A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, 1974.

S. E. Bae, Sequential and parallel algorithms for the generalized maximum subarray problem, 2007.
DOI : 10.1093/comjnl/bxl007

URL : https://ir.canterbury.ac.nz/bitstream/10092/622/1/k-maximum_subarray_problem.pdf

R. Bellman, On a routing problem, Quarterly of Applied Mathematics, vol.16, issue.1, 1956.
DOI : 10.1090/qam/102435

J. Bentley, Programming pearls: algorithm design techniques, Communications of the ACM, vol.27, issue.9, pp.865-873, 1984.
DOI : 10.1145/358234.381162

S. Gerth, A. G. Brodal, and . Jørgensen, A Linear Time Algorithm for the k Maximal Sums Problem In: Mathematical Foundations of Computer Science, Lud?k Ku?era and Antonín Ku?era, vol.4708, pp.442-453, 2007.

T. M. Chan, More Algorithms for All-pairs Shortest Paths in Weighted Graphs, Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing. STOC'07, 2007.
DOI : 10.1137/08071990x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Thomas, C. E. Cormen, R. L. Leiserson, C. Rivest, and . Stein, Introduction to Algorithms, 2009.

U. Grenander, Pattern analysis: Lectures in Pattern Theory 2, 1978.

L. Walter, M. Ruzzo, and . Tompa, A Linear Time Algorithm for Finding All Maximal Scoring Subsequences, Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, pp.234-241, 1999.

T. Takaoka, Efficient Algorithms for the Maximum Subarray Problem by Distance Matrix Multiplication, Electronic Notes in Theoretical Computer Science, vol.61, pp.191-200, 2002.
DOI : 10.1016/S1571-0661(04)00313-5