Characteristic and Universal Tensor Product Kernels

Abstract : Maximum mean discrepancy (MMD), also called energy distance or N-distance in statistics and Hilbert-Schmidt independence criterion (HSIC), specifically distance covariance in statistics, are among the most popular and successful approaches to quantify the difference and independence of random variables, respectively. Thanks to their kernel-based foundations, MMD and HSIC are applicable on a wide variety of domains. Despite their tremendous success, quite little is known about when HSIC characterizes independence and when MMD with tensor product kernel can discriminate probability distributions. In this paper, we answer these questions by studying various notions of characteristic property of the tensor product kernel.
Type de document :
Article dans une revue
Journal of Machine Learning Research, Journal of Machine Learning Research, 2018, 18, pp.233. 〈http://jmlr.org/papers/v18/17-492.html〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01585727
Contributeur : Zoltan Szabo <>
Soumis le : jeudi 2 août 2018 - 14:43:33
Dernière modification le : dimanche 12 août 2018 - 01:08:07

Fichier

17-492.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01585727, version 3
  • ARXIV : 1708.08157

Citation

Zoltán Szabó, Bharath Sriperumbudur. Characteristic and Universal Tensor Product Kernels. Journal of Machine Learning Research, Journal of Machine Learning Research, 2018, 18, pp.233. 〈http://jmlr.org/papers/v18/17-492.html〉. 〈hal-01585727v3〉

Partager

Métriques

Consultations de la notice

54

Téléchargements de fichiers

39