D. Felson, Y. Zhang, and M. Hannan, Risk factors for incident radiographic knee osteoarthritis in the elderly. The framingham study, Arthritis & Rheumatism, vol.52, issue.4, pp.728-733, 1997.
DOI : 10.1097/00003086-197306000-00030

D. Burr and M. Gallant, Bone remodelling in osteoarthritis, Nature Reviews Rheumatology, vol.12, issue.11, pp.665-673, 2012.
DOI : 10.1016/j.joca.2003.09.016

A. Gelber, M. Hochberg, and L. Mead, Body mass index in young men and the risk of subsequent knee and hip osteoarthritis11Access the ???Journal Club??? discussion of this paper at http://www.elsevier.com/locate/ajmselect/, The American Journal of Medicine, vol.107, issue.6, pp.542-548, 1999.
DOI : 10.1016/S0002-9343(99)00292-2

R. Kuczmarski and K. Flegal, Criteria for definition of overweight in transition: background and recommendations for the United States, Am J Clin Nutr, vol.72, pp.1074-1081, 2000.

P. Maquet, Biomechanics of the knee, 1976.

M. Ding, A. Odgaard, and I. Hvid, Changes in the threedimensional microstructure of human tibial cancellous bone in early osteoarthritis, J Bone Joint Surg Br, vol.85, pp.906-912, 2003.

D. Bobinac, J. Spanjol, and S. Zoricic, Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans, Bone, vol.32, issue.3, pp.284-290, 2003.
DOI : 10.1016/S8756-3282(02)00982-1

L. Kamibayashi, U. Wyss, and T. Cooke, Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis, Bone, vol.17, issue.1, pp.27-35, 1995.
DOI : 10.1016/8756-3282(95)00137-3

Z. Zamli, R. Brown, and K. Tarlton, Subchondral Bone Plate Thickening Precedes Chondrocyte Apoptosis and Cartilage Degradation in Spontaneous Animal Models of Osteoarthritis, BioMed Research International, vol.286, issue.2, p.606870, 2014.
DOI : 10.1002/art.21340

T. Wang, C. Wen, and C. Yan, Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis, Osteoarthritis and Cartilage, vol.21, issue.4, pp.574-581, 2013.
DOI : 10.1016/j.joca.2013.01.002

C. Wen, Y. Chen, and H. Tang, Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and, 2013.

M. Ding, A. Odgaard, and F. Linde, Age-related variations in the microstructure of human tibial cancellous bone, Journal of Orthopaedic Research, vol.88, issue.3, pp.615-621, 2002.
DOI : 10.1111/j.1365-2818.1990.tb02955.x

M. Ding, Age variations in the properties of human tibial trabecular bone and cartilage, Acta Orthop Scand, vol.292, pp.1-45, 2000.

M. Ding and I. Hvid, Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone, Bone, vol.26, issue.3, pp.291-295, 2000.
DOI : 10.1016/S8756-3282(99)00281-1

M. Ding, M. Dalstra, and C. Danielsen, Age variations in the properties of human tibial travecular bone, The Journal of Bone and Joint Surgery, vol.79, issue.6, pp.995-1002, 1997.
DOI : 10.1302/0301-620X.79B6.7538

H. Chen, Y. Washimi, and K. Kubo, Gender-related changes in three-dimensional microstructure of trabecular bone of the human proximal tibia with aging, Histol Histopathol, vol.26, pp.563-570, 2011.

D. Burr, The importance of subchondral bone in osteoarthrosis, Current Opinion in Rheumatology, vol.10, issue.3, pp.256-262, 1998.
DOI : 10.1097/00002281-199805000-00017

V. Patel, A. Issever, and A. Burghardt, MicroCT evaluation of normal and osteoarthritic bone structure in human knee specimens, Journal of Orthopaedic Research, vol.40, issue.1, pp.6-13, 2003.
DOI : 10.1259/bjr.71.843.9616238

N. Bonnet, N. Laroche, and L. Vico, Assessment of trabecular bone microarchitecture by two different x-ray microcomputed tomographs: A comparative study of the rat distal tibia using Skyscan and Scanco devices, Medical Physics, vol.9, issue.4, pp.1286-1297, 2009.
DOI : 10.1007/s001980170022

L. Sharma, J. Song, and D. Felson, The Role of Knee Alignment in Disease Progression and Functional Decline in Knee Osteoarthritis, JAMA, vol.286, issue.2, pp.188-195, 2001.
DOI : 10.1001/jama.286.2.188

J. Benske, M. Schunke, and B. Tillmann, Subchondral bone formation in arthrisis. Polychrome labeling studies in mice, 1988.

D. Wu, D. Burr, and R. Boyd, Bone and cartilage changes following experimental varus or valgus tibial angulation, Journal of Orthopaedic Research, vol.14, issue.4, pp.572-585, 1990.
DOI : 10.1097/00003086-197711000-00044

J. Day, M. Ding, and J. Van-der-linden, A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage, Journal of Orthopaedic Research, vol.9, issue.5, pp.914-918, 2001.
DOI : 10.1016/S0736-0266(01)00012-2

URL : http://onlinelibrary.wiley.com/doi/10.1016/S0736-0266(01)00012-2/pdf

M. Karsdal, D. Leeming, and K. Henriksen, Should subchondral bone turnover be targeted when treating osteoarthritis?, Osteoarthritis and Cartilage, vol.16, issue.6, pp.638-646, 2008.
DOI : 10.1016/j.joca.2008.01.014

URL : http://doi.org/10.1016/j.joca.2008.01.014

R. Lories and F. Luyten, The bone???cartilage unit in osteoarthritis, Nature Reviews Rheumatology, vol.69, issue.1, pp.43-49, 2011.
DOI : 10.1002/art.27397

S. Suri and D. Walsh, Osteochondral alterations in osteoarthritis, Bone, vol.51, issue.2, pp.204-211, 2012.
DOI : 10.1016/j.bone.2011.10.010

E. Radin and R. Rose, Role of Subchondral Bone in the Initiation and Progression of Cartilage Damage, Clinical Orthopaedics and Related Research, vol.&NA;, issue.213, pp.34-40, 1986.
DOI : 10.1097/00003086-198612000-00005