First-Class Undefined Classes for Pharo
Guillermo Polito, Stéphane Ducasse, Luc Fabresse

To cite this version:
First-Class Undefined Classes for Pharo
From Alternative Designs to a Unified Practical Solution

Guillermo Polito
RMoD - Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France
guillermo.polito@univ-lille1.fr

Stéphane Ducasse
Inria Lille-Nord Europe, 40 Avenue Halley, Villeneuve d’Ascq, France
stephane.ducasse@inria.fr

Luc Fabresse
IMT Lille Douai, Univ. Lille, Unité de Recherche Informatique Automatique, F-59000 Lille France
luc.fabresse@imt-lille-douai.fr
http://car.imt-lille-douai.fr/luc

CCS Concepts • Software and its engineering → General programming languages; • Theory of computation → Program analysis

Abstract
Loading code inside a Pharo image is a daily concern for a Pharo developer. While doing this daily task, there are several situations in which a loaded package may refer to classes that do not exist in the system. We discuss the different flavors of this problem, the limitations of the existing Undeclared mechanism and the heterogeneity of Pharo tools to solve it. Then, we propose an unified solution for Pharo that reifies Undefined Classes. Our model of Undefined Classes is the result of an objective selection among different alternatives. We then validate our solution through two cases studies: migrating old code and loading code with circular dependencies. This paper also presents the integration of this solution into Pharo regarding the needed Meta-Object Protocol for Undefined Classes and the required modifications of existing tools.

Keywords Dynamic Languages, Partial Code Loading, Reflection

1. Introduction
This paper explores the problem of loading incomplete, partial or broken code because of inexistent classes into a dynamic object-oriented language such as Pharo [DZH+17].
The paper is organized as follows. Section 2 digs further in code loading problems and gives an overview of the Pharo 6 current state regarding this problem. Section 3 presents three different models to represent *Undefined Classes*. It then describes an analysis to select the most suitable model for Pharo according to their integration within Pharo or their ability to load partial code that can be correctly handled afterwards without any loss of information. Section 4 evaluates our implementation of undefined classes by using them in three different scenarios: the migration of old code, the loading of code without its dependencies, and the loading of code with circular dependencies. Before concluding this paper in Section 7, Section 5 discusses the runtime and tools integration of *Undefined Classes* in Pharo.

2. Problems when Loading Code

2.1 Motivating Example

Let’s consider a package Package that extends the package Dependency (cf. Figure 1). Dependency defines the Platform class that represents the current platform and an FFI class that can be used to call C functions. Package extends Dependency in two ways: it defines several concrete subclasses of Platform, and it extends Platform with the extension method workingDirectory. The following source code illustrates this example:

```smalltalk
Platform >> workingDirectory (extension)
^ self subclassResponsibility
Platform subclass: #Windows
instanceVariableNames: '').
Windows >> workingDirectory
^ FFI call: '_getcwd' library: LibC
Platform subclass: #Unix
instanceVariableNames: '').
Unix >> workingDirectory
^ FFI call: 'getcwd' library: LibC
```

Let’s imagine now that we want to load Package without loading Dependency. If we do so, three problems may arise depending on the used tool. First, the superclass of Windows and Unix is not defined and the classes cannot be properly created. Second, the extension method Platform>>workingDirectory cannot be loaded because the class it belongs to does not exist. Third, classes Windows and Unix have methods that use the FFI class, not existing either. Generally speaking, we identify three kinds of broken class references:

Undefined superclasses. A class inherits from a non-defined class.

Undefined class references. A method has a reference to a non-defined class.

![Figure 1. Package extends Dependency by subclassing, extension methods and uses it through direct references.](image)

Table 1. Comparison of strategies to manage broken code by Pharo tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Superclasses</th>
<th>References</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monticello</td>
<td>Ignored</td>
<td>Undeclared</td>
<td>Ignored</td>
</tr>
<tr>
<td>Code Importer</td>
<td>Override</td>
<td>Undeclared</td>
<td>Error</td>
</tr>
<tr>
<td>Nautilus</td>
<td>Forbidden</td>
<td>Forbidden</td>
<td>Forbidden</td>
</tr>
</tbody>
</table>

Monticello. Monticello is the open-source Smalltalk version control system used in most Pharo versions up to today. Monticello throws a so called warning when loading a subclass or an extension method of an undefined class. If the user manually creates the missing classes at this point and resumes the process, Monticello still ignores the newly created classes and does not load the problematic subclasses/methods. To overcome this issue, the user needs to manually create the missing classes and restart the loading process from scratch. A different approach is taken with class references in methods. In those cases, the reference will be loaded as an *Undeclared* reference in the Pharo global environment pointing to nil and will be fixed as soon as the class is loaded and the method recompiled.

Code Importer. The code importer is the tool in charge of loading code from files (also named file-ins). When we do a file-in of a subclass whose superclass does not exist,
We propose the introduction of undefined classes as first-class entities in the language runtime. This allows us to use them as placeholders for extension methods, and undeclared references can point to them. It also provides explicit tracking information: the system can be queried for all undefined classes to detect potential bugs and problems. Finally, a first-class entity provides an entry point for existing tools.

In the rest of this section we present alternative designs for undefined classes. Finally, we analyse and compare them to choose the most suitable model to introduce into Pharo.

3.1 A Unique Undefined Class

At first sight, the simplest design to introduce undefined classes is to create a single UndefinedClass class (cf. Figure 2). Classes that need to extend an undefined class either by subclassing or method extension will subclass from this class and store the corresponding extension methods into it. Undeclared references can also point to this instance instead of nil, providing a much better control in the case of broken code being executed.

![Figure 2. Design 1: Introducing a single UndefinedClass class. Classes inheriting from an undefined subclass will be loaded as subclasses of this class.](image)

The major drawback of this design is that it is a partial solution since UndefinedClass is a shared object. Indeed, the name of the original unknown class is lost both in the superclass or extension methods cases. Of course, we considered some extensions of this design to store those runtime informations elsewhere such as in inside separate data structures. However, we excluded such extensions from our analysis because they do not comply with the object-oriented paradigm and will be costly to maintain in the long term.

3.2 Undefined Class’s Instances

To solve the information loss problem, another solution based on the previous solution is to introduce one UndefinedClass instance per undefined class. UndefinedClass instances store all information related to a single undefined class e.g., the name of the original subclass, its subclasses, loaded extension methods. Undeclared references will now reference to instances of these classes, providing an even more fine-grained control on code execution.

Two different designs emerge from this idea:

1. modeling only the class instance-side
2. modeling both instance and class-side as a pair of instances
A third possible design is to create one

definition of the class hierarchy. Indeed, this solution does not shift
the class-hierarchy, making it easier to understand and anal-
yse. Moreover, in this solution undefined classes are just
regular classes created using the conventional class-creation
mechanisms. This simplifies significantly the interaction of
undefined classes with existing tools, since by design they
are classes and behave as such.

The main drawback of this solution is that any Undefined-
Class will behave as a normal defined class and produce
silent misbehaviours. Indeed: can an UndefinedClass be in-
stantiated? Does it make sense to put an UndefinedClass in a
package? Of course, the regular class API can be redefined

in UndefinedClass. However, preventing inherited behavior
from Class in UndefinedClass subclasses is not good for sub-
stitutability and therefore tools uniformity. This design also
implies that all future modifications of regular classes should
be considered from the UndefinedClass perspective and cor-
correctly treated.

3.4 Selecting the most suitable model for Pharo

To select the best model, we evaluate the described designs
using the following criteria:

Subclasses Support. The solution supports the loading
of subclasses (✓) of undefined classes or not (✗).

Extensions method Support. The solution supports seam-
lessly loading extension methods (✓), loading extension
methods is possible but requires implementing special
support for it (~) or it is not supported (✗).

Class references Support. The solution supports to load
and differentiate Unreferenced class references (✓), it
supports to load but not differentiate Unreferenced class
references (~), or it does not support loading Unreferenced
class references (✗).

Retained Information. The solution seamlessly retains a
majority of runtime information such as class names, sub-
classes, extension methods (✓), retaining runtime infor-
mation is possible but it requires implementing special
support for it (~) or all information is lost (✗).

Base/Meta-levels consistency. As a descendent of Small-
talk, the Pharo model is organized along a parallel hi-
erarchy of classes. Each class as its own metaclass [GR83,
BDN+09]. This uniform structure is important to ensure
not introducing inconsistencies between the base and
meta-levels. The solution is compliant with this model (✓)
or not (✗).

Tools compatibility. This criteria makes reference to how
tools support each of the designs e.g., if undefined
classes are navigable with Nautilus, mergeable/committe-
able/loadable with Monticello, writeable and readable with CodeImporter. A solution may seamlessly interact with existing tools (√), it would require partial adaptations (~) or the support for it should be entirely implemented (X).

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Design 1</th>
<th>Design 2</th>
<th>Design 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subclasses</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Extension Methods</td>
<td>X</td>
<td>~</td>
<td>√</td>
</tr>
<tr>
<td>Class References</td>
<td>~</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Information loss</td>
<td>X</td>
<td>~</td>
<td>√</td>
</tr>
<tr>
<td>Levels Consistency</td>
<td>√</td>
<td>X</td>
<td>√</td>
</tr>
<tr>
<td>Tool Compatibility</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Table 2. Comparison of strategies to manage broken code by Pharo tools

Table 2 presents a summary of the evaluation of these criteria for our three designs.

Design #1. This design fails to represent undefined classes as single entities, provoking the loss of all runtime information related to the class including extension methods.

Design #2. This design improves on Design #1 by adding first-class undefined classes. However, with this solution the class hierarchy becomes significantly more complex. This hinders not only understanding but also requires the adaptation of the undefined classes meta-model so we can integrate it with existing tools.

Design #3. This design improves on Design #1 by not losing runtime information and on Design #2 by simplifying the class hierarchy to the level of the normal class hierarchy. That makes it a design that can easily and seamlessly integrated with existing tools.

Finally, we selected the **Design #3** to model undefined classes in our solution.

3.5 Ensuring Loading Correctness

Representing unresolved references as first-class entities is not enough to ensure loading correctness. Our full solution provides additional support. When loading code, the first time an unknown class name is encountered, our solution creates a new UndefinedClass subclass to represent this missing class. Then, when this same name is again encountered, the same UndefinedClass subclass is reused and completed with additional information such as new method extensions. When loading a class for which a subclass of UndefinedClass exists in the system, our solution first creates the class and then correctly introduce all previously loaded definition stored in its UndefinedClass subclass placeholder before destroying it.

In essence, the loading correctness of our solution relies on: using only one UndefinedClass subclass per missing class (identity), UndefinedClass subclass automatic migration, and destruction when loading the actual class and system uniformity i.e., all code loading mechanism relies on our system.

4. Undefined Classes in Action

In this section we explore the usage of our chosen design in two different scenarios. Our first scenario shows how we can load and migrate old code to a newer code base. Our second scenario shows how we can load two circular-dependent packages separately without losing any code.

4.1 Scenario 1: Migrating Old Code

In this section we show how we used undefined classes. In this scenario, we tried to several old packages that are not supported on the latest version of Pharo (6.0) anymore.

Algernon. Algernon is an old Pharo package used to navigate existing methods, classes and packages. In the latest Pharo6 release, we loaded Algernon using its Metacello configuration from the project catalog. The last commit of this configuration is from 24 March 2015 (ConfigurationOfAlgernon-FN.8). We found in this package a class TypeList that is subclass of RectangleMorph. RectangleMorph has been removed in Pharo 3.0. To load such package we executed the following expression:

```
| ConfigurationOfAlgernon | project load: #bleedingEdge. |
```

Seaside 2.8. Seaside is a Smalltalk web framework that makes emphasis on the creation of components and has the novelty of using continuations. We loaded Seaside 2.8 using the metacello configuration in the project catalog. This version dates from 10 October 2011(ConfigurationOfSeaside28-dkh.40). We found that this version depends on the current version of Pharo by creating several subclasses of PackageInfo and several extension methods defined in the classes BlockContext and ContextPart. BlockContext was removed before Pharo 2.0, PackageInfo was removed in Pharo 4.0 and ContextPart was renamed to Context in Pharo 4.0. To load such package we executed the following expression:

```
| ConfigurationOfSeaside28 | load. |
```

Omni Browser. Omni Browser is the code browser used in Pharo before Nautilus was introduced in 2012. We loaded Omni Browser using the metacello configuration in the project catalog. This version dates from 20 August 2015 (ConfigurationOfOmniBrowser-pad.187) and was probably maintained for the Squeak dialect and not Pharo. We found that this version defines a subclass of TextMorphEditor and several extension methods defined in the classes ClassOrganizer, MethodReference and BorderedSubpaneDividerMorph. TextMorphEditor, MethodReference and BorderedSubpaneDividerMorph were removed before Pharo 2.0, and ClassOrganizer was removed in

IWST 2017 5 2017/9/11
Pharo 3.0. To load such a package we executed the following expression:

```smalltalk
ConfigurationOfOmniBrowser project: 'latestVersion' load.
```

This particular scenario included also initialization code in the form of class side initialize methods. These class side initialize methods are automatically executed when a package is loaded. So, when they contain a reference to an undefined class, a runtime error will happen while executing such method. In such case, the developer must manually fix the code that caused the error in the open debugger and resume the code loading without losing any runtime information. An unexperienced developer that does not know the loaded project, could simply comment the problematic piece of code to analyze it later on. For further work, we will analyze whether this is a good default behavior, or if packages containing undefined classes should not automatically execute their class side initialize methods.

4.2 Scenario 2: Loading Order

The order used to load packages is important to correctly resolve references. Using our undefined classes model this is not a constraint anymore. It is also useful to packages with circular dependencies.

You can see this in the following code:

```smalltalk
Seaside3LoadingTest >>
| maxNumberOfUndefinedClassesCreated |
self assert: UndefinedClass allSubclasses isEmpty.
maxNumberOfUndefinedClassesCreated := self loadSeasidePackagesInRandomOrder.
self assert: maxNumberOfUndefinedClassesCreated > 0.
self assert: UndefinedClass allSubclasses isEmpty.
self executeInitializeClassMethodsInCorrectOrder.
self assertAllSeasideUnitTestsAreGreen.
```

This code is an experiment of loading all the packages of Seaside 3 and its dependents (59 Monticello packages in total for the stable version) but in a random order (line 5). It means that a lot of undefined classes are created and correctly resolved later on because at the end of the loading step, there is no remaining undefined class (line 7). During the loading of each package, we disabled the initialization of classes. On line 10, we currently trigger all class side initialize methods in the right order as defined by the project’s configuration. We are currently working on doing this automatically when a class is complete. Finally, on line 11, we execute all Seaside unit tests (more than 800 unit tests) and ensure that they pass.

5. Pharo Integration

This section first presents the runtime integration through the required Meta-Object Protocol for Undefined Classes, and then the tools integration.

5.1 Runtime: Undefined Classes MOP

Our implementation of Undefined Classes in Pharo is publicly available under the MIT License. Our UndefinedClass implementation is rather small and easy to understand: it mainly consists in one class with 3 methods and 14 green unit tests. The following code snippet shows how to load it in the latest Pharo 6.0 using:

```smalltalk
loadSeasidePackagesInRandomOrder.
```

Our design makes it easier to load code that is potentially broken. Indeed, automatically creating class stubs to represent a class opens the door to instantiate such a class, or to create a subclass with an unexpected format. This opens several questions: should we allow the creation of instances of undefined classes? In case we do, how should these instances respond to messages? Our main criteria to answer this question was to avoid silent solutions: an undefined class is indeed broken code and the developer should be notified of the mistakes he makes to be able to solve them.

Instantiation

We decided that undefined instances should not be instantiated because they represent a partial class definition that probably miss some initialization code. To enforce this, we redefined the method `basicNew` in UndefinedClass class-side such that it throws an error.

```smalltalk
UndefinedClass class >> basicNew
^ UndefinedClassError signal:
  'Cannot instantiate undefined class: ', self name
```

Thus, any try to instantiate the UndefinedClass or a subclass will fail at runtime.

Messages

Our solution needs to handle messages to UndefinedClass instances even if we forbid by design their creation. Indeed, developers may create such new instances using other mechanisms such as using the change class primitive. For example, the following piece of code creates a normal instance of Object and then changes the class of such object by SomeUndefinedClass using the `adoptInstance` method.

```smalltalk
object := Object new.
SomeUndefinedClass adoptInstance: object.
object class => SomeUndefinedClass
```

To cover to some extent such behaviour, we redefined UndefinedClass>>doesNotUnderstand: to throw a notifying error. If an (sub-)instance of an UndefinedClass is created in the system, messages to it will then fail accordingly.
Notice that defining doesNotUnderstand: does not cover the creation of instances. basicNew is defined on the class-side, while doesNotUnderstand: is defined on the instance-side. Moreover, we did not use this same doesNotUnderstand: mechanism on the class side because UndefinedClass inherits from Class. doesNotUnderstand: cannot simply trap basicNew since it understands all messages of a class. We could have used a more sophisticated class proxy such as in Ghost [PBF+15] at the expense of a more complex implementation and having some impact on the compatibility with tools (Section 5.2).

5.2 Tools

To provide a coherent behaviour across the entire runtime, development tools should be updated to use this mechanism. As part of this work, we identify the adaptation points in the tools, required to support undefined classes. Our modifications of Pharo core classes and tools can be loaded with:

```smalltalk
package: 'UndefinedClassSYSTEMPATCH';
```

We present here the adaptations of three main Pharo development tools:

Monticello. Monticello requires two main modifications to support the loading of undefined classes. First, MCClassDefinition and MCMethodDefinition, the objects part of Monticello’s meta-model, should be extended to create the corresponding undefined classes at load time. Second, the class MCPackageLoader makes a pre-load analysis to split a package between loadable and unloadable definitions. Because of the introduction of undefined classes, such separation is not valid anymore and Monticello needs to be modified accordingly.

CodeImporter. Code importer requires also two main modifications. First we needed to adapt how a chunk of code containing an expression (i.e., a do-it chunk) is interpreted. A do-it chunk is an region of a file in the file-in file format that contains an expression. Do-it chunks contain arbitrary expressions and also class definitions that will be just evaluated by the compiler. In the case of an undefined class, at code compilation time the name of the undefined superclass is replaced by a reference to nil, making it impossible for tools to recover the class name in an efficient and simple manner after the compilation. To solve this issue we introduced a class parser at the level of the code importer before any code evaluation. The class parser allows us to distinguish if a given expression is a class definition or not, and so create undefined superclasses before creating the subclasses. On the other hand, extension methods in Code Importer are managed as in Monticello: we only require a patch to create the expected extended class.

Nautilus. We decided to leave Nautilus behaviour as it is. We believe Nautilus behaviour, though conservative and limited, is explicit, clear and easy to understand for developers.

6. Related Work

Multiple IDEs and tools provide nowadays the possibility of loading broken code and undefined classes. This is the case, for example, of Smalltalk’s refactoring browser parser [RBJO96], Eclipse for Java [Ecl03] or the XText platform to create programming languages [Bet13]. The design of these tools is fault-tolerant. Thanks to this they support robust syntax highlighting, code analyses and code navigation. The main difference between their approach and ours is that they work exclusively on a static representation of the code. Indeed, a program with errors cannot be compiled, executed nor tested until all its errors are fixed beforehand. Our undefined classes model is instead a runtime model: we allow loading classes at runtime and execute code over them.

Callau et al. [CT13] propose also a similar approach to support test driven development (TDD) [Bec02] on mainstream IDEs. They reify in the IDE undefined entities and use them as stubs instead of the real classes. These reifications allow developers to work on the design of their APIs without fighting against constant compilation errors. Moreover, once the design phase is finished, developers can use these stubs to automatically generate the classes corresponding to their design. This approach does indeed reify undefined classes as in our approach but with a different objective in mind. However, they apply their approach to augment mainstream IDEs, having also the limitations of working on a purely static environment.

7. Conclusion

This paper addresses a daily concern of Pharo developers: loading code that contains unresolved class references. Current Pharo version (6.0) does not correctly handle this is common problem that arises when loading old or cross-dialects libraries. In this paper, we have proposed a model for first-class Undefined Classes to represent missing classes in the system. An Undefined Class stores all required informations that should not be lost while the real class is not loaded such as its superclass name or extension methods added by other packages. Afterwards, when the missing class definition is finally loaded, it can be completed with all informations previously stored in the Undefined Class that were representing it. Our design of Undefined Class is polymorphic with classes making it easier to integrate in Pharo and tools that manipulate classes. Of course, an Undefined Class is not a regular
class since this is a partial definition and that is why we added it has its own specific MOP.

This work will continue along two directions. First, we plan to finish the integration of *Undefined Classes* into Pharo 7.0. Then, this effort is part of a larger one aiming at providing a module system for Pharo. Modules must define their dependencies. When loading a module, class references inside a module may not be resolved until we bound them.

References

