P. Tompa, Intrinsically disordered proteins: a 10-year recap, Trends in Biochemical Sciences, vol.37, issue.12, pp.509-516, 2012.
DOI : 10.1016/j.tibs.2012.08.004

V. N. Uversky, Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins, Journal of Biological Chemistry, vol.4, issue.13, pp.6681-6688, 2016.
DOI : 10.1016/j.febslet.2015.06.010

D. E. Koshland, The evolution of function in enzymes, Fed. Proc, vol.35, pp.2104-2111, 1976.

V. C. Nashine, S. Hammes-schiffer, and S. J. Benkovic, Coupled motions in enzyme catalysis, Current Opinion in Chemical Biology, vol.14, issue.5, pp.644-651, 2010.
DOI : 10.1016/j.cbpa.2010.07.020

C. Schulenburg and D. Hilvert, Protein Conformational Disorder and Enzyme Catalysis, Top. Curr. Chem, pp.128-2012, 2013.
DOI : 10.1007/128_2012_411

S. Deforte and V. N. Uversky, Not an exception to the rule: the functional significance of intrinsically disordered protein regions in enzymes, Molecular BioSystems, vol.43, issue.Suppl 2, 2017.
DOI : 10.1093/nar/gku954

S. C. Kamerlin and A. Warshel, At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?, Proteins: Structure, Function, and Bioinformatics, vol.105, pp.1339-1375, 2010.
DOI : 10.1110/ps.9.1.10

R. Callender and R. B. Dyer, The Dynamical Nature of Enzymatic Catalysis, Accounts of Chemical Research, vol.48, issue.2, pp.407-413, 2015.
DOI : 10.1021/ar5002928

H. N. Motlagh, J. O. Wrabl, J. Li, and V. J. Hilser, The ensemble nature of allostery, Nature, vol.105, issue.7496, pp.331-339, 2014.
DOI : 10.1016/j.bpj.2013.07.010

M. C. Maurel and J. Ricard, The evolution of catalytic function. Phys, Life Rev, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00068165

A. Bar-even, R. Milo, E. Noor, and D. S. Tawfik, The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness, Biochemistry, vol.54, issue.32, pp.4969-4977, 2015.
DOI : 10.1021/acs.biochem.5b00621

O. Levsh, Dynamic Conformational States Dictate Selectivity toward the Native Substrate in a Substrate-Permissive Acyltransferase, Biochemistry, vol.55, issue.45, pp.6314-6326, 2016.
DOI : 10.1021/acs.biochem.6b00887

U. Olsson and M. Wolf-watz, Overlap between folding and functional energy landscapes for adenylate kinase conformational change, Nature Communications, vol.256, issue.8, p.111, 2010.
DOI : 10.1038/ncomms1106

A. Zotter, -dependent GTPase activity, FEBS Letters, vol.266, issue.5, pp.803-808, 2011.
DOI : 10.1006/jmbi.1996.0814

M. Aan-den-toorn, M. M. Huijbers, S. C. De-vries, and . Van-mierlo, The Arabidopsis thaliana SERK1 Kinase Domain Spontaneously Refolds to an Active State In Vitro, PLoS ONE, vol.106, issue.7, p.50907, 2012.
DOI : 10.1371/journal.pone.0050907.s004

M. Larion, B. Miller, and R. Brüschweiler, Conformational heterogeneity and intrinsic disorder in enzyme regulation: Glucokinase as a case study, Intrinsically Disordered Proteins, vol.247, issue.1, pp.7969-7971, 2015.
DOI : 10.1016/j.febslet.2005.03.072

B. Zambelli, F. Musiani, S. Benini, and S. Ciurli, in Urease: Sensing, Trafficking, and Catalysis, Accounts of Chemical Research, vol.44, issue.7, pp.520-53010, 2011.
DOI : 10.1021/ar200041k

B. Zambelli, P. Turano, F. Musiani, P. Neyroz, and S. Ciurli, , a chaperone involved in nickel trafficking and urease activation, Proteins: Structure, Function, and Bioinformatics, vol.68, issue.Part 1, pp.222-239, 2009.
DOI : 10.1007/978-1-4757-3061-6

R. Real-guerra, Biochemical and structural studies on native and recombinant Glycine max UreG: a detailed characterization of a plant urease accessory protein, Plant Molecular Biology, vol.8, issue.4-5, pp.461-47510, 2012.
DOI : 10.1039/C1MB05227F

M. Miraula, S. Ciurli, and B. Zambelli, Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease, JBIC Journal of Biological Inorganic Chemistry, vol.450, issue.4, pp.739-755, 2015.
DOI : 10.1042/BJ20121434

B. Zambelli, Insights in the (un)structural organization of Bacillus pasteurii UreG, an intrinsically disordered GTPase enzyme, Mol. BioSyst., vol.51, issue.1, pp.220-228, 2012.
DOI : 10.1021/ci200183n

Y. H. Fong, Structure of UreG/UreF/UreH Complex Reveals How Urease Accessory Proteins Facilitate Maturation of Helicobacter pylori Urease, PLoS Biology, vol.8, issue.10, p.1001678, 2013.
DOI : 10.1371/journal.pbio.1001678.s011

A. Merloni, Molecular landscape of the interaction between the urease accessory proteins UreE and UreG, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1844, issue.9, pp.1662-1674, 2014.
DOI : 10.1016/j.bbapap.2014.06.016

W. L. Hubbell, D. S. Cafiso, and C. Altenbach, Identifying conformational changes with site-directed spin labeling, Nature Structural Biology, vol.7, issue.9, pp.735-739, 2000.
DOI : 10.1038/78956

D. S. Cafiso, Identifying and Quantitating Conformational Exchange in Membrane Proteins Using Site-Directed Spin Labeling, Accounts of Chemical Research, vol.47, issue.10, pp.3102-3109, 2014.
DOI : 10.1021/ar500228s

W. L. Hubbell, C. J. Lopez, C. Altenbach, and Z. Yang, Technological advances in site-directed spin labeling of proteins, Current Opinion in Structural Biology, vol.23, issue.5, pp.725-733, 2013.
DOI : 10.1016/j.sbi.2013.06.008

V. Belle, Mapping ??-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy, Proteins: Structure, Function, and Bioinformatics, vol.447, issue.Part 1, pp.973-98822125, 2008.
DOI : 10.1002/prot.22125

M. Martinho, Assessing induced folding within the intrinsically disordered C-terminal domain of the Henipavirus nucleoproteins by site-directed spin labeling EPR spectroscopy, J. Biomol. Struct. Dyn, vol.3170, pp.453-471, 2013.

S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, Journal of Magnetic Resonance, vol.178, issue.1, pp.42-55, 2006.
DOI : 10.1016/j.jmr.2005.08.013

E. Etienne, L. Breton, N. Martinho, M. Mileo, E. Belle et al., SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments, Magnetic Resonance in Chemistry, vol.98, issue.8, pp.714-71910, 2017.
DOI : 10.1016/j.bpj.2009.11.036

URL : https://hal.archives-ouvertes.fr/hal-01444172

D. Urzo, A. Santambrogio, C. Grandori, R. Ciurli, S. Zambelli et al., The conformational response to Zn(II) and Ni(II) binding of Sporosarcina pasteurii UreG, an intrinsically disordered GTPase, J. Biol. Inorg. Chem, vol.19, pp.1341-135410, 2014.

V. N. Uversky, Intrinsically Disordered Proteins and Their Environment: Effects of Strong Denaturants, Temperature, pH, Counter Ions, Membranes, Binding Partners, Osmolytes, and Macromolecular Crowding, The Protein Journal, vol.22, issue.Suppl 1, pp.305-325, 2009.
DOI : 10.1101/gad.827700

L. Whitmore and B. A. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Research, vol.32, issue.Web Server, pp.668-673, 2004.
DOI : 10.1093/nar/gkh371

D. Frishman and P. Argos, Knowledge-based protein secondary structure assignment, Proteins: Structure, Function, and Genetics, vol.206, issue.4, pp.566-57910, 1995.
DOI : 10.1107/S0108768191012363

URL : http://nook.cs.ucdavis.edu/~koehl/Classes/ECS289/reprints/Paper_Stride.pdf

L. B. Chemes, L. G. Alonso, M. G. Noval, and G. De-prat-gay, Circular Dichroism Techniques for the Analysis of Intrinsically Disordered Proteins and Domains, In Intrinsically disordered protein analysis Methods Mol. Biol, vol.895, pp.387-404, 2012.
DOI : 10.1007/978-1-61779-927-3_22

M. M. Garcia-alai, L. G. Alonso, and G. De-prat-gay, The N-Terminal Module of HPV16 E7 Is an Intrinsically Disordered Domain That Confers Conformational and Recognition Plasticity to the Oncoprotein, Biochemistry, vol.46, issue.37, pp.10405-1041210, 2007.
DOI : 10.1021/bi7007917

M. Popovic, A. De-biasio, A. Pintar, and S. Pongor, The intracellular region of the Notch ligand Jagged-1 gains partial structure upon binding to synthetic membranes, FEBS Journal, vol.23, issue.20, pp.5325-5336, 2007.
DOI : 10.1016/j.tig.2007.01.008

R. M. Brito and W. L. Vaz, Determination of the critical micelle concentration of surfactants using the fluorescent probe N-phenyl-1-naphthylamine, Analytical Biochemistry, vol.152, issue.2, pp.250-255, 1986.
DOI : 10.1016/0003-2697(86)90406-9

R. Gasper, A. Scrima, and A. Wittinghofer, Structural Insights into HypB, a GTP-binding Protein That Regulates Metal Binding, Journal of Biological Chemistry, vol.280, issue.37, pp.27492-27502, 2006.
DOI : 10.1128/JB.182.12.3446-3451.2000

J. Jeoung, T. Giese, M. Grünwald, and H. Dobbek, Is a Nickel-Binding ATPase, Biochemistry, vol.48, issue.48, pp.11505-11513, 2009.
DOI : 10.1021/bi901443z

J. Jeoung, T. Giese, M. Grünwald, and H. Dobbek, Crystal Structure of the ATP-Dependent Maturation Factor of Ni,Fe-Containing Carbon Monoxide Dehydrogenases, Journal of Molecular Biology, vol.396, issue.4, pp.1165-1179, 2010.
DOI : 10.1016/j.jmb.2009.12.062

F. Cai, T. T. Ngu, H. Kaluarachchi, and D. B. Zamble, Relationship between the GTPase, metal-binding, and dimerization activities of E. coli HypB, JBIC Journal of Biological Inorganic Chemistry, vol.74, issue.6, pp.857-868, 2011.
DOI : 10.1002/prot.22205

A. M. Sydor, H. Lebrette, R. Ariyakumaran, C. Cavazza, and D. B. Zamble, [NiFe]-Hydrogenase and Urease Maturation Factor HypB, Journal of Biological Chemistry, vol.175, issue.7, pp.3828-3841, 2014.
DOI : 10.1016/0378-1119(88)90330-7

C. L. Tsou, Conformational flexibility of enzyme active sites, Science, vol.262, issue.5132, pp.380-381, 1993.
DOI : 10.1126/science.8211158

F. Musiani, E. Ippoliti, C. Micheletti, P. Carloni, and S. Ciurli, Conformational Fluctuations of UreG, an Intrinsically Disordered Enzyme, Biochemistry, vol.52, issue.17, pp.2949-295410, 2013.
DOI : 10.1021/bi4001744

G. Parigi, Long-Range Correlated Dynamics in Intrinsically Disordered Proteins, Journal of the American Chemical Society, vol.136, issue.46, pp.16201-16209, 2014.
DOI : 10.1021/ja506820r

URL : https://hal.archives-ouvertes.fr/hal-01131128

W. Degrado, Catalytic molten globules, Nature, vol.365, issue.6446, pp.488-489, 1993.
DOI : 10.1038/365488a0

V. A. Risso, J. A. Gavira, D. F. Mejia-carmona, E. A. Gaucher, and J. M. Sanchez-ruiz, Hyperstability and Substrate Promiscuity in Laboratory Resurrections of Precambrian ??-Lactamases, Journal of the American Chemical Society, vol.135, issue.8, pp.2899-2902, 2013.
DOI : 10.1021/ja311630a

F. Chao, Structure and dynamics of a primordial catalytic fold generated by in vitro evolution, Nature Chemical Biology, vol.9, issue.2, pp.81-83, 2013.
DOI : 10.1038/nsb1196-940

R. Merkl and R. Sterner, Abstract, Biological Chemistry, vol.2, issue.1, pp.1-21, 2016.
DOI : 10.1093/bioinformatics/btu728

F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, Use of T7 RNA polymerase to direct express of cloned genes, Methods Enzymol, vol.185, pp.66-89, 1990.

L. Whitmore and B. A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases, Biopolymers, vol.332, issue.5, pp.392-40010, 2008.
DOI : 10.1155/2005/263649