects of the smooth pipe flow behavior that suggest 

a more complex scaling than previously noted. The Princeton research shows that in the 

partially turbulent regime friction factor relationship follows an inflectional rather than the 

monotonic relationship given in the Moody diagram. Researchers from the Princeton 

concluded that friction factor behavior of a honed surface in the transitional regime does not 

follow Colebrook relationship and that for all conditions of roughness, logarithmic scaling 

was apparent at the higher Reynolds numbers with the same constants determined for smooth 

pipes. Another team at the Oregon University, working with a completely different type of 

facility have come to a similar conclusion. Note that the difference in scale of the Oregon and 

the Princeton devices is dramatic: for example, Princeton‟s Superpipe weighs about 25 tons, 

whereas the Oregon tube weighs about 30 grams (McKeon et al., 2004). Another interesting 

conclusion from Cordero (2008) is that the power-law represents the velocity profile better 

than the logarithmic law for the Reynolds numbers below approximately 98 thousands. 
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Blasius's law (related to the power-law velocity profile) is considered more accurate than the 

NPK log-law in that region. From a practical point of view, it is best to apply Blasius's law up 

to Re=66,964 where it coincides with results by McKeon et al. (2004, 2005) thus providing a 

continuous friction factor. 

 

McKeon et al. (2004) adjusted parameter in the NPK equation to fit the results obtained from 

the Princeton and the Oregon pipe facility (4): 

 

  537.0Relog93.1
1

10  


   (4) 

 

The NPK equation with the coefficients adjusted by McKeon et al. (2004) is also implicit in 

flow friction factor, hence the methodology proposed by Li et al. (2011) and Danish et al. 

(2011) can be applied to it. The Princeton and the Oregon equations for the fully developed 

pipe flow can be seen in McKeon et al. (2005). These equations for the fully developed pipe 

flow can be used as an improved substitution for the Colebrook equation valid for the whole 

regime of turbulence. 

 

6. Comparison of different formulas 

From figure 3 and 4, it can be seen that different equations produce the different results. But 

from figure 2, it also can be seen that these differences have a minor or none influence on the 

calculation. From figure 2, it can be clearly seen that only the effect of roughness can make an 

influence on the final results (to increase the accuracy of the final results). 

 

Figure 3. Maximal relative error of presented equations for hydraulically smooth regime 

developed for the total absence of roughness 
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Figure 4. Comparison of the most accurate explicit approximations of the NPK equation 

 

Same as the implicit Colebrook relation, its explicit approximations are valid for the whole 

turbulent regime. Up to date, only the approximation made by Churchill (1977) is valid for the 

turbulent and even the laminar flow of the Newtonian fluid (including the zone between 

them). According to the recent paper by Brkić (2011c), the approximations of the Colebrook 

equation by Romeo et al. (2002), Buzzelli (2008), Serghides (1984), Zigrang and Sylvester 

(1982) and Vatankhah and Kouchakzadeh (2008) are among the five most accurate up to date. 

Their relative error is no more than 0.15% compared to the iterative solution of the implicit 

Colebrook equation (for the whole turbulent regime). The other three approximations 

mentioned in the paper of Li et al. (2011) are not among the most accurate. These mentioned 

approximations are by Haaland (1983) with the relative error of no more than 1.5%, Swamee 

and Jain (1976) with the relative error of no more than 2.5% and Avci and Karagoz (2009) 

with the relative error up to 5%. 

 

Measuring the CPU time is a good approach for a comparison of the formulas in hydraulics 

(Giustolisi et al., 2011; Danish et al., 2011; Li et al., 2011). Also, one has to be aware that 

computational speed does not depend only on the problem size but also on the computing 

environment (the type of CPU or other hardware components). Giustolisi et al. (2011) observe 

that the computation of logarithm in the computer languages is based on the series of 

expansions that require several powers of the argument to be computed and added to each 

other. Note that the explicit equations proposed by Danish et al. (2011) and Li et al. (2011) 

contain many logarithmic expressions. Approximations to the Colebrook equation examined 
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by Brkić (2011c) are sorted based on their accuracy and the complexity as the criterions. The 

measurement of the CPU time can be a further step forward. 

 

The Colebrook equation can also be transformed and approximately solved by using the 

Lambert W-function as shown in Brkić (2011d,e). The Lambert W function is also mentioned 

in Li et al. (2011). 

 

7. Conclusion 

It can be concluded that pipes can be treated as the smooth below certain value of the 

Reynolds number but after that even the new polished pipes with a minor roughness follow 

the transitional and subsequently the rough law of flow at the higher values of the Reynolds 

number. Today, the Colebrook equation is a standard for the calculation of flow friction factor 

with the particular reference to the transition region between the smooth and the rough pipe 

laws. It is implicit in the flow friction factor, but nowadays it can be solved easily using an 

iterative procedure or some of the very accurate approximations.  

 

The Colebrook equation can be replaced with some of the new formulas like those developed 

from the data of the Princeton or Oregon pipe facility (Cordero, 2008), but the effect of the 

roughness cannot be neglected. Unavoidable the effect of roughness is the main reason why 

the Colebrook equation is a standard even for the smooth portion of turbulence. The 

roughness effect can be minor, but with slightly increased value of the Reynolds number, it 

will inevitable appear.  
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Table 1: Equations for hydraulically smooth regime developed for the total absence of roughness 
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