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A CRAMÉR TYPE MODERATE DEVIATION THEOREM FOR THE
CRITICAL CURIE-WEISS MODEL

VAN HAO CAN AND VIET-HUNG PHAM

Abstract. Limit theorems for the magnetization of Curie-Weiss model have been stud-
ied extensively by Ellis and Newman. To refine these results, Chen, Fang and Shao prove
Cramér type moderate deviation theorems for non-critical cases by using Stein method.
In this paper, we consider the same question for the remaining case - the critical Curie-
Weiss model. By direct and simple arguments based on Laplace method, we provide an
explicit formula of the error and deduce a Cramér type result.

1. Introduction

Let (Xi) be a sequence of i.i.d. random variables satisfying EX1 = 0, Var(X1) = 1.
Then the classic Central limit theorem says that the normalized sum Wn = (X1 + . . . +
Xn)/

√
n converges in law to a standard normal random variable W . A natural question is

to understand the rate of the convergence of the tail probability P(Wn > x) to P(W > x)
for the largest possible range of x. There are two major approaches to measure the
approximation error. The first approach is to study the absolute error by Berry-Esseen
type bounds. The other one is to study the relative error of the tail probability. One of
the first result in this approach is the following Cramér type moderate deviation theorem.

If E(eα|X1|1/2) < ∞, for some α > 0, then

P(Wn > x)

1− Φ(x)
= 1 +O(1)(1 + x3)/

√
n,

for 0 ≤ x ≤ n1/6, with Φ the standard normal distribution function. It has been also
shown that the assumptions on the exponential moment of X1 and the length of range
n1/6 are optimal. We refer the reader to the book [12] for a proof of this result and a more
detailed discussion.

The Cramér type moderate deviation results have been proved to be useful in designing
statistical tests since they give a relation between the size and the accuracy of tests, see
e.g. [9, 10]. Hence, a lot of attention has been drawn in investigating this problem not
only for independent variables but also for dependent structures as stationary process
[1, 15], self-linear process [11], normalized sums [4, 14], and L-statistics [8]. On the other
hand, Cramér type moderate deviation theorems for nonnormal limit distribution are
also provided, such as for chi-squared distribution [10], for sub-Gaussian or exponential
distribution [2].

In this paper, we study the case of the critical Curie-Weiss model, where the spin
variables are dependent and the limit distribution is nonnormal. Let us first recall some
definitions and existing results for Curie-Weiss model. For n ∈ N, let Ωn = {±1}n be the
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space of spin configurations. The spin configuration probability is given by Boltzman-
Gibbs distribution, i.e. for any σ ∈ Ωn,

µn(σ) = Z−1
n exp

(

β

n

∑

1≤i<j≤n

σiσj + βh
n
∑

i=1

σi

)

,

where Zn is the normalizing factor, β > 0 and h ∈ R are inverse temperature and external
field respectively. The Curie-Weiss model has been shown to exhibit a phase transition
at βc = 1. More precisely, the asymptotic behavior of the total spin (also called the
magnetization) Sn = σ1 + . . . + σn changes when β crosses the critical value 1. Let us
consider the following fixed-point equation

(1) m = tanh(β(m+ h)).

Case 1. 0 < β < 1, h ∈ R or β ≥ 1, h 6= 0 (the uniqueness regime of magnetization).
The equation (1) has a unique solution m0, such that m0h ≥ 0. In this case, S/n is
concentrated around m0 and has a Gaussian limit under proper standardization, see [6].
Moreover, in [3] the authors prove the following moderate deviation theorem for the
magnetization by using Stein method.

Theorem 1.1. [3, Proposition 4.3] In case 1, let us define

Wn =
Sn − nm0

vn
,

where

vn =

√

n(1−m2
0)

1− (1−m2
0)β

.

Then we have

µn(σ : Wn > x)

1− Φ(x)
= 1 +O(1)(1 + x3)/

√
n,

for 0 ≤ x ≤ n1/6.

Case 2. β > 1, h = 0 (the low temperature regime without external field). The equation
(1) has two nonzero solutions m1 < 0 < m2, where m1 = −m2. In this case, one has the
conditional central limit theorems as follows: conditionally on Sn < 0 (resp. Sn > 0), S/n
is concentrated around m1 (resp. m2) and has a Gaussian limit after proper scaling, see
[6]. Similarly to case 1, a moderate deviation result has been also proved.

Theorem 1.2. [3, Proposition 4.4] In case 2, let us define

W1,n =
Sn − nm1

v1,n
and W2,n =

Sn − nm2

v2,n
,

where

v1,n =

√

n(1−m2
1)

1− (1−m2
1)β

and v2,n =

√

n(1 −m2
2)

1− (1−m2
2)β

.

Then we have

µn(σ : W1,n > x | Sn < 0)

1− Φ(x)
= 1 +O(1)(1 + x3)/

√
n,
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and

µn(σ : W2,n > x | Sn > 0)

1− Φ(x)
= 1 +O(1)(1 + x3)/

√
n,

for 0 ≤ x ≤ n1/6.

Case 3. β = 1 and h = 0 (the critical case). The equation (1) has a unique solution
0 and S/n is concentrated around 0. In this case, Sn/n

3/4 converges to a nonnormal
distribution with density proportional to e−x4/12, see [6, 7]. Moreover, the authors of
[2, 5] give Berry-Esseen type bounds for this convergence.

Theorem 1.3. [2, Theorem 2.1] In case 3, let us define

Wn =
Sn

n3/4
.

Then there exists a positive constant C, such that for all x

(2) lim sup
n→∞

√
n
∣

∣

∣
µn (σ : Wn ≤ x)− F (x)

∣

∣

∣
≤ C,

where

F (x) =

∫ x

−∞ e−t4/12dt
∫∞
−∞ e−t4/12dt

.

We remark that in [5], the authors generalize Theorem 1.3 to a near critical regime of
inverse temperature β = 1 + O( 1√

n
). They also consider a general class of Curie-Weiss

model, where the distribution of a single spin is a generic probability measure instead of
Bernoulli distribution as in the classical model.

In this paper, we will prove a Cramér type moderate deviation theorem for the total
spin in the critical case. Our main result is as follows.

Theorem 1.4. For the critical case, when β = 1 and h = 0, let us define

Wn =
Sn

n3/4
.

Then there exists a positive constant C, such that for all n large enough and 0 ≤ x ≤ n1/12,

∣

∣

∣

µn(σ : Wn > x)

1− F (x)
− 1− G(x)√

n

∣

∣

∣
≤ C(x12 + n1/3)

n
,(3)

where

F (x) =

∫ x

∞ p1(t)dt
∫∞
−∞ p1(t)dt

,

and

G(x) =

(

∫∞
x

p2(t)dt
∫∞
x

p1(t)dt
−
∫∞
−∞ p2(t)dt
∫∞
−∞ p1(t)dt

)

with

p1(t) = e−
t4

12 and p2(t) =

(

t2

2
− t6

30

)

e−
t4

12 .
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It is worth noting that Theorem 1.4 gives the exact formula of the error term of order
n−1/2, while moderate deviation results in Theorems 1.1 and 1.2 only show asymptotic
estimates of the error terms. The range of estimate n1/6 is replaced by n1/12 due to the
change of scaling and limit distribution. The proof of Theorem 1.4 is simple and direct,
based on Laplace method-like arguments. We have a direct corollary.

Corollary 1.5. For 0 ≤ x ≤ n1/12, we have

µn(σ : Wn > x)

1− F (x)
= 1 +O(1)(1 + x6)/

√
n.

Moreover, for any fixed real number x,

lim
n→∞

√
n
(

µn (σ : Wn ≤ x)− F (x)
)

= (F (x)− 1)G(x).

The first part of this corollary is a Cramér moderate deviation result in classic form,
whereas the second part is an improvement of Theorem 1.3.

The paper is organized as follows. In Section 2, we provide some preliminary results.
In Section 3, we prove the main theorem 1.4.

We fix here some notation. If f and g are two real functions, we write f = O(g) if there
exists a constant C > 0, such that f(x) ≤ Cg(x) for all x; f = Ω(g) if g = O(f); and
f = Θ(g) if f = O(g) and g = O(f).

2. Preliminaries

2.1. A lemma on the integral approximations.

Lemma 2.1. Let m, q, p be positive real numbers.

(i) Assume that f(t) is a decreasing function in [(m− 1)/p, (q + 1)/p]. Then

∣

∣

∣

∑

m<ℓ<n
2|ℓ

f

(

ℓ

p

)

− p

2

∫ q/p

m/p

f(t)dt
∣

∣

∣
≤
∣

∣

∣
f

(

m

p

)

∣

∣

∣
+
∣

∣

∣
f

(

q

p

)

∣

∣

∣
,

and

∣

∣

∣

∑

m<ℓ<q
2∤ℓ

f

(

ℓ

p

)

− p

2

∫ q/p

m/p

f(t)dt
∣

∣

∣
≤
∣

∣

∣
f

(

m

p

)

∣

∣

∣
+
∣

∣

∣
f

(

q

p

)

∣

∣

∣
.

(ii) Assume that f(t) is a differentiable function on R and there exists a positive con-

stant K, such that |f(t)|+ |f ′(t)| ≤ K. Then

∣

∣

∣

∑

m<ℓ<q
2|ℓ

f

(

ℓ

p

)

− p

2

∫ q/p

m/p

f(t)dt
∣

∣

∣
≤ K(q −m)

p
+ 2K,

and

∣

∣

∣

∑

m<ℓ<q
2∤ℓ

f

(

ℓ

p

)

− p

2

∫ q/p

m/p

f(t)dt
∣

∣

∣
≤ K(q −m)

p
+ 2K.
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Proof. The proof of (i) is simple, so we safely leave it to the reader. For (ii), by using the
mean value theorem, we get that for any ℓ,

∣

∣

∣
f

(

ℓ

p

)

− p

2

∫ ℓ+2
p

ℓ
p

f(t)dt
∣

∣

∣
≤ pK

2

∫ ℓ+2
p

ℓ
p

(

t− ℓ

p

)

dt =
K

p
.

Therefore, by summing over ℓ we get desired results. �

2.2. Estimates on the binomial coefficients. We first recall a version of Stirling ap-
proximation (see [13]) that for all n ≥ 1,

log(
√
2πn) + n log n− n+

1

12n+ 1
≤ log(n!) ≤ log(

√
2πn) + n logn− n+

1

12n
.

Using this approximation, we can show that
(

n

k

)

≤ enI(k/n), for all k = 0, . . . , n,(4)

and
(

n

k

)

= (1− O(n−1))

√

n

2πk(n− k)
× enI(k/n), for |k − (n/2)| < n/4,(5)

where I(0) = I(1) = 0 and for t ∈ (0, 1),

I(t) = (t− 1) log(1− t)− t log t.

We will see in Section 3.1 that the function J(t) defined by

(6) J(t) = I(t) +
(2t− 1)2

2

plays an important role in the expression of the distribution function of Wn. We prove
here a lemma to describe the behavior of J(t).

Lemma 2.2. Let J(t) be the function defined as in (6). Then

(i) J ′(1/2) = J ′′(1/2) = J ′′′(1/2) = J (5)(1/2) = J (7)(1/2) = 0, and for all t 6= 1/2

J ′′(t) < 0.

(ii) J (4)(1/2) = −32, J (6)(1/2) = −1536, and for all 1/4 ≤ t ≤ 3/4

−225 < J (8)(t) < 0.

Proof. We have

J ′(t) = log

(

1− t

t

)

+ (4t− 2).

Hence

J ′′(t) = −
[

t−1 + (1− t)−1
]

+ 4, J ′′′(t) =
[

t−2 − (1− t)−2
]

, J (4)(t) = −2
[

t−3 + (1− t)−3
]

,

J (5)(t) = 6
[

t−4 − (1− t)−4
]

, J (6)(t) = −24
[

t−5 + (1− t)−5
]

, J (7)(t) = 120
[

t−6 − (1− t)−6
]

,

and

J (8)(t) = −720
[

t−7 + (1− t)−7
]

.

Using these equations, we can deduce the desired results. �
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3. Proof of Theorem 1.4

3.1. An expression of the distribution function of Wn. Let us denote by Fn(x) the
distribution function of Wn, i.e. for x ∈ R

Fn(x) = µn(σ : Wn ≤ x) = µn(σ : σ1 + . . .+ σn ≤ n3/4x).(7)

For σ ∈ Ωn, we define

σ+ = {i : σi = 1}.
Observe that if |σ+| = k, then

1

n

∑

i≤j

σiσj = 1 +
1

n

∑

i<j

σiσj = 1 +
1

2n





(

∑

1≤i≤n

σi

)2

− n





=
(2k − n)2

2n
+

1

2
.

Hence,

Zn =
∑

σ∈Ωn

exp

(

1

n

∑

i≤j

σiσj

)

=

n
∑

k=0

∑

σ∈Ωn
|σ+|=k

exp

(

1

n

∑

i≤j

σiσj

)

=

n
∑

k=0

(

n

k

)

e
(2k−n)2

2n
+ 1

2 .

Let us define

xk,n =

(

n

k

)

e
(2k−n)2

2n
+ 1

2 .

Then

Zn =
n
∑

k=0

xk,n,(8)

and

(9) µn(σ : |σ+| = k) =
xk,n

Zn
.

Combining (7), (8) and (9) yields that

1− Fn(x) = µn(σ : σ1 + . . .+ σn > n3/4x)

= µn(σ : 2|σ+| − n > n3/4x) = µn

(

σ : |σ+| >
n + n3/4x

2

)

=
1

Zn

n
∑

k=0

xk,nI

(

k >
n+ n3/4x

2

)

,(10)

where I(·) stands for the indicator function. Using (4) and (5), we obtain

xk,n ≤ enJ(k/n)+1/2, for all k = 0, . . . , n,(11)

and

xk,n = (1−O(n−1))

√

n

2πk(n− k)
× enJ(k/n)+1/2, for |k − (n/2)| < n/4,(12)

with J(t) the function defined in (6).
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By Lemma 2.2, we observe that J(t) attains the maximum at the unique point 1
2
. This

fact suggests us that the value of Zn (the sum of (xk,n)) is concentrated at the middle
terms. Let us define

yn =

√

2

πn
× enJ(1/2)+1/2,

which is asymptotic to x[n/2],n. We define also

yk,n =
xk,n

yn
.

Then the equation (10) becomes

1− Fn(x) =
1

n
∑

k=0

yk,n

×
n
∑

k=0

yk,nI

(

k >
n+ n3/4x

2

)

.(13)

Moreover, using (11) and (12), we obtain estimates on (yk,n),

yk,n ≤
√

πn

2
× en

[

J(k/n)−J(1/2)
]

, for all k = 0, . . . , n,(14)

and

yk,n = (1−O(n−1))

√

n2

4k(n− k)
× en

[

J(k/n)−J(1/2)
]

for |k − n
2
| < n

4
.(15)

We define

An =
n
∑

k=0

yk,nI
(

∣

∣k − n

2

∣

∣ ≥ n

4

)

, Bn =
n
∑

k=0

yk,nI
(

∣

∣k − n

2

∣

∣ <
n

4

)

Ân =
n
∑

k=0

yk,nI
(

k − n

2
≥ n

4

)

, Bn,x =
n
∑

k=0

yk,nI

(

n

4
> k − n

2
>

n3/4x

2

)

.

Then by (13),

(16) 1− Fn(x) =
Ân +Bn,x

An +Bn

.

3.2. Estimates of An and Ân.

Lemma 3.1. There exists a positive constant c, such that for n large enough,

Ân ≤ An ≤ e−cn.

Proof. By Lemma 2.2, we have J ′(1
2
) = 0 and J ′′(t) ≤ 0 for all t ∈ (0, 1). Therefore,

max
|x−0.5|≥0.25

J(x) = max{J(0.75), J(0.25)} = J(0.25).

Hence for all |k − (n/2)| ≥ n/4,

J(k/n)− J(1/2) ≤ J(0.25)− J(0.5) < −0.005.

Thus for all |k − (n/2)| ≥ n/4,

(17) n
(

J(k/n)− J(1/2)
)

< −0.005n.

It follows from (14) and (17) that for |k − (n/2)| ≥ n/4,

yk,n ≤
√
2n exp (−0.005n) .
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Thus
Ân ≤ An ≤ n

√
2n exp (−0.005n) < exp (−0.004n) ,

for all n large enough. �

3.3. Estimates of Bn. By using Lemma 2.2 (i) and Taylor expansion, we get

J

(

k

n

)

− J

(

1

2

)

=
1

4!
J (4)(1/2)

(

k

n
− 1

2

)4

+
1

6!
J (6)(1/2)

(

k

n
− 1

2

)6

+
1

8!
J (8)(ξk,n)

(

k

n
− 1

2

)8

,

with some ξk,n between k/n and 1/2. Hence, by Lemma 2.2 (ii),

J

(

k

n

)

− J

(

1

2

)

≤ −(2k − n)4

12n4
− (2k − n)6

30n6
.

and

J

(

k

n

)

− J

(

1

2

)

≥ −(2k − n)4

12n4
− (2k − n)6

30n6
− 217(2k − n)8

n88!
.

Therefore,

n(J(k/n)− J(1/2)) ≤ −(2k − n)4

12n3
− (2k − n)6

30n5

and

n(J(k/n)− J(1/2)) ≥ −(2k − n)4

12n3
− (2k − n)6

30n5
− 217(2k − n)8

n78!
.

Combining the last two estimates with the inequality that 1 − x ≤ e−x ≤ 1 − x + x2

2
for

all x ≥ 0, we get

en
[

J(k/n)−J(1/2)
]

≤ exp

(−(2k − n)4

12n3

)(

1− (2k − n)6

30n5
+

(2k − n)12

1800n10

)

,

and

en
[

J(k/n)−J(1/2)
]

≥ exp

(−(2k − n)4

12n3

)(

1− (2k − n)6

30n5

)(

1− 217(2k − n)8

n78!

)

.

Therefore,

en
[

J(k/n)−J(1/2)
]

= exp

(−(2k − n)4

12n3

)(

1− (2k − n)6

30n5
+O(1)Xk,n

)

,(18)

where

Xk,n =
(2k − n)8

n7
+

(2k − n)12

n10
+

(2k − n)14

n12
.

On the other hand, for |k − (n/2)| < n/4,
√

n2

4k(n− k)
= 1 +

(2k − n)2

2n2
+O

(

(2k − n)4

n4

)

.(19)

Combining (15), (18) and (19), we have for |k − (n/2)| < n/4,

yk,n =

(

1 +
(2k − n)2

2n2
− (2k − n)6

30n5
+O(1)Rk,n

)

exp

(

−(2k − n)4

12n3

)

,

where

Rk,n =
1

n
+

(2k − n)4

n4
+

(2k − n)8

n7
+

(2k − n)12

n10
+

(2k − n)14

n12
.
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By letting ℓ = 2k − n, we obtain

Bn =
∑

n/4<k<3n/4

yk,n

=
∑

|ℓ|<n/2
2|(ℓ+n)

e−
ℓ4

12n3

(

1 +
ℓ2

2n2
− ℓ6

30n5
+O

(

1

n
+

ℓ4

n4
+

ℓ8

n7
+

ℓ12

n10
+

ℓ14

n12

))

=
∑

|ℓ|<n/2
2|(ℓ+n)

e
−
(

ℓ

n3/4

)4
/12

[

1 +
1√
n

(

1

2

(

ℓ

n3/4

)2

− 1

30

(

ℓ

n3/4

)6
)

+
O(1)

n

(

1 +

(

ℓ

n3/4

)4

+

(

ℓ

n3/4

)8

+

(

ℓ

n3/4

)12

+
1√
n

(

ℓ

n3/4

)14
)]

=
∑

|ℓ|<n/2
2|(ℓ+n)

p1

(

ℓ

n3/4

)

+
1√
n

∑

|ℓ|<n/2
2|(ℓ+n)

p2

(

ℓ

n3/4

)

+
O(1)

n

∑

|ℓ|<n/2
2|(ℓ+n)

r

(

ℓ

n3/4

)

,(20)

where

p1(t) = e−
t4

12

p2(t) =

(

t2

2
− t6

30

)

e−
t4

12

r(t) = (1 + t4 + t8 + t12 + t14/
√
n)e−

t4

12 .

The proof of the following lemma is simple, so we omit it.

Lemma 3.2. There exists a positive constant K, such that

sup
t∈R

|p1(t)|+ |p2(t)|+ |r(t)|+ |p′1(t)|+ |p′2(t)|+ |r′(t)| ≤ K.

Using Lemma 2.1 (ii) and Lemma 3.2, we obtain that

∑

|ℓ|≤n5/6

2|(ℓ+n)

p1

(

ℓ

n3/4

)

=
n3/4

2

n1/12
∫

−n1/12

p1(t)dt +O(n1/12).

Moreover,
∑

n5/6<|ℓ|<n/2
2|(ℓ+n)

p1

(

ℓ

n3/4

)

≤ ne−n1/3

,

∫

|t|≥n1/12

p1(t)dt = o(n−1).

Combining the last three estimates gives that

(21)
∑

|ℓ|<n/2
2|(ℓ+n)

p1

(

ℓ

n3/4

)

=
n3/4

2

∞
∫

−∞

p1(t)dt +O(n1/12).
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Similarly,

∑

|ℓ|<n/2
2|(ℓ+n)

p2

(

ℓ

n3/4

)

=
n3/4

2

∞
∫

−∞

p2(t)dt+O(n1/12),(22)

∑

|ℓ|<n/2
2|(ℓ+n)

r1

(

ℓ

n3/4

)

=
n3/4

2

∞
∫

−∞

r1(t)dt+O(n1/12).(23)

We now can deduce from (20), (21), (22) and (23) an estimate of Bn that

Bn =
n3/4

2

∞
∫

−∞

p1(t) +
n1/4

2

∞
∫

−∞

p2(t) +O(n1/12).(24)

3.4. Estimates of Bn,x. Using the same arguments for (20), we also have

Bn,x =
∑

yk,nI

(

n

4
> k − n

2
>

n3/4x

2

)

=
∑

n3/4x<ℓ<n/2
2|(ℓ+n)

p1

(

ℓ

n3/4

)

+
1√
n

∑

n3/4x<ℓ<n/2
2|(ℓ+n)

p2

(

ℓ

n3/4

)

+
O(1)

n

∑

n3/4x<ℓ<n/2
2|(ℓ+n)

r

(

ℓ

n3/4

)

.(25)

In the sequel, we consider two cases: x > 10 and x ≤ 10. For the case x > 10, we will
use Part (i) of Lemma 2.1 to obtain a sharp estimate on Bn,x, while for the case x ≤ 10,
as for Bn, we apply Part (ii) to get a suitable estimate. The choice of the number 10 is
flexible. We just need the fact that the functions p1(·), p2(·) and r(·) are decreasing in the
interval (c,∞) for a positive constant c (see Lemma 3.3).

3.4.1. Case x > 10.

Lemma 3.3. These functions p1(t), p2(t) and r(t) are decreasing in (9,∞).

The proof of this lemma is elementary, so we omit it. Applying Lemma 2.1 (i) and
Lemma 3.3 to the sums in (25), we obtain

Bn,x =
n3/4

2

n1/4

2
∫

x

p1(t)dt+
n1/4

2

n1/4

2
∫

x

p2(t)dt

+O(1)











1

n1/4

n1/4

2
∫

x

r(t)dt+ p1(x) +
p2(x)√

n
+

r(x)

n
+ p1

(

n1/4

2

)

+
p2

(

n1/4

2

)

√
n

+
r
(

n1/4

2

)

√
n











.

Moreover,

p1

(

n1/4

2

)

, p2

(

n1/4

2

)

, r
(

n1/4

2

)

,

∞
∫

n1/4

2

p1(t)dt,

∞
∫

n1/4

2

p2(t)dt,

∞
∫

n1/4

2

r(t)dt = o(n−1).
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Therefore,

Bn,x =
n3/4

2
P̂1(x) +

n1/4

2
P̂2(x) +O(1)

(

R̂(x)

n1/4
+ p1(x) +

p2(x)√
n

+
r(x)

n

)

+ o(1),(26)

where

P̂1(x) =

∫ ∞

x

p1(t)dt,

P̂2(x) =

∫ ∞

x

p2(t)dt,(27)

R̂(x) =

∫ ∞

x

r(t)dt.

3.4.2. Case x ≤ 10. Using the same arguments for (24), we can show that

Bn,x =
n3/4

2
P̂1(x) +

n1/4

2
P̂2(x) +O(n1/12).(28)

3.5. Conclusion. We first rewrite (24) as

Bn =
n3/4

2
P̂1(−∞) +

n1/4

2
P̂2(−∞) +O(n1/12),(29)

with P̂1(x) and P̂2(x) as in (27).

3.5.1. Case x > 10. Combining (16), (26), (29), we have

1− Fn(x) =
n3/4P̂1(x) + n1/4P̂2(x) +O(1)

(

R̂(x)n−1/4 + p1(x) + p2(x)n
−1/2 + r(x)n−1

)

n3/4P̂1(−∞) + n1/4P̂2(−∞) +O(n1/12)

=
P̂1(x) + n−1/2P̂2(x) +O(1)

(

R̂(x)n−1 + p1(x)n
−3/4 + p2(x)n

−5/4 + r(x)n−7/4
)

P̂1(−∞) + n−1/2P̂2(−∞) +O(n−2/3)
.

Notice that 1− F (x) = P̂1(x)/P̂1(−∞). Therefore,

−1 +
1− Fn(x)

1− F (x)
= −1 + (1− Fn(x))

P̂1(−∞)

P̂1(x)

= −1 +
P̂1(−∞) + P̂1(−∞)√

n
P̂2(x)

P̂1(x)
+O(1)

(

n−1 R̂(x)

P̂1(x)
+ n−3/4 p1(x)

P̂1(x)
+ n−5/4 p2(x)

P̂1(x)
+ n−7/4 r(x)

P̂1(x)

)

P̂1(−∞) + n−1/2P̂2(−∞) +O(n−2/3)

=
1√
n

(

P̂2(x)

P̂1(x)
− P̂2(−∞)

P̂1(−∞)

)

+O(1)

(

x12

n
+ n−3/4

)

,

where for the last line we have used that

R̂(x)

P̂1(x)
= Θ(x12),

p1(x)

P̂1(x)
= Θ(1),

p2(x)

P̂1(x)
= Θ(x6),

r(x)

P̂1(x)
= Θ(x12).

In conclusion,
1− Fn(x)

1− F (x)
= 1 +

G(x)√
n

+O(1)

(

x12

n
+ n−3/4

)

,

with G(x) as in Theorem 1.4.
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3.5.2. Case x ≤ 10. Using (28), (29) and the same arguments as in the case x > 10, we
can prove that

1− Fn(x)

1− F (x)
= 1 +

G(x)√
n

+O(n−2/3).

Notice that here the term O(n−2/3) comes from the quotient O(n1/12)/n3/4.
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